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ABSTRACT 
 

This thesis describes development and application of a 2-D low-order model, scaling 

laws, and dimensionless equations of motion (DEOM) for a vehicle impact upon a soil-fixed 

boulder in cohesionless soil.  The vehicle is represented as a lumped-parameter Maxwell model, 

the boulder is treated as a rigid body with non-negligible mass, and the soil is represented as a 

system of lumped-parameter Kelvin models.  The low-order model has three degrees-of-freedom 

(DOFs), which are the linear translation of the vehicle and boulder and the angle of rotation of the 

boulder. 

The low-order model is used to simulate a vehicle impact on a soil-fixed boulder using 

numerical integration techniques.  The simulation is then compared and validated against past full 

scale crash tests.  All full scale crashes were performed according to ASTM F2656-07 at an M30 

rating using a 6,800 kg (15,000 lb.) medium-duty sized truck.  The results of the full scale 

simulation agree to within   3° of the measured boulder angle of rotation from full scale tests. 

Dimensional analysis is performed on the low-order model to develop the DEOM and 

scaling laws.  The DEOM and scaling laws are then used to simulate small scale vehicle impacts 

and are first validated against full-scale simulations and full-scale crashes.  Next, small scale 

crash tests are then designed, preformed, and validated against full scale crash tests using the 

scaling laws.  The small scale crash tests are performed using a small equivalent vehicle mass of 

8 kg.  The small-scale simulations are in full similitude with the full-scale simulations, which 

implies 100% matching between scaled simulations.  The experimentally-measured angles of 

rotation of the boulder for the small scale tests were found agree to within   3° of the full-scale 

past crash tests. 

The results from the low-order model simulations are then used to create pass/fail 

boundaries for various sized boulders.  The pass/fail boundaries are chosen such that failures 
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include boulder rotation beyond 20°; predicted boulder fracture; and excessive boulder masses.  

The pass/fail boundaries are then used to design a boulder of potential minimum mass that will 

rotate no more than 20°.  At this time, simulations and small scale testing has been performed 

which show and an agreement of   3° of boulder rotation between the simulations and the small 

scale testing.  The full scale test has not taken place at this time.  
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NOMENCLATURE 

The following variables used throughout Chapter 3 and Chapter 9 are defined as the follows: 

Variable Definition 

  constant used in curve fitting for Maxwell model parameterization 

   upper right hand matrix found within the   matrix 

   depth of soil element   with respect to the soil surface 

   arbitrary angular acceleration used in creation of  π groupings 

   cross sectional area of soil element   

      peak acceleration observed in a rigid-wall vehicular impact 

     cross sectional area of a long slender rod 

      linear acceleration of the impact sled used in fracture testing 

   arbitrary linear accelerations used in creation of  π groupings 

         equivalent linear acceleration of a 6,800 kg vehicle from medium scale fracture 

testing 

  width of a pile 

  constant used in curve fitting for Maxwell model parameterization 

   Upper left hand matrix within the   matrix 

   arbitrary constant of horizontal subgrade reaction used in creation of  π groupings 

  constant of horizontal subgrade reaction 

   slope of the linear curve fit of the modulus of subgrade reaction vs. depth 

    California Bearing Ration in percent 

   damping constant for soil element   

   distance from the pivot point to the center of mass of the small scale pendulum 

   arbitrary damping constant used in creation of  π groupings 

   damping constant for the impact vehicle 

   distance from the local origin to the center of mass of the boulder-soil subsystem in 

the   direction 

   distance from the local origin to the center of mass of the boulder-soil subsystem in 

the   direction 

  embedment depth of the boulder 

  small scale parameter 

  full scale parameter 

     change in linear displacement of the contact point between the vehicle and boulder 

   change in linear displacement of soil element   

   depth at increment   of the dynamic cone penetrometer 

   depth of soil element   with respect to the center of mass of the boulder-soil 

subsystem 
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  ⃗  
  

 
Change in momentum of soil element   

   relative dry density of the soil 

  eccentricity of the vehicle impact with respect to the soil surface 

  unity matrix 

        distance from the soil surface to the bottom of the vehicle bumper 

   distance from the soil surface to either the top of the boulder or the top of the 

vehicle hood 

     Young's modulus of a long slender rod 

    arbitrary force vector acting on the boulder from soil element   

    force from soil representative damper   

             assumed distributed load acting on the boulder from the front of the vehicle 

          fracture force acting on the boulder from a vehicle impact 

   
 force from soil representative spring   

   total force from soil element   

   
 ultimate lateral load of soil element   

   force acting on the boulder from the vehicle 

  
  force acting on the vehicle from the boulder 

  gravitational constant 

  unit weight of soil 

  
  angle between the center of mass of the boulder and the boulder-soil subsystem 

   angle between vertical and soil element   

  
  dimensionless representation of    

   angle between the center of mass of the boulder-soil subsystem and impact vehicle 

  
  dimensionless representation of    

  boulder height with respect to impact direction 

   height of one soil element 

  area moment of inertia of the boulder in the    plane 

   mass moment of inertia of the boulder about the   axis 

     mass moment of inertia of the boulder-soil subsystem about the   axis 

   mass moment of inertia of the small scale pendulum about the pivot point, p 

   arbitrary linear jerk used in creation of  π groupings 

   strain rate loading constant 

   modulus of subgrade reaction at increment  , from dynamic cone penetrometer test 

   linear spring constant of soil element   

   passive earth pressure coefficient 

     equivalent linear spring constant of a long slender rod 

   arbitrary spring constant used in creation of  π groupings 

   equivalent linear spring constant of the impact vehicle 
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  length of the boulder with respect to impact direction 

   distance from the center of mass of the boulder-soil subsystem to the soil element   

in the   direction 

   length of the small scale pendulum arm from the pivot point, p 

     length of a long slender rod 

      length of the top of the passive soil wedge 

   arbitrary length used in creation of  π groupings 

   mass of the boulder 

     mass of the boulder-soil subsystem 

          bending moment acting on the from the impact vehicle 

   mass of soil element   

   moment from soil element   about the center of mass of the boulder-soil subsystem 

  ̇  time rate of change of the mass of soil element   

  
  added soil from translation of soil element   

  
 ̇  time rate of change of the added soil,   

  

   inertial mass 

   restoring moment from boulder tip 

      maximum restoring moment of the boulder 

      mass of the medium scale impact sled 

   mass of the vehicle 

   moment from the vehicle impact about the center of mass of the boulder-soil 

subsystem 

         mass of the ideal M30 vehicle 

  number of soil elements 

    number of base dimensions 

          factor of safety with respect to fracture 

   number of independent  π groupings 

   number of governing variable in the low-order model 

   arbitrary angular velocity used in creation of  π groupings 

̅  notation for desired parameter in either small or full scale testing 

 ⃗   momentum of soil element   

   effective angle of internal friction of the soil 

   penetration index from DCPT 

   
 dimensionless  π grouping for the depth of soil element   with respect to the soil 

surface,    

    dimensionless  π grouping for the arbitrary angular acceleration used in creation of  

π groupings,    

    dimensionless  π grouping for the arbitrary linear accelerations used in creation of  

π groupings,    

   dimensionless  π grouping for the constant of horizontal subgrade reaction,   
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    dimensionless  π grouping for the arbitrary constant of horizontal subgrade reaction 

used in creation of  π groupings,    

    dimensionless  π grouping for the arbitrary damping constant used in creation of  π 

groupings,    

    dimensionless  π grouping for the damping constant for the impact vehicle,    

    dimensionless  π grouping for the distance from the local origin to the center of 

mass of the boulder-soil subsystem in the   direction,    

    dimensionless  π grouping for the distance from the local origin to the center of 

mass of the boulder-soil subsystem in the   direction,    

   dimensionless  π grouping for the embedment depth of the boulder,   

   
 dimensionless  π grouping for the depth of soil element   with respect to the center 

of mass of the boulder-soil subsystem,    

   dimensionless  π grouping for the eccentricity of the vehicle impact with respect to 

the soil surface,   

    
 dimensionless  π grouping for the force from soil representative damper  ,     

    
 dimensionless  π grouping for the force from soil representative spring  ,    

 

    dimensionless  π grouping for the total force from soil element  ,    

    
 dimensionless  π grouping for the ultimate lateral load of soil element  ,    

 

   dimensionless  π grouping for the boulder height with respect to impact direction, 

  

   
 dimensionless  π grouping for the height of one soil element,    

    dimensionless  π grouping for the mass moment of inertia of the boulder about the 

  axis,    

     
 dimensionless  π grouping for the mass moment of inertia of the boulder-soil 

subsystem about the   axis,      

    dimensionless  π grouping for the arbitrary linear jerk used in creation of  π 

groupings,    

    dimensionless  π grouping for the arbitrary spring constant used in creation of  π 

groupings,    

   
 dimensionless  π grouping for the equivalent linear spring constant of the impact 

vehicle,    

   dimensionless  π grouping for the length of the boulder with respect to impact 

direction,   

    dimensionless  π grouping for the distance from the center of mass of the boulder-

soil subsystem to the soil element   in the   direction,    

    dimensionless  π grouping for the arbitrary length used in creation of  π groupings, 

   
   

 dimensionless  π grouping for the mass of the boulder,    

     
 dimensionless  π grouping for the mass of the boulder-soil subsystem,      

   
 dimensionless  π grouping for the mass of soil element  ,    

   
 dimensionless  π grouping for the moment from soil element   about the center of 

mass of the boulder-soil subsystem,    

   
 dimensionless  π grouping for the restoring moment from boulder tip,    

      
 dimensionless  π grouping for the maximum restoring moment of the boulder, 
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 dimensionless  π grouping for the moment from the vehicle impact about the center 

of mass of the boulder-soil subsystem,    

    dimensionless  π grouping for the arbitrary angular velocity used in creation of  π 

groupings,    

   
 dimensionless  π grouping for the mass density of the boulder,    

      
 dimensionless  π grouping for the mass density of the soil,       

    dimensionless  π grouping for the arbitrary mass density used in creation of  π 

groupings,    

   
 dimensionless  π grouping for the radial distance from the center of mass of the 

boulder-soil subsystem to soil element  ,    

   
 dimensionless  π grouping for the radial distance from the center of mass of the 

boulder-soil subsystem to the impact vehicle contact point,    

   dimensionless  π grouping for the time,   

  ̈ 
 dimensionless  π grouping for the angular acceleration of the boulder-soil 

subsystem about the   axis,  ̈  

  ̇ 
 dimensionless  π grouping for the angular velocity of the boulder-soil subsystem 

about the   axis,  ̇  

    dimensionless  π grouping for the arbitrary time used in creation of the  π 

groupings,    

    dimensionless  π grouping for the arbitrary velocity used in the creation of  π 

groupings,    

   dimensionless  π grouping for the width of the boulder with respect to the impact 

direction,   

   
 dimensionless  π grouping for the linear displacement of the center of mass of the 

boulder-soil subsystem,    

  ̇ 
 dimensionless  π grouping for the linear velocity of the center of mass of the 

boulder-soil subsystem ,  ̇  

  ̈ 
 dimensionless  π grouping for the linear acceleration of the center of mass of the 

boulder-soil subsystem ,  ̈  

   
 dimensionless  π grouping for the linear displacement of the impact vehicle,    

  ̇ 
 dimensionless  π grouping for the linear velocity of the vehicle,  ̇  

  ̈ 
 dimensionless  π grouping for the linear acceleration of the vehicle,  ̈  

  ⃛ 
 dimensionless  π grouping for the linear jerk of the impact vehicle,  ⃛  

   ultimate lateral pressure of soil element n 

  dimensional change of basis vector 

  
  radial distance from the center of mass of the boulder to the center of mass of the 

boulder-soil subsystem 

   mass density of the boulder 

      mass density of the soil 

        
 maximum mass density of the soil 

   arbitrary mass density used in creation of  π groupings 

   radial distance from the center of mass of the boulder-soil subsystem to soil 

element   
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   radial distance from the center of mass of the boulder-soil subsystem to the impact 

vehicle contact point 

     principle stresses on the    and    planes 

   normal stress acting on the    face of soil element   

   bending stress on the cross section of the boulder about the   axis  

    ultimate compressive strength of granite 

    ultimate tensile strength of granite 

  time 

    shear stress acting on the boulder cross section 

   angular rotation of the boulder-soil subsystem about the   axis 

 ̈  angular acceleration of the boulder-soil subsystem about the   axis 

 ̇  angular velocity of the boulder-soil subsystem about the   axis 

 ̈  angular acceleration of the small pendulum about the   axis 

 ̇  angular velocity of the small pendulum about the   axis 

   angular rotation of the small pendulum about the   axis 

   defining angle of the passive soil wedge measured from vertical 

   arbitrary time used in creation of the  π groupings 

   initial velocity of the impact vehicle 

   arbitrary velocity used in the creation of  π groupings 

  width of the boulder with respect to the impact direction 

  global   axis, right 

  distance from the centroid of the cross section to the impact face which 

corresponds to maximum bending stress 

   linear displacement of the center of mass of the boulder-soil subsystem 

 ̈  linear acceleration of the center of mass of the boulder-soil subsystem 

 ̇  linear velocity of the center of mass of the boulder-soil subsystem 

  
  linear displacement of the center of mass of the boulder 

   linear displacement of soil element   

 ̇  linear velocity of soil element   

   linear displacement of the impact point on the small pendulum 

 ̈  linear acceleration of the impact point on the small pendulum 

 ̇  linear velocity  of the impact point on the small pendulum 

   linear displacement of the inertial mass 

  ̇  linear velocity of the inertial mass 

  ̈  linear acceleration of the inertial mass 

  ⃛ linear jerk of the inertial mass 

   linear displacement of the impact vehicle 

 ⃛  linear jerk of the impact vehicle 

 ̈  linear acceleration of the vehicle 

 ̇  linear velocity of the vehicle 
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  global   axis, down 

  global   axis, into the page 

  depth along a pile from the soil surface 
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CHAPTER 1  
 

INTRODUCTION 

This thesis presents a low-order model for a vehicle impact upon a soil-fixed boulder and 

the use of dimensional analysis to perform dimensionally similar small scale versions of past 

crash tests.  The model is limited to cohesionless soils which are typically sands and gravels, 

which allow water to permeate even when firmly compacted [1].  In addition, methodology is 

presented which demonstrates how to use the results from dimensional analysis and the low-order 

model as a design tool for developing full scale boulders.  The low-order model presented in 

Chapter 3 can be idealized as a lumped-parameter vehicle model impacting a soil-embedded 

object.  A brief introduction into the modeling techniques for vehicle impacts and laterally loaded 

soil-fixed objects is first presented.  Then, the applications of dimensional analysis will be briefly 

discussed. 

1.1 Vehicle models 

Modeling vehicles crashes is a well-studied subject in which several models have been 

created.  The two simplest and most taught are the lumped-parameter Kelvin model and the 

lumped-parameter Maxwell model.  The lumped-parameter Kelvin model is oft used in crash tests 

which exhibit little to no permanent damage to the vehicle during impact [2].  The Kelvin model 

will always return to the same equilibrium position after deflections occur since the spring is in 

parallel with the damper.  Such cases involve low speed collisions.  The lumped-parameter 

Maxwell model, however, is oft used in cases which involve the crushing of the front end of the 

vehicle [2].  Unlike the Kelvin model, the Maxwell model allows for permanent deflections since 
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the spring is placed in series with the damper.  Such cases involve high-speed crashes.  The scope 

of this thesis pertains to M30 rated vehicle impacts as defined by ASTM F2656-07 in which a 

15,000 lb. (6800 kg) impact vehicle is accelerated to 30 mph (13.4 m/s).  As shown in Figure 1-1, 

a 30 mph car crash, even for smaller vehicles, would induce a vast amount of permanent damage 

and front end deformation.  The use of a lumped-parameter Maxwell model for vehicle impacts is 

further reviewed in Chapter 2. 

 

Figure 1-1. 31 mph crash test of a 2009 Volvo C30 into a rigid wall [3] 

1.2 Laterally loaded pile models 

Similarly, numerous models and analytical methods have been proposed in an attempt to 

predict displacements, stresses, and reaction forces of a loaded structure embedded in soil.  
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Models of particular interest as related to the scope of this thesis include laterally loaded soil 

models.  More specifically, the idea of a vehicular impact upon a soil embedded boulder may be 

conceptually idealized as an embedded object that is laterally loaded at some arbitrary point at or 

above the soil surface.  In civil engineering, the research that most closely resembles this line of 

reasoning involves laterally loaded piles, where a pile is typically a long, slender elastic beam that 

is most often embedded vertically in the soil. Figure 1-2 shows the configuration of a typical 

laterally loaded pile embedded in soil.  The variables in Figure 1-2 are the applied moment,   , 

applied lateral load,   , depth of pile at location  , and total length of the pile,  . 

 

Figure 1-2. Typical configuration of laterally loaded piles [4]. 

1.3 Dimensional analysis 

Dimensional analysis is applied to the low-order model as a means of developing 

dimensionless equations of motion and scaling laws.  The scaling laws would allow for the 
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creation of small scale crash test from which the results can be scaled up to the full scale size.  

The major selling point in small scale testing is that an expensive full scale crash test can be 

duplicated on a much smaller and cheaper scale.  Industry has already verified this concept with 

the simple advent of wind tunnels. 

1.4 Thesis organization 

The organization of this thesis is presented as follows: 

The salient literature pertaining to the development of a low-order model and application 

of dimensional analysis is briefly reviewed in Chapter 2.  Salient soil property measurement 

techniques and boulder properties are also reviewed in Chapter 2.  Following the review of salient 

literature, the development of the low-order model and boulder fracture prediction methodology 

is presented in Chapter 3.  Next, Chapter 4 presents the verification of the low-order model and 

fracture prediction methodology by comparing them to past full scale crash tests which include 

two soil-fixed tests and two rigidly embedded tests.  After the low-order model has been verified 

against past crash data, the development of the dimensionless equations of motion and associated 

scaling laws for the low-order model are presented in Chapter 5.  Similarly, the validation of the 

dimensionless equations of motion and scaling laws through the creation of dimensionally similar 

small scale crash tests is presented in Chapter 6.  Chapter 7 presents the development of a tool 

which can be used in the selection of boulder geometries based on desired boulder motion, and 

the application of the design tool is presented in Chapter 8 by proactively designing and verifying 

a boulder to meet dynamic constraints.  Lastly, the summarization of results presented and 

proposed future work as related to this thesis topic are discussed in Chapter 9.
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CHAPTER 2  
 

LITERATURE REVIEW 

The concept of a low-order dynamic model for vehicular impacts on soil-fixed boulders 

is a relatively unaddressed topic in common literature; however, individual aspects of such a 

model have been widely researched and are commonly used.  This work combines aspects of 

prior art to derive the models presented later.  An in-depth look at prior work will be presented 

here with the goal of developing a low-order model of a vehicle during front end collision with a 

soil embedded boulder, including consideration of both static and dynamic loads.  Previous works 

of particular interest include low-order vehicle models for front end collisions, a model for 

laterally loaded piles in cohesionless soils, boulder fracture mechanics, and scaling laws 

associated with both vehicle impacts and laterally loaded piles.  

2.1 Low-order vehicle modeling 

Several low-order vehicle models have been developed regarding the representation of a 

vehicle during a front end collision.  The Maxwell model is a commonly used model in 

representing vehicles during a front end collision.  The Maxwell models will be briefly reviewed 

in an attempt to create a low-order vehicle representation. 

It is common practice in literature to represent a front end vehicle collision as a 1-D 

Maxwell model [2].  Figure 2-1 shows a typical Maxwell model for vehicular impacts.  The 

variables in Figure 2-1 are the effective spring constant,  , damping constant,  , lumped vehicular 

mass,  , vehicle displacement,  , and inertial mass,   , and inertial mass displacement,   . 
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Figure 2-1. Maxwell model for front end vehicle collision [2] 

 

Pawlus [2] performed a series of pole impact tests for various types of vehicles and 

compared the predicted displacements to measured displacements when using a Maxwell model.  

Pawlus [2] fit the spring and damper coefficients for the Maxwell model from full scale crash 

tests and plotted the estimated displacement, speed, and acceleration compared to the actual 

measurements from of the vehicle.  The results presented in [2] can be seen in Figure 2-2. 

 

Figure 2-2. Maxwell model and full scale test responses of a rigid pole impact test [2] 

As seen in Figure 2-2, the values obtained for the spring and damper coefficients using 

the method proposed in [2] show good agreement between predicted and measured responses of 
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the vehicle.  The Maxwell will also be used model a vehicle impacting a soil fixed boulder in this 

work and will be compared against the Kelvin model as well as full scale crash tests. 

2.2 Dimensional analysis of vehicle collisions 

The effects of various vehicle parameters have significant influences on the forces and 

displacements during impact.  These effects can be experimentally determined through full scale 

tests, but full scale testing is often expensive, time consuming, and experimentally cumbersome.  

Rather than performing several full scale tests, it is common practice to develop small scale 

experiments in order to study the effects of various vehicle parameters during impact.   

The effectiveness of small scale crash tests were confirmed by Homes and Sliter [5], who 

conducted full and small scale vehicle crash tests under matching scaling parameters.  They 

compared the results seen in full- and small-scale experiments.  A comparison between the full 

scale and ¼ scale model is shown in Figure 2-3. 

 

Figure 2-3. Full scale vehicle test apparatus (left), ¼ scale vehicle test apparatus (right) [6] 

The small scale crash test parameters, such as material properties, were derived using 

scaling laws obtained from the dimensional analysis of vehicular impacts.  Both the full and small 

scale vehicles impacted a rigid pole during which the accelerations, velocities and positions of 
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both full and small scale were measured using the appropriate sensors and high-speed video.  

Both the full scale and small scale crash tests demonstrated similar deformations and material 

failure as shown in Figure 2-4 and Figure 2-5. 

 

Figure 2-4. Full scale vehicle deformations (left), ¼ scale vehicle deformations (right) [6] 

 

 

Figure 2-5. Full scale material failure (left), ¼ scale material failure (right) [6] 

 

 The velocities and accelerations measured during impact are shown in Figure 2-6.  Table 

2–1 shows the measured distances during the impacts and comparison of observed deformations. 
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Figure 2-6. Comparison of full (dashed line) and small (solid line) scale velocities and 

accelerations for vehicular front end collisions [5] (units are in full scale dimensions). 
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Table 2–1. Measured distance and deformation comparison between full and small scale front end 

vehicular collisions 

 

As seen in Figure 2-4, Figure 2-5, and Table 2–1, the results from the scaled model tests closely 

agree with those measured during full scale testing.  This scaling methodology is used to model a 

small scale vehicle during impact. 

2.3 Low-order Soil Modeling 

Several models and analytical methods have been developed in the literature to predict 

soil pile interaction during lateral loading.  Such analytical models include methodologies 

proposed by Zhang [7] and Naggar and Bentley [8].  An in-depth look will be taken into these 

commonly used laterally loaded pile models. 
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2.3.1 Nonlinear analysis of laterally loaded rigid piles 

Zhang [7] developed a computational method for predicting the displacement of a 

laterally loaded, short rigid pile in cohesionless soil due to static loading.  Zhang [7] proposed 

that, for small displacements, short rigid piles rotate about a single point as shown in Figure 2-7.  

The variables in Figure 2-7 are the applied lateral load,  , load eccentricity,  , depth of pile at 

location  , total length of the pile,  , lateral displacement,  , lateral displacement of the pile head, 

  , and angular rotation of the pile,  . 

 

Figure 2-7. Short rigid pile model as defined in [7] 

 Rather than representing the soil as a system of non-linear springs and using explicitly 

measured pressure-displacement curves in the prediction of pile motion, Zhang [7] calculated the 

soil reaction pressure as a function of embedment depth and static forces within the soil.  The 

lateral soil pressure is limited to the ultimate lateral load which the soil can support at a given 

depth based on soil properties such as the horizontal modulus of subgrade reaction.  The 
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horizontal modulus of subgrade reaction for cohesionless soils is assumed to vary linearly with 

depth [7]. Zhang [7] classifies three cases of lateral loading based on soil yielding and respective 

soil reaction pressures.  Figure 2-8 shows the three cases of lateral loading with respect to soil 

yielding as the lateral load and applied moment,  , is increased.  The variables in Figure 2-8 are 

the distance from the pile head to the fixed point of rotation moment,  , the depth from the pile 

head to the ending point of nonlinear soil-pile interaction above the fixed point of rotation,  , and 

the depth from the pile head to the point at which nonlinear soil-pile interaction begins below the 

fixed point of rotation,  . 

 

Figure 2-8.Soil reactions for laterally loaded, short rigid piles in which there is no soil yielding 

(left), soil yielding in the region above the point of rotation (middle), and soil yielding in the 

regions both above and below the fixed point of rotation [7] 

Zhang [7] compared predicted results for statically, laterally loaded, short rigid piles 

against full scale tests which can be seen in Figure 2-9, where    is the relative density of the 

soil.  The full scale tests were conducted by Prasad and Chari [9]. 
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Figure 2-9. Predicted pile head displacement compared to measured values [7]  

As seen in Figure 2-9, the predicted pile displacements agree to within reason with the 

measured pile displacements resulting from static loading for short rigid piles.  The methodology 

presented in [7] does not, however, account for explicit pile translation or the effect of pile 

inertial properties such as mass moment of inertia.  Furthermore, the methodology in [7] assumes 

a static load.  The determination of ultimate lateral loads for cohesionless soils and the 

corresponding relationship between the embedment depth and the ultimate soil lateral load are 

used in this work in the modeling of the soil-boulder interaction. 

2.3.2 Dynamic analysis for laterally loaded piles 

Naggar and Bentley [8] developed a method for predicting the displacements of a 

laterally loaded, long elastic pile under dynamic loading.  The methodology proposed by Naggar 

and Bentley [8] incorporates the p-y method applied to a Winkler model as well as wave 
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propagation and energy dissipation to develop static p-y curves.  The static p-y curves are 

transformed into dynamic p-y curves through the addition of dampers as shown in Figure 2-10.  

The variables in Figure 2-10 are the applied force as a function of time,     , linear spring and 

damper constants for the far field soil,    and   , nonlinear spring and damper constants for the 

near field soil,     and    , mass of the soil associated with the near field soil,   , and the mass 

of the soil associated with the far field,   . 

 

Figure 2-10. Dynamic soil-pile model as proposed by Naggar and Bentley Dynamic [8] 

The mass of the soil within the inner field is lumped against the pile due to the assumed 

massless area as demonstrated by Novak and Sheta [10].  Naggar and Bentley [8] calculate the 

spring and dashpot constants for the soil element based on empirical data from cyclic pile head 

loading tests for specific soils.  The empirically derived spring and dashpot constants are then 

used in predicting the displacement of a dynamically laterally loaded pile.  Naggar and Bentley 

[8] compared the predicted pile head displacements against measured pile head deflections for 
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two cases of dynamically, laterally loaded, long elastic piles using a statnamic device, which 

incorporates both static and dynamic loading.  The two cases involved a lateral dynamic load of 

350 kN and 470 kN respectively.  Further soil and pile conditions of the tests can be found in 

[11].  The results of the methodology used in [8] compared to measured data from full scale 

experiments are shown in Figure 2-11.   

 

Figure 2-11. Comparison of predicted and measured results from a lateral load of 350 kN (a) and 

470 kN (b) [8] 
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As seen in Figure 2-11, the predicted pile displacements agree with the measured pile 

displacements quite well.  The methodology proposed in [8], however, determines the soil 

damping explicitly through experiments and curve fitting.  It is the goal of this work, rather, to 

develop a theoretical model using a minimal number of empirical relations.  Additionally, the 

methodology in [8] was developed for long elastic piles whereas this work is limited to short rigid 

boulders.  The inclusion of soil damping to create a set of dynamic p-y curves as well as the 

lumped soil mass against the pile will be used in this work in the modeling of boulder motion in 

soil. 

2.4 Dimensional analysis of laterally loaded piles 

As seen in the above literature review, the effects of various soil and pile parameters have 

significant influence on the on pile displacement during lateral loading.  These effects can be 

experimentally determined through full scale tests, but similar to full scale vehicular testing, full 

scale testing of piles is often expensive, time consuming, and cumbersome.  Rather than 

performing several full scale tests, it is common practice to develop small scale models in order 

to study the effects of soil and pile parameters on the displacement of laterally loaded piles.  

There are numerous applications of scaled testing for laterally loaded piles in literature.  Those of 

particular interest include scaled centrifuge testing and scaled testing of short rigid piles. 

2.4.1 Dimensional analysis for centrifuge testing on small scale piles 

According to Ting et al. [12], the ambient stresses in the soil observed during a 1/α small 

scale test do not match those observed during full scale testing, where α is a constant related to 

the scaled size.  The ambient stresses found in soils during lateral loading are functions of 
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experimental constants such as gravity and soil mass density [12].  As demonstrated in [12], 

either the mass density of the soil must be increased by a factor of α or the gravity must be 

increased by a factor of α in order to obtain matching ambient stresses in a small scale 

experiment.  The first option of increasing soil mass density is rarely used since it is beneficial to 

use the same soil in model test as that found in the full scale case.  A feasible alternative to 

increasing the soil mass density is to increase the gravitational acceleration by a factor of α using 

a centrifuge [12]. 

Ting et al. [12] performed a series of centrifugal tests of laterally loaded small scale piles 

to confirm the applicability of scaling the ambient soil stresses due to gravity.  Table 2–2shows 

the resulting scaling laws when dimensional analysis is applied to a laterally loaded soil-fixed 

pile. 

Table 2–2. Scaling laws associated with centrifugal tests [12] 
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The results of the small scale tests were compared to full tests and are shown in Figure 

2-12.  The solid lines in Figure 2-12 represent the fit of small scale lateral displacements as a 

function of applied lateral load in a centrifuge test and the dashed lines represent the full scale 

deflections as a function of applied load for various relative density sands. 

 

Figure 2-12. Full scale and small scale test results, where dashed lines are full scale and solid 

lines are small scale [12] 

As seen in Figure 2-12, the small scale and full scale results agree to within moderate 

reason.  The use of a centrifuge for model scale results, however, is not ideal for the scope of this 

work.  Various input parameters used in scaling in [12] are used in this work to develop small 

scale soil and boulder parameters.  
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2.4.2 Dimensional analysis for cyclically loaded rigid piles 

Leblanc et al. [13] developed a set of dimensionless equations of motion used in 

developing design guidelines for monopoles used in wind farms and parameterizing the 

displacements of the pile as a result of varying relative densities of sand.  Even though the intent 

of Leblanc et al. [13] was determining the effect on soil stiffness due to cyclic loading, the 

methods used in reaching the conclusions are applicable and noteworthy to this work.  The model 

used in [13] is shown in Figure 2-13 and assumes that the pile undergoes an angular rotation 

about a fixed point below the soil surface similar to that seen in [7].  The variables in Figure 2-13 

are the applied moment,  , applied horizontal load,  , applied vertical load,  , friction angle 

factor as defined by [14],  , pile diameter,  , effective unit weight of the soil,   , depth of pile 

below grade,  , depth to fixed point of rotation,  , length from fixed point of rotation to the 

bottom of the pile,  , a dimensionless constant,   , and the soil critical state friction angle,    .  

 

Figure 2-13. Leblanc et at. model for dynamically, laterally loaded, short rigid piles [13] 
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Table 2–3 shows the dimensionless input parameters for a laterally loaded short rigid pile 

in sand as calculated by [13]. 

Table 2–3. Non-dimensional parameters for the soil-pile model presented in [13] 

 

The non-dimensional parameters found in Table 2–3 are used to predict the static rotation 

of piles by creating and solving dimensionless equations of motion.  The dimensionless results of 

the dimensionless equations of motion are transformed into dimensioned results using the non-

dimensional parameters found in Table 2–3.  Leblanc et al. [13] measured the lateral bearing 

capacity of several model scale tests and compared the results to predicted lateral bearing 

capacities using the dimensionless equations of motion.  Figure 2-14 shows the results of the 

small scale test results as compared to the theoretical results.  The salient features in Figure 2-14 

are the dashed line representing the theoretical bearing capacity and the circles representing the 

measured bearing capacity.   ̃ and  ̃ are the dimensionless applied moment and dimensionless 

applied horizontal lateral load.  The other variables are outside the scope of this work. 
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Figure 2-14. Theoretical bearing capacity as determined by the model presented in [13] compared 

to measured bearing capacity [13] 

As seen in Figure 2-14, the theoretical bearing capacity agrees with the measured bearing 

capacity of the scaled tests.  The loads used in [13], however, were static loads whereas the 

loading as related to this work are dynamic loads which are generally not considered to rotate 

about a stationary point below the soil surface.  The usage of dimensionless equations of motion, 

similar to LeBlanc’s study, is employed in this work to predict the boulder displacement during 

scaled vehicle impacts.  
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2.5 In-situ soil property measurement 

Soil parameters can be obtained either via laboratory tests which generally involve 

undisturbed soil samples or via in situ tests which often take advantage of disturbed soil 

conditions.  The testing methods within the scope of this work will be limited to in-situ methods 

which can be used as quick guidelines.  The three most prominent in-situ soil testing methods are 

the pressuremeter test, flat plate bearing test, and the dynamic cone penetration test (DCPT).  The 

greatest advantage observed in the DCPT is handheld nature of the test equipment and the low 

cost associated with purchasing the test apparatus [15].  The DCPT is a method often used by 

state departments of transportation as a quick means of measuring soil properties [16].  For these 

reasons, an in-depth look will be taken into the DCPT method for preforming in-situ soil 

measurements with the goal of developing rapid field soil measurements which can be used in 

modeling of the soil. 

The dynamic cone penetration test is a testing method which incorporates methodology 

from both the Standard Penetration Test (SPT) and the Cone Penetration Test (CPT) in order to 

estimate soil properties [17].  Dynamic cone penetration tests are performed by hammering a 

weighted cone into soil and measuring the associated penetration depth per blow [17].  The 

penetration depth per blow can then be correlated to soil parameters such as relative density or the 

constant of horizontal subgrade reaction [17].   

Although the DCPT is not as well used as the SPT or CPT, the results obtained from the 

DCPT can be correlated to SPT results as demonstrated in [18] and California Bearing Ratio 

(CBR) test results as demonstrated in [19] which have been correlated to strength of soil 

properties.  The correlated SPT results and CBR results are used in this work to determine the 

constant of horizontal subgrade reaction for cohesionless soils. 
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2.6 Boulder properties 

Unlike a vast majority of the soil-pile models seen in literature, a boulder acting as a soil-

fixed boulder is subject to not only translation and rotation, but also to mechanical failure in the 

form of fracture.  The deformation of the soil surrounding a boulder during vehicle impact 

absorbs and dissipates energy from a vehicle impact.  If the soil were not to deform, as if the 

boulder were embedded in concrete, then the boulder itself would have to withstand the entirety 

of the vehicle impact.  If the boulder is not “strong enough” then it is plausible that the boulder 

will fracture during impact.  Theories involving the prediction of fracturing of rocks will be 

investigated with the goal of developing minimum boulder dimensions and material properties 

with respect to fracture prediction.  

A widely used method for predicting the force which will cause a rock specimen to 

fracture is the application of the Brittle Mohr Coulomb failure criteria when calculating internal 

stresses as a result of an applied load [20].  The results from Mohr Coulomb failure criteria often 

produce conservative estimates for a load which will cause fracture [20].  The manner the load is 

applied also plays in important role in the ultimate resistive load a rock specimen can supply 

before it fractures.  Cho et al. [21] performed a series of experiments in which the tensile strength 

of rock was compared against the loading strain rate.  The loading strain rate was increased from 

static values,  ̇       , into dynamic ranges of    ̇      .  The results from [21] are shown in 

Figure 2-16 and Figure 2-16. 
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Figure 2-15. Tensile strength vs. loading rate for Inada granite [21] 

 

Figure 2-16. Tensile strength vs. loading rate for Tage tuff [21] 



25 

 

As expected, the dynamic strength of rock was shown to increase with increasing loading 

rate.  The use of a dynamic strength in the prediction of boulder fracture, however, may err 

towards fracture if the actual applied loading rate is smaller than the predicted loading rate for the 

same loading magnitude. The use of Mohr Coulomb failure criteria from a static loading 

standpoint predicts lower fracture loads than those associated with dynamic strength calculation 

which may act as conservative guidelines for minimum boulder dimensions.  For conservatism, 

the static loading criteria will be used in this work to predict the minimum dimensions needed for 

a boulder assuming rigid soil conditions. 
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CHAPTER 3  
 

LOW-ORDER MODEL THEORY AND METHODS 

The intent of this chapter is to present the development of a low-order model for a vehicle 

impact upon a soil-fixed boulder in cohesionless soil such as sand or gravel.  From the low-order 

model, it will be possible to not only predict vehicle and boulder motion but also boulder failure 

criteria.  Potential failure criteria during vehicular impact include excessive boulder motion 

and/or material failure of the boulder in the form of facture.   

The low-order model used throughout this thesis will be presented as a combination of 

commonly used vehicle and pile models.  The low-order model will capture both motion of the 

vehicle as well as material failure of the boulder.  A method for simulating the results of various 

model parameters will be presented as well as preferred methods for in-situ and laboratory 

measurement of the various model parameters.  

This chapter is organized as follows:  

The coordinate system pertaining to the low-order model is described in Section 3.1.  The 

development of the low-order model and governing equations is presented in Section 3.2, and the 

derivation of the forces seen in the governing equations is presented in Section 3.2.1 through 

Section 3.2.3.  The prediction of boulder failure criteria in the form of fracture will be discussed 

in Section 3.3.  Methods for determining in-situ soil properties will be presented in Section 3.4, 

and finally the preferred method of model simulation will be presented in Section 3.5. 

3.1 Coordinate systems and nomenclature 

The global coordinate used throughout this thesis is oriented such that the   direction is 

to the right, the   direction is down, and the   direction is into the page.  All displacements and 
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corresponding time derivatives along the   axis will be noted as  ,  ̇,… etc., and all rotational 

displacements about the Z axis will be noted as  ,  ̇,… etc.  The motion of the vehicle is assumed 

to be one dimensional in the positive   direction.  The variable    is the   direction displacement 

of the vehicle with respect to the global reference frame. 

Similar to the motion of the vehicle, the motion of the boulder is assumed to translate 

solely in the positive   direction and independently rotate about the   axis as illustrated in Figure 

3-1.  The variables in Figure 3-1 are the   direction displacement of the center of mass of the 

boulder-soil subsystem,   , and the angle of rotation of the boulder-soil subsystem about the   

axis,   .  It should be noted that the center of mass of the boulder and soil system is not the same 

as the center of mass for the boulder alone.  The location of the center of mass for the boulder is 

shown in Figure 3-1. 

 

Figure 3-1. Coordinates associated with boulder-soil subsystem (not to scale)  

It will be assumed throughout this thesis that the length,  , width,  , and height,  , of 

the boulder will be such that the length is always parallel to the direction of impact in the    
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plane, the width is perpendicular to the direction of impact in the    plane, and the height is in 

the    plane.  Figure 3-2 illustrates a typical scenario for a vehicle impact upon a soil-fixed 

barrier.  The variable   in Figure 3-2 is the embedment depth of the boulder. 

 

Figure 3-2. Layout for a typical vehicle impact 

3.2 Low-order modeling of vehicle-boulder motion 

The low-order model presented in this thesis is a combination of a lumped-parameter 

vehicle model, a rigid body representing the boulder, and a lumped-parameter soil model 

consisting of individual masses and nonlinear springs and dampers representing the affected soil 

during vehicular impact.  As presented in [2], the use of a lumped-parameter Maxwell model is 

most aptly used for collisions in which a relatively large amount of crush is observed.  Figure 3-3 
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shows the low-order model as presented using a lumped-parameter Maxwell model for the 

vehicle. 

The variables in Figure 3-3 are the mass of the vehicle,   , the equivalent vehicle spring 

and damper constants,    and   , respectively, the mass of the boulder,   , the mass moment of 

inertia of the boulder about the center of mass of the boulder-soil subsystem,   , and the 

equivalent mass, spring constants and damper constants for the discretized soil elements,   ,   , 

and   , respectively.  Additionally a inertial mass,   , is inserted into the Maxwell model which 

will be used in deriving the governing equations of motion and then set to zero,    is the 

displacement of the inertial mass in the   direction. 

 

Figure 3-3. Low-order model for vehicle impacts upon soil-fixed boulders 

There are three degrees-of-freedom for the low-order model: the displacement of the 

vehicle,   , displacement of the boulder,   , and the rotation of the boulder-soil subsystem,   . 

As seen in literature, the soil surrounding a laterally loaded pile can be represented as a system of 
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nonlinear springs and dampers [11].  The underlying principle for the boulder-soil subsystem of 

the low-order model is that a one dimensional pile within infinite-dimensional deformable soil is 

replaced with a two dimensional rigid object with non-negligible mass.  As presented in [22], the 

general shape of affected soil surrounding the boulder during lateral loading can be found using 

the effective angle of internal friction of the soil and the embedded pile or boulder geometries.  

According to Kim et al. [22], the affected soil surrounding a pile during loading can take several 

possible shapes depending on the associated shear plane of the soil, illustrated in Figure 3-4.   

 

Figure 3-4. Definition of soil wedge during lateral loading [22] 

Similar to Kim et al. [22], the overall shape of the soil wedge is found from the shear 

plane of the soil as defined by    in Figure 3-5.  The defining soil wedge angle,   , is found 

using 

 
   

 

 
 

  

 
  

(3.1) 

where    is the effective angle of internal friction for the soil [22]. 
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Figure 3-5. 3-D representation of soil wedge which develops during lateral loading 

The three-dimensional boulder-soil subsystem in Figure 3-5 (a) is reduced by considering 

only the soil directly behind the boulder, marked as the dotted lines in Figure 3-5.  The reduced 

soil wedge is then transformed into a two-dimensional soil wedge and a two-dimensional boulder 

as shown in Figure 3-6. 

 

Figure 3-6. Idealized 2-D wedge shape based on the 3-D soil wedge geometries 
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The soil in Figure 3-6 is discretized into   evenly distributed elements, illustrated in 

Figure 3-7 (a), and replaced by a system of springs and dampers, illustrated in Figure 3-7 (b).  

Similar to Naggar and Bentley [8], the mass of the soil elements are lumped against the boulder 

and attached to the springs and dampers such that the springs and dampers are in parallel.  The 

variable       in Figure 3-7 is the original length of the soil wedge, and the variable    is the 

height of a single soil element. 

 

Figure 3-7. Transformation from discretized soil subsystem to a system of soil representative 

Kelvin models 

The soil elements are assumed to be trapezoidal where the mass of the     soil element, 

  , is found using 

 
           [                   ]  

 

 
        

          
(3.2) 

where       is the mass density of the soil.  It is assumed that the springs and dampers 

representing the soil do not undergo rotation and act solely in the   direction. 
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 A free body diagram of the boulder-soil subsystem is presented in Figure 3-8 and Figure 

3-9, where the force exerted on the boulder from the vehicle, noted as   , is applied at an 

eccentricity,  , above the soil line.  Additionally, a restoring moment due to gravity,     is added 

to the boulder since the mass of the boulder is non-negligible.  The friction acting on the boulder 

from the surrounding soil is neglected, as seen in Zhang [7].  The variables in Figure 3-8 are the 

center of mass in the   direction as measured from the lower left corner of the boulder,   , the 

center of mass in the     direction as measured from the lower left corner of the boulder,   , the 

depths of each soil layer with respect to the center of mass of boulder-soil subsystem,   ,   , 

…  , the mass of the boulder,   , and the mass moment of inertia of the boulder about the 

center of mass for the boulder-soil subsystem,   . 

 

 

Figure 3-8. Free body diagram of the boulder-soil subsystem 



34 

 

The center of mass for the boulder-soil system, as measured with respect to the local 

origin in the   direction, is found using 
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(3.3) 

and the center of mass for the boulder-soil system, as measured with respect to the local origin in 

the   direction, is found using 
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(3.4) 

The depth of each soil layer with respect to the boulder-soil subsystem,   , is the     element in 

the range ((    )        ). 

As a means of rapidly calculating moments, additional coordinates are employed as 

illustrated in Figure 3-9. The variables in Figure 3-9 are the radial distance from the center of 

mass of the boulder-soil system to the impact point of the vehicle,   , the radial distances from 

the center of mass of the boulder-soil subsystem to the soil elements,   , the angle measured 

from vertical to the vehicle impact point,   , and the angles measured from vertical to the soil 

elements,   .   
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Figure 3-9. Secondary free body diagram of the boulder-soil subsystem used to calculate the 

moment about the center of mass 

The radial distance from the center of mass of the boulder-soil system to the impact point of the 

vehicle,   , the radial distances from the center of mass of the boulder-soil subsystem to the soil 

elements,   , the angle measured from vertical to the vehicle impact point,   , and the angles 

measured from vertical to the soil elements,   , are found using 
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(3.8) 

 

The eccentricity of the vehicle impact is found by first treating the force from the vehicle 

as an evenly distributed load across the impact area on the face of the boulder, as shown in Figure 

3-10 (a).  In terms of the boulder’s reaction, the distributed load is consolidated into an equivalent 

point load, as shown in Figure 3-10 (b).  The variables in Figure 3-10 are the distance from the 

ground to the bottom of the vehicle bumper,        , and the distance from the ground to either 

the top of the boulder or to the top of the vehicle hood,   . 

 

Figure 3-10. Consolidation of distributed load on the boulder 

The eccentricity of the vehicle load is then calculated using 

 
  

    

 
    

(3.9) 
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3.2.0.1 Boulder-soil subsystem governing equations of motion 

 Applying Newton’s second law to the free body diagram in Figure 3-9 yields  
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(3.11) 

where      and      are the effective mass of the boulder-soil subsystem and the mass moment 

of inertia of the boulder-soil subsystem about the center of mass for the boulder-soil subsystem.  

The effective mass of the boulder-soil subsystem and the mass moment of inertia of the boulder-

soil subsystem about the center of mass for the boulder-soil subsystem,      and     , are found 

using 
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where    is the distance in the   direction from the center of mass of the boulder-soil subsystem 

to the soil elements.  The mass of the boulder,   , is found using 

                    (3.14) 
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where          is the mass density of the boulder.  The distance from the center of mass of the 

boulder-soil subsystem to the soil elements is found using 

          (3.15) 

 

And the mass moment of inertia of the boulder about the center of mass is found using 
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(3.16) 

3.2.0.2 Vehicle subsystem governing equations of motion 

 Similar to the boulder-soil subsystem, a free body diagram can be created for the lumped-

parameter Maxwell vehicle model.  It is assumed that there is no slip at the point which makes 

contact between the vehicle and the boulder.  Applying Newton’s second law to the lumped-

parameter Maxwell vehicle model in Figure 3-3 yields  

    ̈     
  (3.17) 

    ̈    
      (3.18) 

 Sections 3.2.1 through 3.2.3 will present the methods for solving the unknown forces and 

moments,   ,   ,   ,   ,   ,    in (3.10) and (3.11) as well as the unknown inertial force,   
 , 

in (3.17) and (3.18). 
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3.2.1 Derivation of soil forces and resulting moments 

As presented in [8], the springs and dampers representing the soil in Figure 3-7 are placed 

in parallel; thus, the   soil forces are found using 

     (   
    )  (3.19) 

where    
 is the force from the     soil representative spring and     is the force from the     

soil representative damper. The   moments resulting from the soil forces are found using 

                        (3.20) 

The soil representative spring forces,    
, in (3.19) are found using 

    
        (3.21) 

where     is the linear displacement in the   direction of the     soil mass element, and    is the 

effective spring constant of the     soil element.  Since the boulder is assumed to undergo rigid 

body motion, all    can be related geometrically to the lateral position of the boulder,   , and the 

angle of rotation of the boulder,     using 

                                (3.22) 

The spring constants for the soil elements are found by idealizing the soil elements as long, 

slender rods.  The equivalent spring constant of a long slender rod can be estimated using 

 
     

        

    
  

(3.23) 
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where      is the Young’s modulus of the rod material,      is the cross sectional area of the 

rod, and      is the original length of the rod.  Similarly, the equivalent spring constant of the soil 

elements can be calculated using 

 
   

            

       
    

(3.24) 

where   is the constant of horizontal subgrade reaction of the soil in      ⁄  ,       is an 

estimation of the original soil wedge length, and    is the depth of the soil elements from the soil 

line to the bottom of the boulder in the range (  
 

 
  ).  As defined in Figure 3-7, The length of 

the soil wedge,      , would be found using 

               (3.25) 

which would increase as the effective angle of internal friction of the soil increases.  As noted in 

[23], the stiffness of soil increases as the effective angle of internal friction for soil increases.  

Therefore instead of using (3.25), the original length of the soil wedge,      , is estimated from 

Figure 3-11. 
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Figure 3-11. Definition of soil wedge length as used to calculated a representative spring constant 

for each soil element 

The length of the soil wedge,      , is then found using  

 
      

 

     
  

(3.26) 

   Having derived the equivalent spring constant for laterally loaded soil, the resulting 

spring force is calculated by multiplying the spring constant with the displacement of each soil 

element,   .  Thus, the force exerted on the boulder from the equivalent soil spring is found by 

substituting (3.22) into (3.21), resulting in 

 
   

 
               

  
   [                         ]  

(3.27) 

 An ultimate lateral resistance, however, exists for soil at a given depth [7].  The spring 

force for each soil element, therefore, is limited such that the absolute value does not exceed the 

ultimate lateral resistance of the soil at the given depth,   .  As presented in [7], the ultimate 

lateral pressure per unit length of a laterally loaded pile can be estimated using 
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(3.28) 

where    is the passive earth pressure coefficient,   is the effective unit weight of soil,   is the 

width of the pile, and   is the depth from the ground surface.  The passive earth pressure 

coefficient is found using [7] 

            (3.29) 

Modifying (3.28) to match the nomenclature used in this thesis, the ultimate lateral pressure for 

each soil element,   , is found using 

 
   

  
                 

 
  

(3.30) 

where   is the gravitation constant and    is a constant based on strain rate loading of the soil and 

the undrained shear strength.  As presented in [24], shear stress within a soil increases as the 

strain rate of loading is increased.  As pertaining to the research in this thesis, it is assumed that a 

maximum strain rate for the soil is achieved during vehicle impact.  Under such assumptions, the 

value for    for a particular soil is found using 

 
   

     

     
  

(3.31) 

The ultimate lateral force of each soil element is then found using 

    
        (3.32) 

where    is the cross sectional area of each soil element, found using 
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(3.33) 

Substituting (3.30) and (3.33) into (3.32) yields 

 
   

 
  

                  

 
  

(3.34) 

This expression for the ultimate force on each element is used in the simulation models that 

follow. 

Although the low-order model lumps the discretized soil elements against the boulder, 

the damping constant for the representative soil dampers is derived analytically by applying the 

conservation of momentum to the boulder-soil subsystem as the boulder plows through the soil 

during a full scale crash.  Since the low-order model assumes that all translations of the soil 

elements are purely in the   direction, the sum of the forces acting on the boulder from the soil 

elements is found using the momentum transfer formulation of Newton’s law: 

   ⃗  
  

  ∑          
   ̈    ̇   ̇ 

   ̇   
(3.35) 

where  ⃗   is the momentum of the     soil element,    
  is the accumulated mass of the     soil 

element as the boulder plows through the soil,  ̇  is the time derivative of the lumped soil 

masses defined in Figure 3-3, and   ̇ 
  is the time derivative of the accumulated mass of the     

soil element. Since it is assumed the soil masses lumped against the boulder do not change with 

respect to time, the time derivative of the lumped soil masses,  ̇ , is set to zero.  The 

accumulated mass can be calculated using 

   
               (3.36) 
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and the time derivative of the accumulated mass is  

  ̇ 
            ̇   (3.37) 

Substituting (3.37) into (3.35) and setting  ̇  to zero yields  

   ⃗  
  

  ∑          
   ̈            ̇ 

   
(3.38) 

Recognizing that (3.38) is of similar form to fluid drag flow, (3.38)  may be rewritten as  

   ⃗  
  

  ∑         
   ̈     ̇ 

   
(3.39) 

where 

              (3.40) 

Thus the analysis performed for a boulder undergoing rotation uses damper elements for 

soil that provide a resistive force proportional to velocity squared, and their proportionality 

constants,   , are each equal to a discrete elemental swept area times soil density. This velocity-

squared damping represents the physics of momentum transfer between the boulder and 

accumulating soil mound in front of each moving mass element. 

 The soil damping forces,    , in (3.19) are found using 

         ̇ 
        ̇    (3.41) 

where  ̇  is the linear displacement in the   direction of the     soil mass element, and    is the 

effective damping constant as defined by (3.40).  Similar to the linear displacement of each soil 
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element, the lateral velocity of each soil element can be related to the lateral angular velocity of 

the boulder using 

  ̇   ̇   ̇             . (3.42) 

Substituting (3.42) and (3.33) into (3.41) results in the final expression for the damping force on 

each soil element used in the simulations that follow: 

 
    

       

 
( ̇   ̇             )

 
 

      ([ ̇   ̇             ])  

(3.43) 

3.2.2 Derivation of restoring moment 

 Since the pile geometries in [7] were slender, Zhang [7] neglected the restoring moment 

which would resist tipping of a rigid object seated flatly on the ground.  The restoring moment 

acting on the boulder during vehicle impact is calculated such that it is equal and opposite in 

direction to the sum of all of the other moments acting on the boulder until the maximum 

restoring moment due to gravity is achieved.  Calculating the restoring moment in the 

aforementioned manner allows for zero boulder rotation in the event that the vehicle does not 

enact a large enough moment to cause the boulder to tip.  Since it is also assumed that the 

boulder-soil subsystem center of mass does not translate in the   direction, the maximum 

restoring moment due to gravity acting on the boulder is first estimated under the following 

conditions 
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      ̇                                             (3.44) 

     ̇              (3.45) 

 The estimated restoring moment is compared to the sum of the moments on the boulder 

such that 

 

                    [∑{  }

 

   

   ]  

    (   ∑{  }

 

   

)    

(3.46) 

The absolute value of the restoring moment is then limited such that it cannot exceed the absolute 

value of the estimated maximum restoring moment calculated in (3.44).  If the value exceeds the 

maximum, it is simply set as the maximum theoretical restoring moment.   

3.2.3 Derivation of vehicle force based on lumped-parameter Maxwell model  

The governing equations for the lumped-parameter Maxwell model as defined by Figure 

3-3 are  

    ̈     
       ̇   ̇   (3.47) 

    ̈    
         ̇   ̇       

         (3.48) 
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where  ̇  is the linear velocity of the inertial mass,   , and      is the change in linear 

displacement between the vehicle and the contact point of the vehicle on the boulder. 

Differentiating (3.47) and (3.48) with respect to time yields 

    ⃛       ̈   ̈   (3.49) 

    ⃛      ̈   ̈       ̇
   ̇     (3.50) 

and setting the inertial mass,   , to zero results in 

       ̈   ̈       ̇
   ̇     (3.51) 

Equations (3.49) and (3.51) are then summed yielding 

    ⃛       ̇
   ̇     (3.52) 

Solving (3.52) in terms of the inertial velocity,  ̇ , yields 

 
 ̇   

   ⃛ 

  
  ̇    

(3.53) 

and substituting (3.53) into (3.47) yields the governing equation of motion for the lumped-

parameter Maxwell vehicle model, 

 
 ⃛  

  

  
 ̈  

  

  
 ̇  

  

  
[ ̇   ̇               ]  

(3.54) 

 The force acting on the boulder during an impact under a lumped-parameter Maxwell 

model can be found by setting the inertial mass,   , in (3.48) to zero.  Doing so yields 
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   (3.55) 

Using (3.47) and (3.55), the force acting on the boulder from the vehicle can then be calculated 

using 

         ̈   (3.56) 

In the event of vehicular rebound and separation, the vehicle would simply separate from the 

boulder rather than pulling the boulder.  This discontinuity of the contact point between the 

boulder and the vehicle is modeled such that the force exerted on the boulder from the vehicle is 

set to zero in the case of a negative, or pulling, force. 

The resulting moment from the vehicle impact is calculated using 

                      (3.57) 

As reported in [2], the spring and damper coefficients for a Maxwell model in which vehicle 

rebound is observed can be estimated by fitting an expected response to crash test data.  The 

expected response for a crash in which vehicle rebound is observed takes the form of 

 

    
    

     
    [(

   
     

     

 
)        

    

     
     ]  

(3.58) 

where   and   are constants,    is the initial impact velocity of the vehicle, and   is time [2].  The 

constants   and   can then be correlated to the effective vehicle spring and damper coefficients 

using [2]  
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(3.59) 

           (3.60) 

3.2.4 Governing equations of motion for the low-order model 

The governing equation of motion for the boulder subsystem in the   direction is formed 

by substituting (3.28) and (3.56) into (3.3).  The governing equation of motion for rotation of the 

boulder subsystem about the   direction is formed by substituting (3.20), (3.46) and (3.57) into 

(3.6).  The governing equations of motion for the boulder-soil subsystem will be left in the form 

seen in (3.3) and (3.6) due to the underlying force limitation factors such as ultimate lateral 

resistance.   

3.3 Predicting boulder fracture  

Due to the simplistic nature of the low-order model, unrealistic geometries for boulders 

which will survive a vehicle impact may be obtained from simulations when considering the 

boulder as completely rigid.  Namely, the model may predict that a thin but relatively wide 

boulder would effectively act as a soil-fixed barrier, when in actuality it would be expected to 

fracture.  Additionally, circumstances may appear in which the soil is extremely rigid or a boulder 

may be embedded in an engineered foundation such as reinforced concrete.  Such boundary 

conditions increase internal stresses within the boulder as energy is no longer able to be 

dissipated through the deformation of the surrounding soil.  Methods for predicting boulder 
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fracture will be presented for scenarios in which the boulder is rigidly fixed at the point of 

embedment as this is expected to be a worst-case scenario.  These boulder geometries will then be 

used as a set of minimum dimensions to be used with a boulder acting as a soil-fixed barrier. 

The approach for determining boulder fracture as a result of a vehicular impact is based 

on calculations of the principle stresses in the boulder.  The boulder is modeled as a cantilever, 

with fracture initiation based on Brittle Coulomb Mohr failure criteria, similar to [20].  The peak 

forces on the boulder are assumed to arise from the peak decelerations observed in vehicle crash 

tests. 

The analysis may be generous because it does not include rock fracture planes and other 

possible faults.  Additionally, the analysis ignores moments due to the inertia of the boulder 

which may cause fracture to occur below the soil line.  In some respects, the approach might also 

be conservative as it ignores soil motion which will greatly mitigate some of the stresses on the 

boulder.  

Due to the combination of assumptions, the analysis is expected to provide only 

approximations of fracture behavior that can guide recommendations for suitable boulders. But 

the results will not be exact predictions of pass/fail events for all boulders under all situations.  

The soil damping and soil spring rate are both assumed to be infinite, resulting in a rigid 

cantilever soil boundary condition.  Additionally, the vehicle and corresponding crush zone is 

replaced by a single maximum force as measured during previous full scale crashes.   The 

representation of the infinite soil damping and spring rate can be seen in Figure 3-12.  
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Figure 3-12: Cantilevered beam model for infinite soil damping and stiffness 

The peak force           can be estimated from the peak deceleration of the vehicle using 

                     (3.61) 

 where       is the estimated peak acceleration during impact.   

Failure in the form of fracture is determined by analyzing the internal principles stresses 

resulting from an equivalent vehicle impact.  The principle stresses are functions of both bending 

and shear stress.  Since the boulder is composed of a brittle material and failure is due primarily 

to tension along the impact face of the boulder, the shear stress induced by bending may be 

neglected.  The bending stress,   , is found using,  

 
   

          

 
  

(3.62) 

and the transverse shear stress,    , is found using, 

 
    

         

  
  

(3.63) 
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where   is the bending moment about the base of the boulder,   is the distance from the centroid 

of the cross section to the impact face which corresponds to maximum bending stress, and   is the 

area moment of inertia about the centroid.  The values of          ,  , and   are found using  

                       (3.64) 

 
  

 

 
 

(3.65) 

 
  

 

  
      

(3.66) 

Noting that the normal stress acting on the impact face of the boulder,   , is zero, the principle 

stresses are found using 

 

     
  

 
 √(

  

 
)
 

    
   

(3.67) 

The factor of safety,          , is then found using the Brittle Coulomb Mohr failure criteria by 

using  

            
   

   

         
 

(3.68) 

              

   
 

  

   
 

 

         
 

(3.69) 
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(3.70) 

where     is the ultimate tensile strength and     is the ultimate compressive strength of the 

boulder material.  A factor of safety less than 1 implies a boulder geometry for which fracture is 

anticipated for the given material properties. 

3.4 In-situ measurement of soil parameters 

One of the goals of this thesis is to develop an in-situ method for rapidly determining the 

soil properties found in the low-order model, namely the constant of horizontal subgrade reaction, 

 , the effective angle of internal friction,   , and the bulk soil density,      .  After reviewing 

literature pertaining to in-situ soil property measurement, it was determined that a majority of soil 

properties pertaining to the low-order model can be determined through the use of a dynamic 

cone penetrometer and various correlations.  The methodology for performing a DCPT is covered 

in ASTM D6951, and the results from a DCPT are given as a penetration index,   , in    

    .  The goal of this section is to present a correlation between the penetration index to the 

constant of horizontal subgrade reaction, effective angle of internal friction, and density of soil.  

Figure 3-13 outlines the procedure for correlating the penetration index from a DCPT to the 

constant of horizontal subgrade reaction. 
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Figure 3-13. Flow chart for determining in-situ soil properties 

The results from the penetration index at each blow increment,  , is first correlated to the 

California Bearing Ratio using [16] 

                 
       (3.71) 

where      is in percent. The penetration index,    , at a given increment is found using 

              (3.72) 
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where    is the total penetrated depth in mm at blow increment  .  The California Bearing Ratio at 

each increment is then correlated to the modulus of subgrade reaction,   , in     ⁄  using [25] 

 
     

(
                

       
)
  

(3.73) 

The modulus of subgrade reaction at each blow increment is then plotted against the total depth at 

each increment,    , and a linear curve is fit to the data since the modulus of subgrade reaction is 

assumed to increase linearly with depth.  Since the plot of the modulus of subgrade reaction 

against depth is in   , the constant of horizontal subgrade reaction,  , in     ⁄  is found using 

            (3.74) 

where    is the slope of the linear fit curve. 

Knowing the constant of horizontal subgrade reaction, it is then possible to estimate the 

relative density of the soil using Figure 3-14. 
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Figure 3-14. Constant of [horizontal] subgrade reaction vs. relative density [7] 

Since it is expected that the soil used in testing will be compacted beyond 90% relative density 

and remain above the water table, curve (a) in Figure 3-14 is fit to a quadratic polynomial of the 

form 

             
                  (3.75) 

where    is the relative density of soil in percent and   is measured in     ⁄ .  The maximum 

theoretical constant of horizontal subgrade reaction using (3.75) is found by setting    to 100 

which results in                   ⁄  .  Solving (3.75) for the relative density yields 

 
      

       √                             

           
  

(3.76) 
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The lesser of the two values obtained form (3.76) can be neglected since it would correspond to a 

negative constant of horizontal subgrade reaction.  Similar to Zhang [7], (3.76) can be graphically 

represented for quicker interpretation, as illustrated in Figure 3-15. 

 

Figure 3-15. Relative density vs. constant of horizontal subgrade reaction for cohesionless soils 

Knowing the relative density from Figure 3-15, the bulk density of the soil is found using 

               
     (3.77) 

where         
 is the maximum bulk density of the soil.  The maximum density can be found 

using the modified proctor test as performed according to ASTM D698.  The effective angle of 

internal friction can also be estimated from the relative density using Figure 3-16.   
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Figure 3-16. Effective angle of internal friction as correlated to relative density [23] 

Similar to Figure 3-14, Figure 3-16 can be represented by a quadratic equation which takes the 

form 

             
              (3.78) 

Equation (3.84) can also be graphically represented for quicker and more accurate interpretation, 

as illustrated in Figure 3-17. 

 

Figure 3-17. Effective angle of internal friction vs. relative density 
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3.5 Simulation of Model 

The governing equations of motion for the low-order model, (3.3), (3.6), and (3.54), can 

be arranged into a state-space form and solved via numerical integration.  The states and 

corresponding time derivatives are listed in Table 3–1. It should be noted that all forces in the 

governing equations of motion can be written explicitly as functions of the states.  The change in 

linear displacement and linear velocity of the contact point between the boulder and the vehicle, 

     and  ̇  , are not transformed into the state space representation as a matter of general 

housekeeping, but  they can also be expressed explicitly as functions of the states. 

Table 3–1. States for governing equations of motion of the low-order model 

      (3.79) 

 

 ̇     (3.80) 

 

    ̇  (3.81) 

 

 ̇  
 

    
[∑{  }

 

   

   ] (3.82) 

 

      (3.83) 

 

 ̇     (3.84) 

 

    ̇  (3.85) 

 

 ̇  
 

    
[∑{  }

 

   

      ] (3.86) 

 

      (3.87) 

 

 ̇     (3.88) 

 

    ̇  (3.89) 

 

 ̇     (3.90) 

 

    ̈  (3.91) 

 

 ̇   
  

  
   

  

  
   

  

  

[                   ]  (3.92) 

 

 

The set of equations (3.79) – (3.92) are coupled first-order, nonlinear, non-stiff ordinary 

differential equations which can be readily solved via numerical integration.  The MATLAB® 

ODE45 solver is used to solve the state-space equations.  The use of ODE45 allows for quick and 

easy comparison of simulated and full scale results. The ODE45 simulation is driven by the initial 
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velocity of the vehicle,   , as an initial condition.  No external forcing or forcing function is 

necessary. 

3.6 Contributions of this chapter 

The contributions of this chapter are as follows: 

(1) Introduce coordinate system and model nomenclature 

(2) Develop the low-order model for a vehicle impact upon a soil-fixed boulder 

(3) Derive the governing equations of motion for the low-order model 

(4) Present fracture prediction methodology for boulders impacted by a vehicle based on 

peak deceleration force 

(5) Present the methodology for in-situ soil property measurement 

(6) Represent the governing equations of motion in state-space form 
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CHAPTER 4  
 

VALIDATION OF LOW-ORDER MODEL AND STATIC FRACTURE 

PREDICITION METHODOLOGY 

The intent of this chapter is present the validation of the low-order model and static 

fracture prediction methodology presented in Chapter 3.  The simulated low-order model is 

compared to past full scale crash test results of vehicles impacting soil-fixed boulders.  The static 

fracture prediction methodology is compared to full scale vehicle impacts on rigidly-fixed 

boulders.  Additional small scale fracture tests were performed to verify the static fracture 

prediction methodology and are presented in Chapter 6.  All full scale crash tests were performed 

at a M30 rating as specified in ASTM F2656-07.  The methodology for in-situ measurement of 

the soil properties as presented in Chapter 3 had not been developed prior to the full scale crash 

tests presented in this chapter.   

This chapter is organized as follows:  

The test equipment and apparatus used in performing a full scale crash test are presented 

in Section 4.1, and the test equipment for medium scale fracture tests is presented in Section 4.2.  

A summary of past full scale crash tests is presented in Section 4.3, and a summary of medium 

scale fracture tests is presented in Section 4.4.   The comparison and validation of the simulated 

low-order model to full scale crash tests of vehicles impacting soil-fixed boulders is presented in 

Section 4.4.  The validation of the fracture prediction in the full scale vehicle crash tests and 

medium scale fracture tests on rigidly-fixed boulders is presented in Section 4.6 and Section 4.7, 

respectively.   
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4.1 Full scale crash test equipment and test procedure 

All full scale crash tests took place at the Penn State Crash Safety Research Facility 

under the supervision of Larson Transportation Institute personnel.  Larson Institute personnel 

followed the procedures described in ASTM Standard Test Method F2656-07 to perform M30 

designated vehicle impacts on boulders embedded in a compacted soil foundation.  The Crash 

Safety Research Facility uses a guiderail system for steering the impact vehicle, a reverse towing 

system for accelerating the impact vehicle up to the desired speed, and a cable release device for 

separating the tow cable from the impact vehicle just prior to the crash.  An aerial view of the 

Crash Safety Research Facility is shown in Figure 4-1. 

 

Figure 4-1. Aerial view of the Larson Institute Crash Safety Research Facility at Penn State  

The guiderail is approximately 320 m long, and was manufactured such that additional 

rail pieces may be added to or removed from the impact end to account for various crash 

geometries.  A bogey catch is attached to the end of the guiderail which serves as the tow cable 

release device.  The bogey is attached to a medium-duty truck on the steering arms directly 

underneath the front center of the vehicle.  Figure 4-2 shows a general layout of the guiderail with 

impact and tow vehicle, bogey catch, and impact area.  Figure 4-3 shows photographs of the 

bogey as installed on a typical medium-duty sized truck and the bogey catch device. 
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Figure 4-2. CRSF impact setup 

  

Figure 4-3. Full scale guidance system: bogey assembly (left) and bogey catch (right) 
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The towing system consists of a tow vehicle, tow cable, redirection pulleys, and a speed 

multiplier pulley attached to the tow vehicle.  The speed multiplier allows the tow vehicle to 

travel at half the speed of the impact vehicle.  Figure 4-4 shows the towing system configuration 

and tow vehicle. 

 

 
 

Figure 4-4. Full scale towing system: first re-directional pulley (left), speed multiplier (center), 

and second re-directional pulley (right) 

The soil for all full scale crash tests was 2A modified limestone gravel.  The soil was 

obtained from Hanson Aggregates in Boalsburg, Pennsylvania.  The gravel was compacted by 

Ameron Construction using a hydraulic tamper attached to the arm of a backhoe according to 

ASTM F2656-07.  Figure 4-5 shows the gravel in a loose state, and Figure 4-6 shows the soil in a 

compacted state.  When installing the boulder, they are aligned with the guiderail such that the 

critical impact point on the boulder is approximately 90° to the centerline of the impact vehicle.  

The critical impact point for boulders was determined to be the centerline of the boulder.   
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Figure 4-5. Modified 2A limestone gravel in loose state 

 

Figure 4-6. Modified 2A limestone gravel in compacted state 

The primary data acquisition system used for full scale crash tests as related to this 

research was a Photron Ultima 1024 high-speed imaging system.  The Ultima 1024 was located at 

a 90° angle from the side of the impact vehicle, capturing the crush of the vehicle and translation 
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and rotation of the boulder.  For soil-fixed boulder tests, the camera was set to record 500 frames 

per second for 2 seconds after receiving a trigger signal.  The trigger system consists of two 

reflective laser beams used to determine when the impact vehicle passes through the trigger point.  

When both laser beams are broken, a TTL signal is sent to the high-speed camera which initiates 

recording. 

The high-speed imaging analysis software, Photron Motion Tools, was used throughout 

this work to perform the image processing of the full and small scale crash tests.  Photron Motion 

Tools is analysis software which allows for feature recognition and feature tracking through a 

series of images.  The user can also enter a desired scaling factor which automatically converts 

pixels to the desired units of displacement.  The output from Photron Motion Tools is a Microsoft 

Excel spreadsheet of the global   and   displacements of each tracked feature, where the   

direction is to the right and the   direction is up.    

A Stalker Speed Sensor (S3) radar system is used to determine the impact vehicle speed 

during the towing process.  This unit is a stationary Doppler radar speed sensor operating at a 

frequency of 34.7 GHz and communicating through an RS-232 port.  The speed range is 1 mph to 

200 mph (1.6 to 321 km/h) and provides an accuracy of ±0.3% with speeds being rounded down 

to the nearest tenth of a unit.  The stationary radar unit is located at the beginning of the guiderail 

and is aimed at the impact vehicle as it travels to the impact zone.  One speed sensor display is 

located with the stationary unit, and a second speed sensor display is located in the tow vehicle.  

A FreeWave Spread Spectrum Wireless Data Transceiver system is used to communicate 

between the stationary unit and the speed display in the tow vehicle.  The impact vehicle speed is 

displayed in the tow vehicle so that the driver can attain the proper test speed.   

Some full scale tests included the use of pressure cells embedded in the soil surrounding 

the boulder in order to measure the pressures within the soil during vehicle impact.  The data 
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from the pressure cells are not used in this work.  The pressure cells should simply be noted as 

part of the installation procedure and test setup. 

4.2 Medium scale fracture test equipment and procedure 

The medium scale fracture tests were performed using a 2,227 kg impact pendulum.  The 

aerial view of the medium scale test setup is shown in Figure 4-7. 

 

Figure 4-7. Crash Safety Research Institute medium scale impact pendulum 

 The Crash Safety Research Institute (CSRI) impact pendulum has an approximate height 

of 15 meters which allows for a maximum arc radius of 13.7 meters for the impact sled.  This 

configuration of the impact pendulum allows for a maximum vertical elevation change of 9.1 
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meters for the impact sled thus resulting in a maximum horizontal speed of approximately 13.4 

m/s upon impact when released from maximum height. 

The impact sled is supported by four ¾” steel cables attached at the top of the CRSI 

pendulum frame.  The ¾” support cables are attached to the impact sled via cable thimbles and 

cable clips.  The thimbles and clips can be adjusted for rough initial height change of the impact 

sled.  Turnbuckles are then used for fine adjustment of the impact sled starting height.  Two 

pulleys are located at the top of the north end of the pendulum frame, over which the impact sled 

cable and quick release cable are fed.  Photographs of the pendulum are provided in Figure 4-8. 

   

   

   

Figure 4-8. CRSI pendulum frame and components 

The impact pendulum is mounted on concrete slabs at the north and south ends of the 

frame.  The concrete slab at the north end of the pendulum has 9 protruding studs to which 
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mounting hardware for raising the impact sled can be attached.  The concrete slab at the south end 

of the pendulum has 15 threaded inserts of 3-1/4” x 4 TPI into which the mounting bolts for the 

boulder clamping mechanisms, skewbacks, can be inserted and secured.  

Skewbacks are large structural supports made from W12-136 I-beam which are used to 

rigidly hold the test specimens above ground.  The skewbacks consist of three independent 

structures that hold the boulder during the impact and are independently bolted to the concrete 

impact slab.  Photographs of the skewbacks are provided in Figure 4-9. 

  

 

  

Figure 4-9. Skewbacks used in medium scale fracture testing 

The impact sled is the device used to impact the boulders.  The impact sled consists of 

two major components.  The first component is the main body which can be loaded with 

additional weights, and the second component is a detachable ram which bolts to the front of the 

main body.  The weight of the fully loaded impact sled is 2,227 kg.  Photographs of the impact 

sled are provided in Figure 4-10.   
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Figure 4-10. Detailed photographs of the impact sled used in medium scale crash tests 

A medium scale fracture test is performed by raising the impact sled to a desired height 

and using a quick release mechanism to allow the impact sled to swing into the test article.  The 

pendulum uses a cable, pulley, and winch system to raise the impact sled to a desired height or 

potential energy.   

The winch system consists of 145 feet of 7/16” 6 x 37 steel cable which goes up and over 

a pulley on the top of the pendulum frame on the north end.  A separate steel cable is used to 

trigger the quick release mechanism, and it also goes up and over a second pulley on the top of 

the pendulum frame.  The impact sled is attached to a quick release mechanism which connects 
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the winch cable to the impact sled.  The DC winch is mounted to the concrete slab via 9 threaded 

studs, W6-36 I-beam, and a mounting plate.  The winch is mounted such that it draws in cable 

vertically.  A deep cycle lead acid battery is used to power the winch.  Photographs of the winch 

system are provided in Figure 4-11, and a photograph of the impact sled with the quick release 

mechanism is provided in Figure 4-12. 

   

   

Figure 4-11. Impact sled raising system used in medium scale fracture testing 

 

 

Figure 4-12. Impact sled with quick release mechanism 
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The impact sled is raised to the desired height using the winch to pull the cable attached 

to the quick release mechanism.  The DC winch is duty cycled while the impact sled is raised.  

The impact sled is determined to be at the desired elevation level using reference points of 5 

meter elevation change along the pendulum frame.  The top of each cross section of the pendulum 

frame is approximately 5 meters high and the sled is stopped upon reaching estimated desired 

height.  Photographs of initial height and relative elevation change of the impact sled are provided 

in Figure 4-13.  The impact sled is stopped after it reaches the desired height, and the winch locks 

the impact sled in place.  The quick release cable is then pulled, and the impact sled is released.  

The impact sled swings down and impacts the test article.  A high-speed camera is used to capture 

the impact at a rate of 5000 Hz.  The high-speed imaging system is the same as that presented in 

Section 4.1.   

  

Figure 4-13. Example of the change in elevation of the impact sled; equilibrium position (left) 

and desired elevation change (right) 

4.3 Summary of past full scale crash tests 

Two past full scale crash tests of vehicles impacting soil-fixed boulders were performed 

on two boulders with different embedment depths and boulder geometries.   The two soil-fixed 

crashes are referred to as Boulder-Soil-Test-1 (BST-1) and Boulder-Soil-Test-2 (BST-2) 
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throughout this thesis.  Additionally, two full scale crash tests were performed on boulders which 

were embedded in a reinforced concrete footing.  The two concrete footing crash tests are referred 

to as Boulder-Footing-Test-1 (BFT-1) and Boulder-Footing-Test-2 (BFT-2).   

The constant of horizontal subgrade reaction is estimated for both BST-1 and BST-2 

since the presented in-situ soil measurement techniques were not yet in place at the time of testing 

and there were no soil measurements made.  As per ASTM F2656-07, the soil must be compacted 

to at least 90% maximum density which correlates to a minimum constant of horizontal subgrade 

reaction of 86 MN/m
3
.  A modified proctor test, however, was performed on a limestone dust soil 

sample used in small scale testing which was determined to be similar in makeup and content to 

the 2A modified limestone gravel used in full scale testing.  From the modified proctor test 

results, the maximum soil density was found to be 2,010      .  The results of the modified 

proctor test are provided in Appendix B.  The remaining soil properties were calculated as 

presented in Chapter 3.  The average density of the American Black Granite and Rockville White 

Granite was measured to be 3,074 kg/m
3
 and 2,652 kg/m

3
, respectively.   

4.3.1 Summary of full scale crash test BST-1 

BST-1, in which large boulder displacements were observed, was performed on 15 

November, 2010.  The boulder had dimensions of 0.762 m-L x 1.016 m-W x 2.2 m-H with 

respect to the impact direction.  The American Black Granite boulder, referenced as ABG-01, 

was embedded 1.2 meters into the soil.  The pre-test condition of the boulder is shown in Figure 

4-14. 
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Figure 4-14. Pre-test condition of ABG-01 in BST-1 

The impact vehicle for BST-1 was a 2002 Chevrolet C6500 medium-duty sized truck, 

and was prepared as specified in ASTM F2656-07.  Additional ballast was added to the front of 

the truck bed in order to achieve a total weight of 6,795 kg (14,980 lbs.).  Additional vehicle 

specifications are provided in Appendix A, and photographs of the vehicle are shown in Figure 

4-15. 
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Figure 4-15. Pre-test conditions of the impact vehicle in BST-1 

Based on the stationary radar system and confirmed by analysis of the high-speed video, 

the approach speed at impact was 13.36 m/s (29.9 mph).  The centerline of the test vehicle 

impacted the test article on the critical impact point that was defined as along the centerline of the 

attack left vertical post, and the angle of approach was 89.1.  Figure 4-16 shows the location of 

the centerline of the impact vehicle relative to the critical impact point and the impact angle of the 

vehicle. 

The vehicle impacted ABG-01 head-on. The boulder translated and rotated on impact, 

reaching a peak angle of just under 90° from vertical. The boulder and test vehicle then came to 

rest in a relatively horizontal orientation.  Figure 4-17 shows the side-view still images extracted 

from the high-speed video in a chronological sequence of the impact. 
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Figure 4-16. Location of impact vehicle centerline (left) and impact angle (right) in BST-1 

  

  

  

  

Figure 4-17. High-speed image sequence of BST-1 
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Figure 4-18 shows the linear displacement of the center of mass of ABG-01 from the 

point of impact, and Figure 4-19 shows the angle of rotation of ABG-01 from the point of impact.  

The linear displacement of the vehicle as tracked using the forward fiducial is shown in Figure 

4-20.  Photographs of the post-test condition and location of the vehicle are shown in Figure 4-21, 

and Figure 4-22 shows the post-test condition of ABG-01. 

 

Figure 4-18. Measured linear displacement of the center of mass of ABG-01 in BST-1 
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Figure 4-19. Measured angle of rotation of ABG-01 in BST-1 

 

Figure 4-20. Measured linear displacement of the impact vehicle in BST-1 
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Figure 4-21. Post-test vehicle location in BST-1 

   

   

Figure 4-22. Post-test condition of ABG-01 in BST-1 
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Table 4–1 summarizes the measured and estimated governing parameters for BST-1. 

Table 4–1. Governing parameters for BST-1 

                                       

                                 

                               

                        

4.3.2 Summary of full scale crash test BST-2  

BST-2, in which small boulder displacements were observed, was performed on 11 

November, 2011. The boulder had dimensions of 1.65 m-L x 1.68 m-W x 3.43 m-H with respect 

to the direction of impact.  The Rockville White Granite boulder, referenced as RWG-01, was 

embedded 2.03 meters into the soil.  The installation of RWG-01 is shown in Figure 4-23, and the 

pretest condition of the boulder is shown in Figure 4-24.  Pressure cells were installed in the 

locations marked with white paint and the wooden boards. 
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Figure 4-23. Installation of RWG-01 in BST-2 
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Figure 4-24. Pre-test condition of RWG-01 in BST-2 

The impact vehicle for BST-2 was a 1999 International 4700 medium-duty sized truck, 

and was prepared as specified in ASTM F2656-07.  Additional ballast was added to the front of 

the truck bed in order to achieve a total weight of 6,722 kg (14,820 lbs.).  Additional vehicle 

specifications are provided in Appendix A, and photographs of the vehicle are shown in Figure 

4-25. 
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Figure 4-25. Pre-test condition of the impact vehicle in BST-2 

Based on the stationary radar system and confirmed by analysis of the high-speed video, 

the approach speed at impact was 14.5 m/s (32.5 mph).  The centerline of the test vehicle 

impacted the test article 14 cm to the left of the critical impact point that was defined as along the 

centerline of the attack left vertical post, and the angle of approach was 90.  Figure 4-26 shows 

the location of the centerline of the impact vehicle relative to the critical impact point and the 

impact angle of the vehicle. 

The boulder translated and rotated slightly on impact, and the front end of the truck 

rebounded after the impact.  Figure 4-27 shows the side-view still images extracted from the 

high-speed video in a chronological sequence of the impact. 
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Figure 4-26. Location of impact vehicle centerline (left) and impact angle (right) in BST-2 

   

   

 

 

 

Figure 4-27. High-speed image sequence of BST-2 
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Figure 4-28 shows the linear displacement of the center of mass of RWG-01 from the 

point of impact, and Figure 4-29 shows the angle of rotation of RWG-01from the point of impact.  

The linear displacement of the vehicle as tracked using the forward fiducial is shown in Figure 

4-30.   

 

Figure 4-28. Measured linear displacement of the center of mass of RWG-01 in BST-2 
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Figure 4-29. Measured angle of rotation of RWG-01 in BST-2 

 

Figure 4-30. Measured linear displacement of the impact vehicle in BST-2 
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Photographs of the post-test condition and location of the vehicle are shown in Figure 

4-31, and Figure 4-32 shows the post-test condition of RWG-01. 

   

   

   

Figure 4-31. Post-test condition and location of the impact vehicle in BST-2 
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Figure 4-32. Post-test condition of RWG-01 in BST-2 

Table 4–2 summarizes the measured and estimated governing parameters for BST-2. 

Table 4–2. Governing parameters for BST-2 

                                        

                                  

                              

                      

4.3.3 Summary of full scale fracture test BFT-1 

BFT-1, in which the boulder was anchored into the reinforced concrete footing using 

dowel rods, was performed on 03 June, 2011.  The boulder had dimensions of 0.99 m-L x 0.74 m-

W x 2.03 m-H with respect to the direction of impact.  The American Black Granite boulder, 
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referenced as ABG-02, was embedded 0.914 m into a reinforced foundation.  Dowels were used 

to anchor the boulder into the concrete foundation.  The dowels were #6 bars embedded 0.305 m 

into the boulder on all sides.  Once the dowels were placed and the boulder was set into the 

ground, the concrete foundation (0.914 m) was poured.  After the concrete cured, soil was placed 

on top of the concrete foundation and tamped.  The installation of ABG-02 is shown in Figure 

4-33, and the pretest condition of ABG-02 is shown in Figure 4-34. 

   

   

   

Figure 4-33. Installation of ABG-02 in BFT-1 
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Figure 4-34. Pre-test condition of ABG-02 in BFT-1 

The impact vehicle for BFT-1 was a 2002 Chevy C6500, and was prepared as specified in 

ASTM F2656-07.  Additional ballast was added to the front of the truck bed in order to achieve a 

total weight of 6,792 kg (14,975 lbs.).  Additional vehicle specifications are provided in 

Appendix A, and photographs of the vehicle are shown in Figure 4-35. 
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Figure 4-35. Pre-test condition of the impact vehicle in BFT-1 

Based on the stationary radar system and confirmed by analysis of the high-speed video, 

the approach speed at impact was 16.3 m/s (36.5 mph).  The centerline of the impact vehicle 

contacted the test article 0.13 cm to the right of the critical impact point that was defined as along 

the centerline of the attack left vertical post, and the angle of approach was 89.4.  Figure 4-36 

shows the location of the centerline of the impact vehicle relative to the critical impact point and 

the impact angle of the vehicle.  Upon impact, the boulder sheared at the level of the first layer of 

rebar and rotated under the vehicle.   Figure 4-37 shows the side-view still images extracted from 

the high-speed video in a chronological sequence of the impact.  The position of the vehicle from 

the point of impact is show in Figure 4-38, and the calculated velocity based on the position data 

is show in Figure 4-39.  A 2
nd

 order low-pass Butterworth filter with a cutoff frequency of 25 Hz 

was used to filter the position. 
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Figure 4-36. Location of the vehicle centerline and impact angle in BFT-1 

   

   

  

 

Figure 4-37. High-speed image sequence of BFT-1  
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Figure 4-38. Linear displacement of the vehicle in BFT-1 from the time of impact 

 

Figure 4-39. Linear velocity of the vehicle in BFT-1 from the time of impact 



94 

 

 

Photographs of the post-test condition and location of the vehicle are shown in Figure 

4-40, and Figure 4-41 shows the post-test condition of the device being tested. 

   

   

 

 

 

Figure 4-40. Post-test location and condition of the impact vehicle in BFT-1 
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Figure 4-41.  Post-test condition of ABG-02 in BFT-1 

4.3.4 Summary of full scale fracture test BFT-2 

BFT-2, in which the boulder was embedded in the reinforced concrete footing with no 

anchoring, was performed on 22 November, 2011. The boulder had dimensions of 1.43 m-L x 

0.76 m-W x 2.29 m-H with respect to the direction of impact.  The American Black Granite 

boulder, referenced as ABG-03, was embedded 1.24 meters in a reinforced foundation.  The 

installation of ABG-03 is shown in Figure 4-42, and the pretest condition of the boulder is shown 

in Figure 4-43. 
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Figure 4-42. Installation of ABG-03 in BFT-2 
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Figure 4-43. Pre-test condition of ABG-03 in BFT-2 

The impact vehicle for BFT-1 was a 1994 International 4700 medium-duty sized truck, 

and was prepared as specified in ASTM F2656-07.  Additional ballast was added to the front of 

the truck bed in order to achieve a total weight of 6,786 kg (14,960 lbs.).  Additional vehicle 

specifications are provided in Appendix A, and photographs of the vehicle are shown in Figure 

4-44. 
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Figure 4-44. Pre-test condition of the impact vehicle in BFT-2 

Based on the stationary radar system and confirmed by analysis of the high-speed video, 

the approach speed at impact was 14.75 m/s (33 mph).  The centerline of the test vehicle 

impacted the test article 43 cm to the right of the critical impact point that was defined as along 

the centerline of the attack left vertical post, and the angle of approach was 91.6.  Figure 4-45  

shows the location of the centerline of the impact vehicle relative to the critical impact point and 

the impact angle of the vehicle. 
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Figure 4-45. Location of impact vehicle centerline (left) and impact angle (right) in BFT-2 

The vehicle impacted the center boulder head-on. The two outer boulders were not 

impacted.  The center boulder fractured and broke completely at the top of the reinforced concrete 

foundation.  Figure 4-46 shows the side-view still images extracted from the high-speed video in 

a chronological sequence of the impact.  The position of the vehicle from the point of impact is 

shown in Figure 4-47, and the calculated velocity based on the position data is shown in Figure 

4-48.  A 2
nd

 order low-pass Butterworth filter with a cutoff frequency of 25 Hz was used to filter 

the position data prior to taking the time derivative. 
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Figure 4-46. High-speed image sequence of BFT-2 



101 

 

 

Figure 4-47. Linear displacement of the vehicle in BFT-2 from the time of impact 

 

Figure 4-48. Linear velocity of the vehicle in BFT-2 from the time of impact 
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Photographs of the post-test condition and location of the vehicle are shown in Figure 

4-49, and Figure 4-50 shows the post-test condition of the device being tested. 

   

   

   

Figure 4-49. Post-test location and condition of the impact vehicle in BFT-2 
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Figure 4-50. Post-test condition of ABG-03 in BFT-2 

4.4 Summary of medium scale fracture tests 

Two medium scale fracture tests, MFT-1 and MFT-2, were performed on American 

Black Granite.  The tests were performed on ABG-01, which was the boulder used in BST-1.  

MFT-1 and MFT-2 were performed on 08 March 2011, and the two tests were performed 

consecutively since ABG-01 did not fracture during MFT-1.  

ABG-01 was rigidly fixed in the skewbacks such that the length of the boulder was 0.762 

m and the width was 1.016 m as related to the direction of impact.  The installation of the boulder 

was performed by Ameron Construction, and the impact sled was aligned with the boulder such 

that the impact face of the ram was approximately 90 to the centerline of the boulder.  Figure 

4-51 shows ABG-01 as installed prior to MFT-2.  The alignment of the boulder and impact sled is 

shown in Figure 4-52 and Table 4–3. 
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Figure 4-51. Pre-test condition of ABG-01 in MFT-2 

 

Figure 4-52.  Reference for impact sled orientation in MFT-1 and MFT-2 
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Table 4–3. Impact sled orientation (positive indicates corner extends out past test article) 

Corner A Elevation from Ground 1.918 m 

Corner B Elevation from Ground 1.981 m 

Corner C Distance from Edge of Test Article -0.216 m 

Corner D Distance from Edge of Test Article  +0.127 m 

Corner E Elevation from Ground  2.032 m 

Corner F Elevation from Ground 2.007 m 

 

Based on the measurements in Table 4–3, the centerline of the impact sled impacted the test 

article 0.172 m to the left of the center of the front vertical face of ABG-01. 

The impact sled fist contacted the test article with the ram face flush against the test 

article.  The impact sled then rebounded from the test article, rotating and translating in the 

opposite direction of initial impact.  The impact sled then contacted the test article again, but at a 

reduced velocity.  The impact sled contacted and rebounded several times until all of the energy 

from the test had been transferred.  Still images extracted from the high-speed video data showing 

a chronological sequence of the impact are given in Figure 4-53 and Figure 4-54 for the side 

views of MFT-1 and MFT-2 respectively.   
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Figure 4-53. Sequence of high-speed images from MFT-1  
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Figure 4-54. Sequence of high-speed images from MFT-2 
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Photographs of the post-test condition and location of ABG-01 after MFT-1 are shown in 

Figure 4-55, and Figure 4-56 shows the post-test condition of the impact sled after MFT-1.  

Photographs of the post-test condition and location of ABG-01 after MFT-2 are shown in Figure 

4-57, and Figure 4-58 shows the post-test condition of the impact sled after MFT-2. 

 

 

 

 

 

 

 

   

Figure 4-55. Post-test condition of ABG-01 after MFT-1 
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Figure 4-56. Post-test condition of impact sled after MFT-1 

   

   

Figure 4-57. Post-test condition of ABG-01 after MFT-2 
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Figure 4-58. Post-test condition of impact sled after MFT-2 

4.5 Comparison of low-order model simulation to past full scale crash data 

The full scale low-order simulations are performed by first parameterizing a typical 

medium-duty sized truck in terms of an equivalent spring and damper constant, and then using 

those results in addition to the remaining crash parameters within the low-order model.  The 

equivalent spring and damper values for the low-order vehicle are found using the methodology 

presented in [2].  A LS-DYNA™ finite element simulation was performed by Larson Institute 
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personnel for a medium-duty sized truck traveling at 13.4 m/s impacting a rigid wall.  The results 

of the LS-DNYA truck-wall impact are shown in a chronological sequence in Figure 4-59, and 

the displacement of the LS-DYNA™ truck is shown in Figure 4-60. 

  

  

  

  

Figure 4-59. Finite Element LS-DYNA™ simulation of an M30 impact with a rigid wall 
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Figure 4-60. Longitudinal displacement of the medium-duty truck in the LS-DYNA™ simulation 

The fit of (3.58) to the data in Figure 4-60 results in the equivalent spring and damper 

values of the low-order vehicle to be 3,103.3 kN/m and 138.91 kN-s/m respectively.  The 

lumped-parameter Maxwell model simulation of an M30 impact on a rigid wall using the 

aforementioned spring and damper values is shown in Figure 4-61.   

 

 

Figure 4-61. Comparison of LS-DYNA™ simulation to lumped-parameter Maxwell model 
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The measured displacement of the boulder in the full scale crash tests was made with 

respect to the center of mass of the boulder whereas the simulations are with respect to the center 

of mass of the boulder-soil subsystem.  Since the boulder is treated as a rigid body, the 

displacement of the center of mass of the boulder,   
 , is related to the displacement of the 

assumed center of mass of the boulder-soil subsystem,   , using 

   
       

       
      (4.1) 

where   
  is the radial distance from the center of mass of the boulder-soil subsystem to the 

center of mass of the boulder and   
  is the angle measured from the positive   direction as 

defined in Section 3.2 to the center of mass of the boulder.  The radial distance from the center of 

mass of the boulder-soil subsystem to the center of mass of the boulder,   
 , and the angle 

measured from the positive   direction as defined in Section 3.2 to the center of mass of the 

boulder,   
 , are found using 
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Since the boulder is treated as a rigid body, the measured angle of rotation of the boulder 

in a full scale crash test is directly comparable to the simulated angle of rotation of the boulder-

soil subsystem.  The number of soil elements within the low-order model,  , was increased until 

the model converged between simulations of the same parameters.  All full scale crash test 
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simulations use 5,000 soil elements.  Table 4–4 summarizes the remaining low-order model 

parameters not shown in either Table 4–1 or Table 4–2 

Table 4–4. Additional low-order model parameters for BST-1 and BST-2 

                                         

 

The simulations for BST-1 and BST-2 are performed using a constant of horizontal subgrade 

reaction of 95 MN/m
3
 which correlates to approximately 94% maximum density of the soil.  A 

constant of horizontal subgrade reaction of 95 MN/m
3
 is the approximate mean of the minimum 

constant of horizontal subgrade reaction as per minimum compaction level specified by ASTM 

F2656-07 and the maximum constant of horizontal subgrade reaction as calculated using (3.75). 

4.5.5 Comparison of full scale low-order simulation to BST-1 

Figure 4-62, Figure 4-63, and Figure 4-64 show the comparison of the measured crash 

test results from BST-1 to the simulated low-order results using the parameters listed in Table 4–

1 and Table 4–4.   Figure 4-62 shows the comparison of the linear displacement of the center of 

mass of the boulder, Figure 4-63 shows the comparison of the angle of rotation of the boulder, 

and Figure 4-64 shows the comparison of the linear displacement of the impact vehicle.  
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Figure 4-62. Comparison of the measured and simulated displacement of the center of mass of 

ABG-01 in BST-1  

 

Figure 4-63. Comparison of the measured and simulated angle of rotation of ABG-01 in BST-1 
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Figure 4-64. Comparison of the measured and simulated displacement of the vehicle in BST-1  

As seen in Figure 4-62 – Figure 4-64 the model loses fidelity after approximately 0.1 seconds 

from impact which corresponds to roughly 20° of rotation of the boulder. 

4.5.6 Comparison of full scale low-order simulation to BST-2 

Figure 4-65, Figure 4-66, and Figure 4-67 show the comparison of the measured crash 

test results from BST-2 to the simulated low-order results using the parameters listed in Table 4–

2 and Table 4–4.   Figure 4-65 shows the comparison of the linear displacement of the center of 

mass of the boulder, Figure 4-66 shows the comparison of the angle of rotation of the boulder, 

and Figure 4-67 shows the comparison of the linear displacement of the impact vehicle. 



117 

 

 

Figure 4-65. Comparison of the measured and simulated displacement of the center of mass of 

RWG-01 in BST-2  

 

Figure 4-66. Comparison of the measured and simulated angle of rotation of RWG-01 in BST-2  
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Figure 4-67. Comparison of the measured and simulated displacement of the vehicle in BST-2  

Similar to the simulated results from BST-1, the low-order model predicts the motion of the crash 

test within reason for angular displacement of less than 20° of the bolder.  As presented in 

Chapter 7, the low-order can be used in selecting the dimensions for a boulder based on angular 

displacement of less than 20°. 

4.6 Comparison of static fracture predictions to full scale fracture tests 

The full scale fracture predictions are made using the methodology presented in Section 

3.3.  The peak deceleration used in the fracture prediction was found to be 100 G’s from the LS-

DYNA™ finite element simulation of the M30 rigid-wall impact presented in Section 4.4.  The 

rock properties used in the fracture prediction are shown in Table 4–5.  The material properties 

for the granite were obtained by LTI personnel following procedures outlined by the International 

Society of Rock Mechanics [26] [27].   
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Table 4–5. Material properties for select boulder types 

 Compressive Strength Tensile Strength 

American Black granite 182.02 MPa 31.9 MPa 

 

The factors of safety and corresponding pass/fail contour plots for various granite 

geometries were obtained using MATLAB® iterations through various boulder geometries.  The 

eccentricity of the applied point load was fixed at 0.75 meters of cantilever, as this is the typical 

value for the equivalent point load as determined in Chapter 3.  

The factor of safety is defined in terms of maximum fracture stress in comparison to the 

stress needed to fracture for the given geometry.  Factors of safety less than one indicate fracture.  

Figure 4-68 estimates minimum pass/fail requirements for boulders based on infinite soil 

stiffness, boulder geometries, and boulder material properties of American Black granite.  The 

contour plots are interpreted such that areas shaded in black indicate estimated areas of fracture-

type failure and gray indicates estimated areas where fracture will not occur.  As presented in 

Chapter 3, it is assumed that the boulder is impacted parallel to the length dimension, or from left 

to right. 
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Figure 4-68. Factors of safety for an M30 impact on a rigidly-fixed American Black Granite 

boulder as determined from static fracture prediction with respect to impact direction 

The calculations for estimating fracture failure were compared to past crash tests in 

which the boulders fractured due to rigid embedment conditions.  The full scale fracture results 

from BFT-1 and BFT-2 are compared to the estimated fracture geometries in Figure 4-69.  The 

contour plot below shows the results of the full scale fracture tests overlaid onto the predicted 

regions of fracture from Figure 4-68. 
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Figure 4-69. Comparison of static fracture prediction to BFT-1 and BFT-2 

As shown in Figure 4-69, the static fracture prediction methodology accurately predicts 

fracture for both BFT-1 and BFT-2.  It should be noted that both BFT-1 and BFT-2 lie near the 

pass/fail line of a factor of safety equal to 1.  As shown in Figure 4-39 and Figure 4-48, the post 

impact speed of the vehicle severely reduced which indicates that a slight increase in boulder 

dimensions could result in no boulder fracture.  It should also be noted that the approach speed in 

both fracture tests was above the 13.4 m/s from which the static fracture contour plots was 

derived, which further adds to the plausibility of the static fracture prediction methodology.  As 

presented in Chapter 7, Figure 4-68 and the static fracture prediction methodology can be used in 

selecting the minimum dimensions for a boulder based on failure in the form of fracture. 
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4.7 Comparison of static fracture prediction against medium scale fracture 

tests 

This section presents the comparison of past medium scale fracture tests to the predicted 

fracture mechanics presented in Section 3.3.  The medium scale fracture tests consist of a 2227 kg 

impact pendulum and rigid mounting hardware. 

The force acting on the boulder is found by applying acceleration analysis to the global 

displacements of the impact sled obtained using Photron Motion Tools.  The position of the 

impact sled was filtered using a 2
nd

 order low-pass Butterworth filter with a cutoff frequency of 

115 Hz.  The pendulum is treated as a point mass that is restricted to 1-D motion since the impact 

sled is supported by flexible cables and the motion in the   direction at the time of impact is 

negligible.  The velocity and the acceleration of the impact sled were calculated by taking the 

time derivatives of the position.  The maximum accelerations for MFT-1 and MFT-2 were found 

to be 163.3 G and 127.5 G, respectively. 

Using Newton’s 2
nd

 law, the force acting on the impact sled is found by multiplying the 

acceleration of the impact sled by the mass of the sled.  By Newton’s 3
rd

 law, the force acting on 

the sled also represents the force acting on the boulder.  The measured force acting on the 

boulders is then be correlated to the factor of safety using the methodology proposed in Section 

3.3 where the eccentricity of the impact was measured to be 0.68 meters.  Table 4–6 lists the 

measured and calculated data with respect to MFT-1 and MFT-2 along with the resulting factors 

of safety.  Additionally, the maximum calculated force form MFT-1 and MFT-2 is correlated to 

an equivalent maximum acceleration for a 6,800 kg medium-duty sized truck as used in full scale 

crash tests.  Again using Newton’s 2
nd

 law, the equivalent accelerations of the 6,800 kg vehicle 

are found using 
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  (4.4) 

where          and       are the acceleration of the vehicle and sled and          and       are 

the mass of the vehicle and sled.   

Table 4–6. Medium scale fracture test results for MFT-1 and MFT-2 

 MFT-1 MFT-2 

Maximum impact sled acceleration 163.3 G 127.5 G 

Equivalent vehicle maximum acceleration 53.5 G 41.8 G 

Factor of safety calculated using the vehicle maximum acceleration 1.17 1.5 

 

The factors of safety confirm that the boulders should not have fractured upon impact of the sled 

as predicted using the maximum static fracture force methodology presented in Section 3.3. 

4.8 Contributions of this chapter 

The contributions of this chapter are as follows: 

(1) Present the test equipment and procedure associated with full scale crash and fracture 

tests  

(2) Present the test equipment and procedure associated with medium scale fracture tests 

(3) Present a summary of past full scale crash tests, medium scale fracture tests, and results  

(4) Compare the simulated low-order model to the full scale crash test results  

(5) Compare the fracture predictions to full and medium scale fracture test results 
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CHAPTER 5  
 

DIMENSIONAL ANALYSIS THEORY AND METHODS 

The intent of this chapter is to present the application of dimensional analysis to the low-

order model presented in Chapter 3 in order to develop dimensionless equations of motion and 

scaling laws.  Similar to [13], the DEOM allow for direct comparison of boulder and vehicle 

motion in small scale experiments and simulations to the boulder and vehicle motion in full scale 

experiments and simulations.  The Buckingham Π Theorem states that each of the small scale 

dimensionless parameters, often represented as the Greek letter   , must be equal to the respective 

full scale dimensionless   parameters in order to achieve full similitude.  The dimensionless   

parameters are used to create scaling relationships between small scale and full scale experiments 

as well as dimensionless equations of motion.   

This chapter is organized as follows:  

The relevant variables from the low-order model are listed in Section 5.1, and the 

repeating parameters are then selected from the relevant model variables in accordance with the 

Buckingham Π Theorem in Section 5.2.  Dimensionless   groupings are presented using the 

repeating parameters and remaining non-repeating parameters in Section 5.3.  The dimensionless 

  groupings are then used to create dimensionless equations of motion for the low-order model 

which can be used to simulate all variations of input parameters in Section 5.4.  The procedure for 

simulating the dimensionless equations of motion is presented in Section 5.5.  Finally, scaling 

laws between full scale and small scale testing will be presented based on the dimensionless   

groupings in Section 5.6. 
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5.1 Governing low-order model variables 

Buckingham’s Π Theorem does not require knowledge of the governing equations for a 

system creating small scale tests, rather, only that the significant parameters need to be known.  It 

is advantageous, however, to know the governing equations, as this will simplify the 

identification of significant parameters.   

Using the low-order model as a guideline, Table 5–1 shows the significant parameters as 

pertaining to a vehicle impact upon a soil-fixed boulder.  For the purposes of analysis, terms that 

are already dimensionless – angles, friction coefficients, etc. – can be ignored as the terms will 

appear in identical form between experiments in full similitude.  Inherently dimensionless 

parameters must match between small and full scale experiments as there is no scaling parameter 

associated with inherently dimensionless parameters.  The base dimensions associated with the 

low-order model in Chapter 3 are mass (  , length (  , and time (  . 
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Table 5–1. Significant parameters found in the low-order model 

Variable Symbol Dimension Classification 

Gravitational acceleration         Input 

Mass density of the soil             Input 

Constant of horizontal subgrade reaction of the soil             Input 

Mass density of the boulder          Input 

Length of the boulder     Input 

Width of the boulder     Input 

Height of the boulder     Input 

Embedment depth of the boulder     Input 

Linear displacement of the boulder      Output 

Linear velocity of the boulder  ̇        Output 

Linear acceleration of the boulder  ̈        Output 

Angular velocity of the boulder  ̇      Output 

Angular acceleration of the boulder  ̈      Output 

Mass of the vehicle      Input 

Linear displacement of the vehicle      Output 

Initial linear velocity of the vehicle          Input 

Linear velocity of the vehicle  ̇        Output 

Linear acceleration of the vehicle  ̈        Output 

Linear jerk of the vehicle  ⃛        Output 

Damping constant of the vehicle          Input 

Spring constant of the vehicle          Input 

Eccentricity of vehicle applied load     Input 

Time     Output 

Height of soil element            Input 
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5.2 Selection of repeating parameters 

As seen in Table 5–1, there are 26 total variables and three basic unit dimensions: mass 

(  , length (  , and time (  .  According to the Buckingham Π Theorem, the number of 

independent dimensionless variable grouping is found using 

             (5.1) 

where    is the number of independent dimensionless groupings,    is the total number of 

variables found in Table 5–1, and     is the number of base dimensions found in Table 5–1.   

Applying (5.1) to the parameters listed in Table 5–1 yields 23 independent dimensionless variable 

groupings and 3 repeating parameters.   

One criterion for repeating parameter selection arises from the inherent nature of the 

repeating parameters needing to span the dimensions of all the variables.  As seen in Table 5–1, 

however, there are a limited number of variables that include the time dimension and fewer which 

are considered inputs into the low-order model.  The time dependent input parameters in Table 5–

1 are the initial velocity of the vehicle,   , the gravitational constant,  , the constant of horizontal 

subgrade reaction of the soil,  , and the equivalent damping and spring constants,    and   .   

A somewhat intuitive approach in satisfying the aforementioned time dimension criterion 

is to select the gravitational constant as the first repeating parameter since it is expected to remain 

constant between full scale and small scale testing.  The remaining two repeating parameters are 

then selected such that the rank of the dimensional matrix, shown in Table 5–2, is equal to the 

number of base dimensions,    .   
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Table 5–2. Example of a dimensional matrix for determining span of variables 

         

       0 1 1 

     1 0 0 

     0 -1 -2 

 

Following the aforementioned selection criteria, the mass of the vehicle and initial 

velocity of the vehicle are chosen as the remaining two parameters since the combination of  

  ,   , and   span the base dimensions found in the low-order model, and both    and 

   are driving factors in the model simulation.   

5.3 Grouping of dimensionless   parameters 

A manual approach is typically used in calculating the   parameters in dimensional 

analysis, but the manual approach is often very tedious and time consuming.  A more methodical 

approach is offered through the use of matrix mathematics which can be used to rapidly 

determine the   parameters [28].  Following the methodology presented in [28], the repeating 

parameters,   ,   , and  , are placed in the    submatrix of the dimensional matrix  , shown 

in Figure 5-1.  The remaining non-repeating parameters are then placed in the    submatrix, and 

the    submatrix is set as unity.  The dimensional set is then formed using  

 (   
          

    )
 
  (5.2) 

where   is set to a zero vector.  The variable   is set to a zero vector because there is no change in 

dimensional basis [28]. 
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Figure 5-1. Dimensional Matrix [28] 

A dimensional set is presented in which the types of variables, such as linear position or 

acceleration, are used in (5.2) instead of the variables found in Table 5–1.  For example, linear 

velocity will be presented instead of listing both the linear velocity of the boulder and the linear 

velocity of the vehicle.  Both the linear velocity of the boulder and vehicle will have the same 

scaling factor since they both have the same dimensions.  Table 5–3 shows the variations of 

variables found in the low-order model.  The results from applying (5.2) to the parameters listed 

in Table 5–3 are shown in Table 5–4. 
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Table 5–3.  Types of variables found in the low-order model 

Variable Symbol Dimension 

Mass density          

Constant of horizontal subgrade reaction              

Length      

Linear velocity          

Linear acceleration           

Linear jerk          

Angular velocity         

Angular acceleration         

Damping constant          

Spring constant          

Time      



 

 

Table 5–4. Dimensionless groupings associated with (5.2) and Table 5–3 

                                           

       -3 -2 1 1 1 1 0 0 0 0 0 0 1 1  

     1 1 0 0 0 0 0 0 1 1 0 1 0 0  

     0 -2 0 -1 -2 -3 -1 -2 -1 -2 1 0 -1 -2  

    1 0 0 0 0 0 0 0 0 0 0 -1 6 -3     

    0 1 0 0 0 0 0 0 0 0 0 -1 6 -4     

    0 0 1 0 0 0 0 0 0 0 0 0 -2 1     

    0 0 0 1 0 0 0 0 0 0 0 0 -1 0     

    0 0 0 0 1 0 0 0 0 0 0 0 0 -1     

    0 0 0 0 0 1 0 0 0 0 0 0 1 -2     

    0 0 0 0 0 0 1 0 0 0 0 0 1 -1     

    0 0 0 0 0 0 0 1 0 0 0 0 2 -2     

    0 0 0 0 0 0 0 0 1 0 0 -1 1 -1     

    0 0 0 0 0 0 0 0 0 1 0 -1 2 -2     

    0 0 0 0 0 0 0 0 0 0 1 0 -1 1     
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The resulting dimensionless groupings for each variable type shown in Table 5–4 are 

given in Table 5–5. 

Table 5–5. Dimensionless parameters for variable types 

    
     

 

    
 

 (5.3) 
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 (5.10) 

 

    
  

 
 (5.11) 

    
    

  
 (5.12) 

 

    
     

 

    
 

 (5.13) 

 

 

The dimensionless parameters associated with the variables in Table 5–1 are simply 

found by replacing the starred variables in Table 5–5 with the corresponding variable from Table 

5–1.  Returning to the velocity example described earlier in this section, the dimensionless 

parameter associated with linear velocity of the boulder is found by simply replacing    with  ̇  

in (5.9).  Similarly the dimensionless parameter associated with the linear velocity of the vehicle 

is formed by replacing    with  ̇  in (5.9).  Thus, the dimensionless   groupings associated with 

the salient parameters in the low-order model are found by performing the aforementioned 

substitution method for the remaining variables in Table 5–1.  The results of the substitutions are 

shown in Table 5–6. 
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Table 5–6 Dimensionless   groupings for the low-order model 
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Solving (5.14) - (5.40) for the parameters listed in Table 5–1 results in Table 5–7. 



134 

 

Table 5–7. Low-order model parameters as a function of the   groupings in Table 5–6 
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5.4 Creation of dimensionless equations of motion  

The main goal of this thesis is to develop dimensionless equations of motion which can 

be used to simulate and predict the motion of various parameters associated with vehicle impacts 

upon a soil-fixed boulder in cohesionless soil.  The dimensionless equations of motion are 

presented following the methodology in [28].    The governing dimensionless equations of motion 

are formed by representing (3.10), (3.11), and (3.54) in terms of the dimensionless   parameters, 
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the repeating parameters, and the non-repeating parameters found in Table 5–1 and then 

simplifying.   

It is beneficial at this point to dissect the governing equations of motion into individual 

components which will be reassembled into the dimensionless equations of motion.  The 

dimensionless equation of motion for the vehicle is presented in Section 5.4.1.  The 

dimensionless equation of motion for the boulder-soil subsystem in the   direction is presented in 

Section 5.4.2.  Lastly, the dimensionless equation of motion for the rotation of the boulder-soil 

subsystem about the   axis is presented Section 5.4.3. 

5.4.1 Dimensionless equation of motion for the vehicle  

The governing dimensionless equation of motion for the vehicle is formed by expressing 

(3.54) in terms of dimensionless   groupings and repeating parameters found in Table 5–7.  It is 

advantageous to represent the various variables found in (3.54) through the use of intermediate 

dimensionless   groupings as a means of general housekeeping.  The mass of the boulder is 

expressed in terms of the dimensionless   groupings and repeating parameters by substituting 

(5.41), (5.44), (5.47), and (5.50) into (3.14), which results in 

 
   

   
    

 

  
 

 
    

 

 
 
    

 

 
 
    

 

 
  

(5.56) 

Combining like terms in (5.56) and simplifying yields 

         
      

        (5.57) 
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where    
 is the resulting intermediate dimensionless   grouping as pertaining to the mass of the 

boulder.  Similarly, the mass of the lumped soil against the boulder is formed by substituting 

(5.35), (5.47), (5.53), and (5.55) directly into (3.2) and simplifying, which results in  

 
        

         
     

       ([       
]  

 

 
   

)  
(5.58) 

where    
 is the resulting intermediate dimensionless   grouping as pertaining to the lumped 

soil masses against the boulder.  The center of mass for the boulder-soil system, as measured with 

respect to the local origin in the   direction, is expressed in terms of the dimensionless   

groupings and repeating parameters by substituting (5.44), (5.57), and (5.58) into (3.3) and 

simplifying, which yields  
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(5.59) 

where     is the intermediate dimensionless   grouping for the center of mass for the boulder-soil 

subsystem.  Substituting (5.59) and (5.53) into the definition of    results in 
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     )  

(5.60) 

where    
 is an intermediate dimensionless   grouping associated with the depth of each soil 

element relative to the center of mass for the soil-boulder subsystem. 

In order to rewrite the displacement of the contact point between the vehicle and the 

boulder,    and    are expressed in terms of the dimensionless   groupings and repeating 

parameters by substituting (5.49), (5.59), and (5.60) with     into (3.5) and (3.6) and 

simplifying, which yields  
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(5.62) 

where   
  is the dimensionless   grouping for   , and    

 is the dimensionless   grouping for the 

radial distance from the center of mass of the boulder-soil subsystem to the vehicle impact point.   

It should be noted that   
  requires no scaling parameters since it is already dimensionless and a 

function of dimensionless variables.   

Finally, (3.54) is expressed in dimensionless   groupings, repeating parameters, and the 

non-repeating variables in Table 5–1 by substituting (5.61) and (5.62) into (3.54), which yields 
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(5.63) 

The dimensionless equation of motion for the vehicle is created by substituting (5.37), (5.39), 

(5.40), (5.43), (5.45), (5.46), and (5.54) into (5.63) for all of the remaining non-repeating 

parameters forming 
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(5.64) 

Combining like terms in (5.64) and simplifying yields  
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(5.65) 

Dividing both sides of (5.65) by 
  

  
 yields 
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(5.66) 

Thus, the governing equation of motion for the vehicle is now expressed solely in dimensionless 

  groupings.  Equation (5.66) is the governing dimensionless equation of motion for the vehicle. 

5.4.2 Dimensionless equation of motion for the boulder-soil subsystem in the   direction 

The governing dimensionless equation of motion for the boulder-soil subsystem in the   

direction is presented in manner similar as the dimensionless equation of motion for the vehicle.  

The left hand side of (3.10) is expressed in dimensionless   groupings and repeating parameters 

through the use of an intermediate dimensionless   grouping for the effective mass of the 

boulder-soil subsystem.  The   grouping is created for the effective mass of the boulder-soil 

subsystem by substituting (5.57) and (5.58) into (3.12) and simplifying, which yields 

 

             
   (   

 ∑{   
}

 

   

)  
(5.67) 

where      
 is the resulting intermediate dimensionless   grouping as pertaining to the effective 

mass for the boulder-soil subsystem.   
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Similarly, the right hand side of (3.10) must be expressed in dimensionless   groupings 

and repeating parameters.  The vehicle force,   , acting on the boulder during impact is expressed 

in dimensionless   groupings and repeating parameters by substituting (5.37) into (3.56), which 

results in 

            ̈ 
 (5.68) 

The soil forces are expressed in the dimensionless   groupings and repeating parameters 

in a similar manner to the derivation of the soil forces presented in Chapter 3.  First the soil 

representative spring forces are expressed in the repeating parameters and dimensionless   

groupings, and then the soil representative dampers are expressed in the repeating parameters and 

dimensionless   groupings. 

The three variables in the lateral soil force from the springs which are not dimensionless 

  groupings or repeating parameters are the locations of the soil masses with respect to center of 

mass of the boulder-soil,   , the angles for each soil element as measured from vertical,   , and 

the depth of the soil elements from the soil line to the bottom of the boulder,   .  The locations of 

the soil masses with respect to center of mass of the boulder-soil,   , the angles for each soil 

element as measured from vertical,   , are expressed in terms of the repeating parameters and 

dimensionless   groupings by substituting (5.44), (5.59), and (5.60) into (3.7) and (3.8), 

respectively, and simplifying, which yields 
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where   
  are the dimensionless   groupings for the angles of each soil element as measured 

from vertical, and    
 are the dimensionless   groupings for the radial distances from the center 

of mass of the boulder-soil subsystem to the soil elements.   Similar to   
 , it should be noted that 

  
  requires no scaling parameters since it is already dimensionless.  the depth of the soil 

elements from the soil line to the bottom of the boulder,   , is expressed in terms of the repeating 

parameters and dimensionless   groupings by substituting (5.53) into the range (  
 

 
  ) and 

simplifying, which yields 
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(5.71) 

where    
 are the dimensionless   groupings for the depth of the soil elements from the soil line 

to the bottom of the boulder. 

The force acting on the boulder-soil subsystem from the soil representative springs is 

expressed in terms of dimensionless   groupings and repeating parameters by substituting (5.69), 

(5.70), and (5.71) into (3.27) and simplifying, which yields 
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  ]  

(5.72) 

where     
 is the intermediate dimensionless   grouping for the soil representative spring force. 
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The ultimate lateral resistance is expressed in terms of the repeating parameters and 

dimensionless   groupings by substituting (5.35), (5.47), and (5.71) into (3.32) and simplifying, 

which results in 

 
   

        
    

  
    

  
    

   

 
  

(5.73) 

where     
 is the intermediate dimensionless   grouping for the ultimate lateral resistance of the 

soil.  It should also be noted that    and    are not scaled since they are inherently dimensionless 

and based solely on dimensionless parameters. 

The lateral soil force from the soil representative dampers are expressed in terms of the 

repeating parameters and dimensionless   groupings by substituting (5.35), (5.39), (5.45), (5.69), 

and (5.70) into (3.43) and simplifying, which yields 
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(5.74) 

where     
 is the intermediate dimensionless   grouping for the lateral soil force from the soil 

representative dampers.  The total force from the soil representative springs and dampers is 

represented in terms of the repeating parameters and dimensionless   groupings by substituting 

(5.72) and (5.74) into (3.19) and simplifying, which yields 

                (    
     

)  (5.75) 

where     is the intermediate dimensionless   grouping for the total soil force from the soil 

representative springs and dampers. 
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Having expressed all of the forces on the right hand side of (3.10) in terms of 

dimensionless   groupings and repeating parameters, the governing dimensionless equation of 

motion for the boulder-soil subsystem in the   direction is found by substituting  (5.67), (5.68), 

and (5.75) into (3.10) and simplifying, which yields 
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(5.76) 

5.4.3 Dimensionless equation of motion for rotation of the boulder-soil subsystem about the 

  axis 

The governing dimensionless equation of motion for the rotation of boulder-soil 

subsystem about the   axis is presented in the similar manner as the dimensionless equation of 

motion for the vehicle.  Equation (3.11) must be expressed in terms of dimensionless   groupings 

and repeating parameters.  As demonstrated with the dimensionless equations of motion for the 

vehicle and translational displacement of the boulder-soil subsystem, it is advantageous to 

develop intermediate dimensionless   groupings as a means of general housekeeping when 

expressing (3.11) in the dimensionless   groupings and repeating parameters.   

The distance from the center of mass of the boulder-soil subsystem to the soil elements is 

expressed in terms of the dimensionless   groupings and repeating parameters by substituting 

(5.44) and (5.59) into (3.15) and simplifying, which yields 
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(5.77) 

where     is the intermediate dimensionless   grouping for the distance from the center of mass 

of the boulder-soil subsystem to the soil elements.  The center of mass for the boulder-soil 
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system, as measured with respect to the local origin in the   direction, is expressed in terms of the 

dimensionless   groupings and repeating parameters by substituting (5.50), (5.53), (5.57), and 

(5.58), into (3.4) and simplifying, which yields 
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(5.78) 

where     is the intermediate dimensionless   grouping for the distance from the center of mass 

for the boulder-soil system, as measured with respect to the local origin in the   direction.   

The mass moment of inertia of the boulder about the center of mass of the boulder-soil 

subsystem is expressed in terms of dimensionless   groupings and repeating parameters by 

substituting (5.44), (5.50), (5.53), (5.57), (5.59), and (5.78) into (3.16) and simplifying, which 

yields 
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(5.79) 

where     is the intermediate dimensionless   grouping for the mass moment of inertia of the 

boulder about the center of mass of the boulder-soil subsystem.  The effective mass moment of 

inertia of the boulder-soil subsystem about the center of mass of the boulder-soil subsystem is 

expressed in terms of dimensionless   groupings and repeating parameters by substituting (5.58), 

(5.60), (5.77), and (5.79) into (3.13) and simplifying, which yields 
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(5.80) 

where      
 is the intermediate dimensionless   grouping for the effective mass moment of 

inertia of the boulder-soil subsystem about the center of mass of the boulder-soil subsystem. 

The left hand side of (3.11) can now be expressed in terms of the dimensionless   

groupings and repeating parameters by substituting (5.48) and (5.80) into (3.11) and simplifying, 

which yields 

 

     ̈      
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(5.81) 

Similarly, the right hand side of (3.11)  must be expressed in terms of dimensionless   

groupings and repeating parameters.  The resulting moments from the lateral soil forces,    , are 

expressed in terms of the dimensionless   groupings and repeating parameters by substituting 

(5.69), (5.70), and (5.75) into (3.20) and simplifying, which yields 

         
    

      
 [      

      
       ]  (5.82) 

where    
 is the intermediate dimensionless   grouping for the resulting moments from the 

lateral soil forces.  The resulting moment from the force of the vehicle acting on the boulder is 

expressed in terms of dimensionless   groupings and repeating parameters by substituting (5.61), 

(5.62), and (5.68) into (3.57) and simplifying, which yields 

        
    

       
      

       (5.83) 
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where    
 is the intermediate dimensionless   grouping for the resulting moment from the force 

of the vehicle acting on the boulder. 

 Lastly, the maximum restoring moment due to gravity is expressed in terms of 

dimensionless   groupings and repeating parameters by substituting (5.57), (5.69), and (5.70) 

with     into (3.44) and simplifying, which yields 

                    
          

        

             
          

    
   

       
       

(5.84) 

where        
 is the intermediate dimensionless   grouping for the maximum restoring moment 

acting on the boulder due to gravity.  As previously stated in Section 3.2.2, the restoring moment 

is then calculated by comparing it to the sum of the remaining moments and the maximum 

restoring moment.  The restoring moment, as aforementioned calculated, is expressed in terms of 

dimensionless   groupings and repeating parameters by substituting (5.82), (5.83), and (5.84) into 

(3.46) and simplifying, which yields 
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(5.85) 

 

           
    

 ∑{   
}

 

   

    
 

where    
 is the intermediate dimensionless   grouping for the maximum restoring moment 

acting on the boulder due to gravity. 
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Having expressed all of the moments on the right hand side of (3.11) in terms of 

dimensionless   groupings and repeating parameters, the governing dimensionless equation of 

motion for the rotation of the boulder-soil subsystem about the   axis found by substituting  

(5.82), (5.83), (5.84), and (5.85) into (5.81) and simplifying, which yields 
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 ∑{   
}

 

   

    
    

  
(5.86) 

5.5 Simulating of dimensionless equations of motion 

The dimensionless governing equations of motion can be arranged into state-space form 

and solved via numerical integration, similar to the dimensioned governing equations of motion 

for the low-order model.  The states and corresponding time derivatives for the dimensionless 

equations of motion are listed in Table 5–8. 
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Table 5–8. States for dimensionless governing equations of motion 
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] (5.100) 

 

 

It should be noted that all forces in the dimensionless governing equations of motion can be 

written explicitly as functions of the states (5.87), (5.89), (5.91), (5.93), (5.95), (5.97),  and 

(5.99).  The set of equations (5.87) – (5.100) are also coupled first-order, nonlinear, non-stiff 

ordinary differential equations which can be readily solved via numerical integration in the same 

manner as the dimensioned state-space equations. 

5.6 Scaling laws for full scale and small scale experiments 

As per the Buckingham Π Theorem, each of the small scale dimensionless parameters 

must be equal to the respective full scale dimensionless   parameters in order to achieve full 

similitude.  The small scale experiment and simulation parameters are most readily determined 

from the dimensionless groupings which involve the fixed or input   parameters.  Referring to  

Table 5–1, the input dimensionless   groupings for either an experiment or simulation are– 
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,   ,    

,      ,   ,   ,    
,    , and   .  The small scale parameters, denoted by the 

subscript  , are found by equating the small scale   groupings to the full scale   groupings, 

denoted by the subscript  , and solving for the unknown small scale parameters.  The equations 

used in determining the small scale input parameters are listed in Table 5–9.  Similarly, the 

outputs of the simulations and experiments are scaled using the equations listed in Table 5–10.   

Table 5–9. Equations used for determining governing small scale parameters  
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Table 5–10. Scaling laws associated with the outputs form the low-order model 
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Even though certain parameters in Table 5–9 and Table 5–10 are presented as variable, it 

is desirable to establish a set of constants between small scale and full scale experiments and 

simulations.  The practice most often presented in literature involves using the same soil between 

small and full scale testing as this will eliminate any variations in soil properties [12].   It is also 

desirable to perform both the small and full scale experiments in the same gravitational field.  As 

seen in [12], it may not be feasible to obtain full similitude when considering both gravity and 

soil properties as constant.   

The feasibility of full similitude while assuming gravity and soil properties as constants 

between full and small scale testing is investigated though the use of an arbitrary set of full scale 

parameters, listed in Table 5–11.  
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Table 5–11. Test case full scale input parameters  

   
            

         

                         

   
                     

   
                   

                 

                

   
               

          

 

It should be noted that a height of the full scale soil element,    
, of 0.0004 m corresponds to 

5000 soil elements.  It is assumed that both the gravitational constant and constant of horizontal 

subgrade reaction of the soil are constant between full and small scale tests, which results in 

       (5.122) 

        (5.123) 

Substituting (5.122), (5.123),    
        , and    

        into (5.102) and simplifying 

yields 

    
 

   

         
(5.124) 

 Equation (5.124) is a single equation with two unknowns,    
 and    

, thus one of the 

two unknowns must be explicitly specified.  Arbitrarily setting    
         and solving 

(5.124) for the initial velocity of the small scale vehicle results in    
           .  The 
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remaining governing small scale parameters are then determined by substituting    
        

and    
            into the scaling laws listed in Table 5–9.  Doing so leads to the small 

scale parameters listed in Table 5–12.   

Table 5–12. Test case small scale input parameters  

   
           

             

                         

   
                       

   
                       

               
          

                       

   
                

            

 

 Similar to [5], certain parameters changed in value, such as the equivalent vehicle spring 

and damper constants and boulder dimensions.  Unlike [12], however, it should be noted that the 

small scale mass densities of the boulder and the soil are the exact same as that seen in the full 

scale scenario.  Therefore, it is possible to achieve full similitude between full and small scale 

experiments and simulations not only under constant gravity and constant soil properties, but also 

constant boulder material properties.  It should be further noted that the number of elements did 

not change between small and full scale.   

5.7 Contributions of this chapter 

The contributions of this chapter are as follows: 

(1) Present the governing parameters in the low-order model 
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(2) Select the repeating parameters for dimensionless   groupings 

(3) Create the dimensionless   groupings 

(4) Develop the governing dimensionless equations of motion 

(5) Represent the governing dimensionless equations of motion in state-space form 
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CHAPTER 6  
 

VALIDATION OF DIMENSIONAL ANALYSIS AND STATIC FRACTURE 

PREDICTION 

The intent of this chapter is to show the comparison of simulated and experimental results 

in dimensionless form across many different scales. This will be conducted in stages.  First, the 

dimensionless equations of motion are simulated and compared to the equivalent forms of full 

scale and small scale simulation results.  Then the small scale simulations are compared to 

equivalent forms of small scale crash results.  Next, dimensionally scaled versions of the small 

scale crash results are compared to the full scale crash results recorded to date.   

This chapter is organized as follows:  

The equipment and methods for conducting a small scale crash test is outlined in Sections 

6.2 and 6.3.  A summary of the small scale crash tests is presented in Section 6.4, and the small 

scale crash test results are compared to the equivalent small scale simulations in Section 6.5.  The 

small scale crash test results are then compared to the full scale crash test results through the use 

of scaling laws in Section 6.6.     

6.1 Validation of dimensional analysis through simulation of dimensionless 

equations of motion 

The state-space, dimensionless equations of motion are simulated by substituting the 

values for the dimensionless parameters into (5.87) – (5.100) and solving via numerical 

integration techniques.  The governing dimensionless   groupings for BST-1 and BST-2 are 

shown in Table 6–1 and Table 6–2, respectively. 
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Table 6–1. Dimensionless governing parameters for BST-1 

      
                                 

   
                            

             
                 

                       
             

 

Table 6–2. Dimensionless governing parameters for BST-2 

      
                               

   
                           

            
                  

                       
             

 

It should be noted that the number of soil elements for the simulations,  , is found from 

   
 using 

   
  

   

  (6.1) 

 The results of the simulations are shown in Figure 6-1 – Figure 6-6.   

6.1.1 Dimensionless simulation of BST-1 

Figure 6-1, Figure 6-2, and Figure 6-3 show the simulated, dimensionless displacement 

of the center of mass of ABG-01 versus dimensionless time, the simulated angle of rotation of 

ABG-01 versus dimensionless time, and the simulated, dimensionless displacement of the vehicle 

versus dimensionless time when using the parameters in Table 6–1. 
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Figure 6-1. Simulated dimensionless displacement of the center of mass of ABG-01 in BST-1 

using the DEOM 

 

Figure 6-2. Simulated angle of rotation of ABG-01 in BST-1 using the DEOM 
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Figure 6-3. Simulated dimensionless displacement of the vehicle from BST-1 using the DEOM 

6.1.2 Dimensionless simulation of BST-2 

Figure 6-5,Figure 6-6Figure 6-7 show the simulated, dimensionless displacement of the 

center of mass of RWG-01 versus dimensionless time, the simulated angle or rotation of RWG-01 

versus dimensionless time, and the simulated, dimensionless displacement of the vehicle versus 

dimensionless time when using the   groupings from Table 6–2. 
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Figure 6-4. Simulated dimensionless displacement of the center of mass of RWG-01 in BST-2 

using the DEOM 

 

Figure 6-5. Simulated angle of rotation of RWG-01 in BST-2 using the DEOM 
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Figure 6-6. Simulated dimensionless displacement of the vehicle from BST-2 using the DEOM 

6.1.3 Interpretation of dimensionless simulations 

The dimensionless results in Figure 6-1 – Figure 6-6 are easily transformed into any 

scaled similar size simulation through the use of (5.112) – (5.121).  The most straightforward 

example, perhaps, is transforming the angle of rotation versus dimensionless time into the angle 

of rotation versus full scale time for BST-2.  Since the angle of rotation is inherently 

dimensionless and does not scale, the time variable is the only scaled parameter.  The full scale 

time is found simply by substituting the dimensionless time vector into (5.121) and solving for 

the full scale time.  Figure 6-7 shows the comparison of the full scale simulation to the scaled 

results from the dimensionless equations of motion for BST-2. 
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Figure 6-7. Comparison of the boulder angle from the dimensioned EOM to the scaled results 

from the DEOM 

As seen in Figure 6-7, the results are exactly the same, as was expected.  The 

dimensionless   groupings also allow for inverse transformations since the dimensionless   

groupings are ratios.  The full scale simulation results of the angle of rotation of RWG-01 versus 

time are transformed back into the dimensionless results by substituting the full scale time vector 

into (5.121) and solving for   .   

As a precursor to the comparison of small scale experiments to full scale experiments, the 

dimensionless   groupings and scaling laws allow for the comparison of small scale simulations 

to full scale simulations.  As presented in Section 6.3, the small scale experiments are performed 

using an equivalent 8 kg impact vehicle.  The resulting desired small scale parameters are found 

by applying the scaling laws to BST-1 and BST-2 for an 8 kg vehicle and are shown in Table 6–3 

and Table 6–4.  To avoid confusion with measured small scale parameters, the desired parameters 

are denoted using an over bar. 
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Table 6–3. Desired small scale parameters based on the full scale parameters in BST-1 
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Table 6–4. Desired small scale parameters based on the full scale parameters in BST-2 
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Similar to the full scale simulations, the small scale parameters can also be substituted 

into the dimensioned state-space equations of motion, (3.79) – (3.92), and numerically integrated.  

Even though the parameters shown in Table 6–3 and Table 6–4 are scaled similar to the full scale 

simulations of BST-1 and BST-2, the two sets of simulations cannot be directly compared since 

they are of two different scaled sizes.  Either the results from both simulations must be 

transformed into the dimensionless results and compared as previously presented, or the results 
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from one of the simulations must be transformed completely into the other scale size.  For 

example, the small scale angular displacement of the boulder can be scaled up into the full scale 

size by substituting the small scale time into (5.121) and solving for the corresponding full scale 

time.  As shown in Figure 6-8, this procedure once again confirms that the two simulations are 

dynamically similar.   

 

Figure 6-8. Comparison of the scaled-up, simulated, small scale angular displacement of RWG-

01 to the simulated full scale angular displacement of RWG-01 in full scale time  

6.2 Small scale crash test equipment and procedure 

This section will briefly describe the test equipment used in performing a small scale 

crash test and the procedure for determining the lumped-parameter values found in the low-order 

model.  One of the goals for the equipment which was to be used in small scale testing was not 

only ensuring repeatability in the lumped-parameter values, but also ease of varying scaled sizes 

of the crash tests.  Rather than using an actual small scale medium-duty sized truck, it was 
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determined that a rigid-arm pendulum would provide both repeatability in test parameters and 

ease of varying scaled sizes.  Thus, in small scale testing, the vehicle is represented by a rigid-arm 

pendulum constructed from 3030 sized aluminum 8020® to which various weights and crushable 

material may be attached.  The small scale pendulum will be referred to as the Small Scale Crash 

Research (SSCR) pendulum and is shown in Figure 6-9. 

 

Figure 6-9. SSCR pendulum used in small scale testing of soil-fixed boulders 

The SSCR pendulum is approximately 2.43 m tall and the impact beam is 1.83 m long.  

This configuration allow for a maximum elevation change of 1.72 m for the impact beam.  The 

maximum horizontal speed of the tip of the impact beam is approximately 6.5 m/s when released 

from the maximum height.  Table 6–5 lists the additional salient measured and calculated 

parameters of the SSCR pendulum and impact beam. 
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Table 6–5. Properties of SSCR pendulum 

Mass of impact beam 10.9 kg 

Mass of mounting hardware 5.4 kg 

Radial distance from pivot to mounting hardware 1.65 m 

Radial distance form pivot to typical impact point 1.83 m 

Calculated mass moment of inertia of impact beam about 

the pivot point of the pendulum 

26.87 kg-m
2
 

 

The small scale crash tests are performed by raising the impact beam to a desired initial 

angular displacement and then using a quick release mechanism to allow the impact beam to 

swing into the small scale boulder.  A crushable material is attached to the impact beam which 

acts as the observed crush of the full scale vehicles.  The material used to model the crush of a 

vehicle is two empty 12 oz. aluminum drinking cans which are wrapped in Nashua® 300 Series 

heavy duty duct tape.  The aluminum cans were chosen based on the equivalent spring and 

damper values which are presented in Section 6.3.  A more detailed description of the preparation 

of the crush material is also presented in Section 6.3. 

The primary means of data collection for the small scale crash tests the high-speed 

imaging system used in full scale testing.  All small scale tests are recorded using the high-speed 

camera.  Additional data collection devices were used during small scale crash tests when 

available.  Such devices include a US Digital® HD25 incremental industrial rotary encoder which 

is attached to the rotational shaft at the top of the pendulum, shown in Figure 6-10.   
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Figure 6-10. US Digital® HD25 incremental industrial rotary encoder as mounted on the SSCR 

pendulum 

The rotary encoder is used to measure the displacement of the impact beam from which 

the impact velocity of the crash can be estimated.  A MATLAB® xPC Target™ data logger and 

host are used to read and collect the position output from the rotary encoder as well as act as a 

backup trigger system for the high-speed imaging system.  An automatic trigger device was 

created in conjunction with the use of the high-speed camera and xPC Target™ data logger.  

Similar to the full scale trigger, the small scale trigger system was designed to send a TTL +5V 

signal to the data collection devices when the impact beam passes through the proximity sensors 

mounted to the pendulum frame.   

The soil in small scale crash tests was selected such that the base consistency was the 

same as the soil used in full scale crash tests.  The small scale soil is limestone dust obtained from 

the same quarry which the full scale soil was obtained.  The soil is compacted in 2.5 – 7.5 cm 

layers using an 11 lb. 8” x 8” hand tamper.  The soil layer thickness depends on the desired 
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constant of horizontal subgrade reaction.  A higher desired constant of horizontal subgrade 

reaction requires thinner layers of compacted soil.  Figure 6-11 shows the soil in the loose state, 

and Figure 6-12 shows the compacted soil as prepared for a small scale crash test. 

 

Figure 6-11. Limestone dust used in small scale testing in the loose state 

 

Figure 6-12. Limestone dust as compacted prior to a small scale crash test 

As presented in Chapter 4, the maximum density of the limestone dust was found to be 2,010 

kg/m
3
 by performing a modified proctor test on the limestone dust.     
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When installing the boulder, a hole is excavated in the center of the soil bin such that 

enough room is available for the soil wedge to form.  The hole is excavated below the desired 

embedment depth, and soil is then backfilled and tamped until the depth of the hole is equal to the 

desired boulder embedment depth.   The boulder is then inserted into the hole, and the boulder is 

aligned with the impact beam and crush material such that the boulder is approximately 90° to the 

centerline of the impact beam.  The boulder is also made level using an analog bubble level.  The 

soil is then backfilled and tamped approximately every 5 cm until the soil had reached the top of 

the hole.  A dynamic cone penetrometer is then used to perform the in-situ measurement of the 

soil properties as presented in Chapter 3.   

6.3 Measurement and estimation of commonly used lumped-parameters 

within small scale crash tests 

This section presents the methodology for determining the lumped-parameter values of 

the variables which do not typically change between small scale tests, such as the equivalent 

mass, spring constant, and damping constant of the small scale vehicle.   First, the equivalent 

mass of the impacting vehicle is estimated based on the SSCR pendulum properties.  The 

corresponding impact velocity of the vehicle is then found using (5.102) where the gravitational 

constant and constant of horizontal subgrade reaction are assumed equal between the small and 

full scale experiments.  The remainder of the small scale parameters are calculated as presented in 

Section 5.6.  The crushable material is then parameterized by impacting a rigid structure and 

fitting (3.58) to the measured the displacement.  The small scale boulders are then either cast 

from concrete or cut from existing granite boulder to the dimensions found through the 

application of the scaling laws.  They are also weighed to determine the mass density of the 
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boulder.  Lastly, the in-situ soil properties are measured after the boulder has been installed and 

the soil compacted. 

The equivalent mass of the impacting small scale vehicle is found by comparing the 

equations of motion of the vehicle in Chapter 3 to the equation of motion for a rigid-arm 

pendulum with a spring and damper attached to the end, as shown in Figure 6-13.  The variables 

in Figure 6-13 are the mass moment of inertia of the impact beam and mounting hardware about 

the pivot point,   , the radial distance from the center of mass of the impact beam and mounting 

hardware to the pivot,   , the angle of the impact beam measured from equilibrium,   , the 

inertial mass,   , and the length of the impact beam,   .  For illustrative and simplification 

purposes it is assumed that the spring and damper constants for both the vehicle and pendulum 

are the same. 

 

Figure 6-13. Rigid-arm pendulum with equivalent Maxwell model attached to the impact point 

The governing equation of motion for the pendulum is 
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    ̈     
                (6.2) 

where  ̈  is the angular acceleration of the pendulum.  Since the pendulum only has one degree-

of-freedom, the linear acceleration of the impact point,  ̈  , of the pendulum is found using 

  ̈   ̈      (  )   ̇      (  )  (6.3) 

where  ̇ is the angular velocity of the pendulum.  Applying the small angle theorem to (6.3) 

results in  

  ̈   ̈     ̇       (6.4) 

As observed in the parameterization of the crush material, the angular acceleration during 

impact can easily reach values as high as 90 rad/s
2
, whereas the maximum angular velocity of the 

impact beam is 3 rad/s.  The angular velocity component of (6.4) may be neglected since the 

squared maximum angular velocity of the pendulum is an order of magnitude less than the 

angular acceleration of the pendulum and    goes to zero at equilibrium.  Thus, for small angle 

changes about the equilibrium position, the linear acceleration of the impact point is expressed as 

  ̈   ̈     (6.5) 

Additionally, the moment as a result of gravity acting on the pendulum in (6.2) is also neglected 

near equilibrium since it is expected to be orders of magnitudes less than the moment due to 

impact and    approaches zero.  Solving (6.5) in terms of the angular acceleration of the 

pendulum, substituting the results into (6.2), and dividing through by    yields 
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 ̈ 

  
     

  
(6.6) 

Equating (3.17) and (6.6) and solving for the mass of the vehicle results in  

 
   

  

  
   

(6.7) 

Equation (6.7), therefore, represents the equivalent mass of the small scale impact vehicle 

about the equilibrium position when using a rigid-arm pendulum.  The equivalent mass of the 

small scale impact vehicle was calculated to be 8 kg when using the parameters listed in Table 6–

5.  The remaining small scale parameters are found following the methodology presented in 

Section 5.6 when using an 8 kg vehicle.  Table 6–6  presents the small scale parameters which are 

typically not varied between small scale crash tests as related to a full scale M30 rated impact.  

The small scale parameters such as the boulder dimensions and embedment properties are found 

based on test specific full scale parameters.   

Table 6–6. Constant small scale parameters associated with a M30 rated full scale crash test 

   
         

           

                
           

   
               

 

The two small scale parameters which are not as easily determined or measured are the 

equivalent spring and damping constants for the vehicle.  A series of dynamic crush tests were 

performed on several materials, and it was determined that two empty aluminum drinking cans 

wrapped in Nashua® 300 Series heavy duty duct tape most appropriately represent the equivalent 

spring and damper values in Table 6–6.   Figure 6-14 illustrates the typical method for preparing 
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the cans.  The top of can-A is removed and a slit is made from the base of can-A to the open end.  

Can-B, which remains unaltered, is slid into can-A until it is seated snuggly at the bottom of can-

A.  The two cans are then wrapped in duct tape starting from the base of the cans such that there 

is approximately 1.5 cm of exposed tapes between wraps.  The cans are only wrapped once, from 

bottom to top.  Figure 6-15 shows the typical 1.5 cm spacing of the tape wrappings. 

   

  

 

 

 

 

Figure 6-14. Procedure for preparing crush material in 8kg small scale crash tests 
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Figure 6-15. Typical spacing for duct tape wrappings 

The amount of tape was determined by varying the number of wrappings in the rigid-

wall, dynamic crush tests.  It was determined that a spacing of 1.5 cm, referred to as “lightly 

taped,” most closely resembles the desired spring and damper values.  The dynamic crush tests 

are performed by attaching the crush material the end of the impact beam, raising the impact 

beam to an initial angular displacement, and allowing the impact beam to swing into a rigid wall 

or immovable object.  When performing a small scale crash test, the cans are attached such that 

the open end was placed up against the impact beam.  The equivalent spring and damper values 

are then calculated as presented in [2].  A typical high-speed image sequence of the dynamic 

crush test is shown in Figure 6-16.   
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Figure 6-16. High-speed image sequence of dynamic crush test 

 

The equivalent spring and damper values for the average of the dynamic crush tests of the 

small scale material was calculated to be 35.9 kN/m and 0.538 kN-s/m, respectively.  The 

detailed results and test specific photographs of the crush tests are provided in Appendix C. 

6.4 Summary of small scale boulder tests 

Two small scale crash tests were performed on dimensionally similar boulders to those 

found in BST-1 and BST-2.  Small-Scale-Boulder-Soil-Test-1 (SSBST-1) was created to be in 

full similitude with BST-1 in which the boulder was completely flipped out of the soil by the 

impact vehicle.  Small-Scale-Boulder-Soil-Test-2, 3, 4, and 5 (SSBST-2, 3, 4, 5) were created to 

be in full similitude with BST-2 in there were small boulder displacements.  The in-situ soil 

measurement properties are provided in Appendix B. 
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6.4.1 Summary of small scale crash test SSBST-1 

The small scale parameters in SSBST-1 which provide a dimensionally similar crash test 

as BST-1 were calculated as presented in Section 5.6 when using the full scale parameters listed 

in Table 4–1.  Table 6–7 shows the desired small scale parameters and the measured small scale 

parameters for SSBST-1. 

Table 6–7. Desired and measured governing parameters for SSBST-1 

Parameter Desired Measured 

   
           

   
                   

                       

                       

      
                             

   
                         

                     

                     

                    

                    

                    

   
                     

   
                           

 

The small scale American Black Granite boulder, SSABG-01, was cut from ABG-01.  

The pre-test condition of the boulder is shown in Figure 6-17. 
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Figure 6-17. Pre-test condition of SSABG-01 in SSBST-1 

The orientation of the installed crush material, the centerline of the impact beam relative 

to the critical impact point, and the eccentricity of the crush material with respect to the boulder 

are shown in Figure 6-18. 

   

 

 

 

Figure 6-18. Pre-test conditions of the impact beam and crush material in SSBST-1 
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Figure 6-19 shows the side-view still images extracted from the high-speed video in a 

chronological sequence of the impact. 

   

 

   

 

   

 

Figure 6-19. High-speed image sequence of SSBST-1 

It should be noted that unlike in full scale testing, the pendulum was not able to swing 

over the boulder due to the base of the rigid arm wedging against the small scale boulder.  Figure 

6-20 shows the linear displacement of the center of mass of SSABG-01 from the point of impact, 
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and Figure 6-21 shows the angle of rotation of SSABG-01 from the point of impact.  The linear 

displacement of the impact beam as tracked using the forward fiducial is shown in Figure 6-22.   

 

Figure 6-20. Measured linear displacement of the center of mass of SSABG-01 in SSBST-1 
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Figure 6-21. Measured angle of rotation of SSABG-01 in SSBST-1 

 

Figure 6-22. Measured linear displacement of the impact beam in SSBST-1 
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Photographs of the post-test condition of the impact beam are shown in Figure 6-23, and 

Figure 6-24 shows the post-test condition of SSABG-01 in SSBST-1. 

 

 

Figure 6-23. Post-test impact beam condition in SSBST-1 

 

   

   

   

Figure 6-24. Post-test condition of SSABG-01 in SSBST-1 
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6.4.2 Summary of small scale crash test SSBST-2, 3, 4, and 5 

The small scale parameters in SSBST-2, 3, 4, and 5 which provide a dimensionally 

similar crash test as BST-2 were calculated as presented in Section 5.6 when using the full scale 

parameters listed in Table 4–2.  Table 6–8 shows the desired small scale parameters and the 

measured governing and corresponding dimensionless parameters for SSBST-2, 3, 4, and 5, 

respectively. 

Table 6–8. Desired and measured governing parameters for SSBST-2, 3, 4, and5 

 Desired SSBST-2 SSBST-3 SSBST-4 SSBST-5 
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Concrete was used to create the small scale Rockville White Granite boulder since the 

measured density of the granite was similar to typical mass densities for concrete.   The small 

scale Rockville White boulder is referenced as SSRWC-01 since it was cast from concrete.  

SSRWC-01was cast from high strength Quikrete® and #4 rebar such that the overall dimensions 

were measured to be 0.1746 m-L x 0.1778 m-W x 0.3556 m-H with respect to the impact 

direction.  The concrete was mixed as directed and allowed to cure for one week in an 

environmental chamber before performing any crash tests.  Figure 6-25 shows the creation 

process of SSRWC-01.    

   

   

Figure 6-25. Creation of SSRWC-01 (largest center boulder) 

After curing, the mass of SSRWC-01 was measured to be 26.25 kg which corresponds to 

a density of 2,379 kg/m
3
.  The installation of SSRWC-01 in SSBST-2 is shown in Figure 6-26, 

and the pre-test condition of the boulder is shown in Figure 6-27.  The installation process for 

SSBST-3, 4, and 5 was carried out in the manner as SSBST-2. 
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Figure 6-26. Installation of RWG-01 in SSBST-2 

 

   

   

Figure 6-27. Pre-test condition of SSRWC-01 in SSBST-2 (letter sized paper for size reference) 

The orientation of the installed crush material, the centerline of the impact beam relative 

to the critical impact point, and the eccentricity of the crush material with respect to the boulder 

for SSBST-2 is shown in Figure 6-28.  The crush material and orientation for SSBST-3, 4, and 5 

were prepared in the manner as SSBST-2. 
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Figure 6-28. Pre-test conditions of the impact beam and crush material in SSBST-2 

 

Figure 6-29 shows the side-view still images extracted from the high-speed video in a 

chronological sequence of the impact from SSBST-2. 

   

   

   

Figure 6-29. High-speed image sequence of SSBST-2 
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Figure 6-30 shows the linear displacement of the center of mass of SSRWC-01 from the 

point of impact, and Figure 6-31 shows the angle of rotation of SSRWC-01 from the point of 

impact.  The linear displacement of the impact beam as tracked using the forward fiducial is 

shown in Figure 6-32.   

 

Figure 6-30. Linear displacement of the center of mass of SSRWC-01in SSBST-2, 3, 4, and 5 
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Figure 6-31. Angle of rotation of SSRWC-01 in SSBST-2, 3, 4, and 5 

 

Figure 6-32. Linear displacement of the impact beam in SSBST-2, 3, 4, and 5 
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Photographs of the post-test condition of the impact beam from SSBST-2 are shown in 

Figure 6-33, and Figure 6-34 shows the post-test condition of SSRWC-01 from SSBST-2.  The 

post-test conditions for SSBST-3, 4, and 5 were typical of SSBST-2.  The post-test conditions for 

SSBST-3, 4, and 5 were typical as those seen in SSBST-2. 

  

 

Figure 6-33. Post-test impact beam condition in SSBST-2 

   

   

   

Figure 6-34. Post-test condition of  SSRWC-01 in SSBST-2 
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6.5 Comparison of small scale simulations to small scale crash test results 

Similar to the full scale simulations, the results from the small scale crash tests can be 

directly compared to the simulated results by either using the dimensionless state-space equations 

of motion presented in Chapter 5 or the low-order model presented in Chapter 3.   

6.5.1 Comparison of small scale simulation of SSBST-1 to small scale crash test results 

Figure 6-35, Figure 6-36, and Figure 6-37 show the comparison of the measured crash 

test results from SSBST-1 to the simulated low-order results using the measured parameters listed 

in Table 6–7.   Figure 6-35 shows the comparison of the measured and simulated small scale 

linear displacement of the center of mass of the boulder, Figure 6-36 shows the comparison of the 

measured and simulated small scale angle of rotation of the boulder, and Figure 6-37 shows the 

comparison of the measured and simulated small scale linear displacement of the impact vehicle.  
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Figure 6-35. Comparison of the measured displacement of the center of mass of SSABG-01 in 

SSBST-1 to the simulated displacement from the low-order model 

 

Figure 6-36. Comparison of the measured angle of rotation of SSABG-01 in SSBST-1 to the 

simulated angle of rotation from the low-order model 
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Figure 6-37. Comparison of the measured displacement of the vehicle in SSBST-1 to the 

simulated displacement from the low-order model 

As seen in the comparison of full scale simulations and experiments, the model loses accuracy 

after approximately 20° of boulder rotation.  This is expected because of the small-angle 

assumptions used to create the model. 

6.5.2 Comparison of small scale simulation of SSBST-2, 3, 4, and 5 to small scale crash test 

results 

Figure 6-38, Figure 6-39, and Figure 6-40 show the comparison of the measured crash 

test results from SSBST-2, 3, 4, and 5 to the simulated, small scale low-order results using the 

measured parameters listed in Table 6–8.   Figure 6-38 shows the comparison of the linear 

displacement of the center of mass of the boulder, Figure 6-39 shows the comparison of the angle 

of rotation of the boulder, and Figure 6-40 shows the comparison of the linear displacement of the 

impact vehicle. 
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Figure 6-38. Comparison of the small scale measured and simulated displacement of the center of 

mass of SSRWC-01 in SSBST-2, 3, 4, and 5 

 

Figure 6-39. Comparison of the small scale measured and simulated angle of rotation of SSRWC-

01 in SSBST-2, 3, 4, and 5  
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Figure 6-40. Comparison of the small scale measured and simulated displacement of the vehicle 

in SSBST-2, 3, 4, and 5 

6.6 Comparison of dynamically similar small scale crash test results to full 

scale crash test results 

This section shows the comparison of the small scale crash test results to the 

corresponding dimensionally similar, full scale crash test results presented in Chapter 4.  The 

small scale tests will match the full scale tests better when the two experiments are in full 

similitude or are scaled similar.  Table 6–9 shows the comparison of the governing dimensionless 

  parameters between BST-1 and SSBST-1, and Table 6–10 shows the comparison of the 

governing dimensionless   parameters between BST-2 and SSBST-2, 3, 4, and 5. 
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Table 6–9. Comparison of governing dimensionless parameters of SSBST-1to BST-1 

Governing dimensionless   parameter  BST-1 SSBST-1 
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Table 6–10. Comparison of governing dimensionless parameters of SSBST-2, 3, 4, 5 to BST-2 

Governing Dimensionless   

parameter 

BST-2 SSBST-2 SSBST-3 SSBST-4 SSBST-5 

   
      

     

      

     

      

     

      

     

      

     

      
                                   

   
                              

                                  

                                  

                                   

                                   

                                   

   
                                     

                                 

 

It is expected that the small scale tests results will show good agreement with the full scale results 

since all of the dimensionless   groupings are similar. 

 Similar to the comparison between dynamically similar simulations, the small scale crash 

tests can be compared to various sized crash tests either by scaling the results up to match the full 

scale parameters, scaling the full scale results down to the match the small scale parameters, or 

transforming both small and full scale results into the dimensionless form.   
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6.6.1 Comparisons of scaled up SSBST-1 to BST-1 in full scale time 

Figure 6-41 shows the comparison of the impact sequence from the high-speed videos for 

SSBST-1 and BST-1.  It should be noted that the time dimension of the small scale test was 

scaled up to the full scale size when comparing the high-speed image sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-41. Comparison of high-speed image sequences from SSBST-1 and BST-1 

Figure 6-42, Figure 6-43, and Figure 6-44 show the comparison of the scaled-up crash 

test results from SSBST-1 to the measured crash test results from BST-1.   Figure 6-42 shows the 
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comparison of the linear displacement of the center of mass of the boulder, Figure 6-43 shows the 

comparison of the angle of rotation of the boulder, and Figure 6-44 shows the comparison of the 

linear displacement of the impact vehicle. 

 

Figure 6-42. Comparison of the small and full scale measured displacement of the center of mass 

of SSABG-01 in SSBST-1 to ABG-01 in BST-1  
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Figure 6-43. Comparison of the small and full scale measured angle of rotation of SSABG-01 in 

SSBST-1 to ABG-01 in BST-1 

 

Figure 6-44. Comparison of the small and full scale measured displacement of the vehicle in 

SSBST-1 and BST-1 
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It should be noted that the variation in dynamics of the small scale pendulum are more 

pronounced after 20° of boulder rotation has occurred.  The velocity of a full scale vehicle will 

remain mostly in the horizontal direction even after the boulder has begun to rotate out of the soil, 

whereas the pendulum will rotate higher as more energy is being converted back into potential 

form.  

6.6.2 Comparisons of scaled up SSBST-2, 3, 4, and 5 to BST-2 in full scale time 

Figure 6-45 shows the comparison of the impact sequence from the high-speed videos for 

SSBST-2 and BST-2.  The high-speed comparison for SSBST-3, 4, and 5 were typical of the 

results seen in Figure 6-45.  Again, it should be noted that the time dimension of the small scale 

test was scaled up to the full scale size when comparing the high-speed image sequence. 
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Figure 6-45. Comparison of high-speed image sequences from SSBST-2 and BST-2 

Figure 6-46, Figure 6-47, and Figure 6-48 show the comparison of the small and full 

scale measured crash test results from SSBST-2, 3, 4, and 5 and BST-2.   Figure 6-46 shows the 

comparison of the linear displacement of the center of mass of the boulder, Figure 6-47 shows the 

comparison of the angle of rotation of the boulder, and Figure 6-48 shows the comparison of the 

linear displacement of the impact vehicle. 
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Figure 6-46. Comparison of the small and full scale measured displacement of the center of mass 

of SSRWC-01 in SSBST-2, 3, 4, and 5 to RWG-01 in BST-2 

 

Figure 6-47. Comparison of the small and full scale measured angle of rotation of SSRWC-01 in 

SSBST-2, 3, 4, and 5 to RWG-01 in BST-2 



199 

 

 

Figure 6-48. Comparison of the small and full scale measured displacement of the vehicle in 

SSBST-2, 3, 4, and 5 and BST-2 

6.7 Contributions of this chapter 

The contributions of this chapter are as follows: 

(1) Validate dimensionless equations of motion and scaling laws using scaled similar 

simulations 

(2) Present the test equipment and procedure associated with small scale crash tests 

(3) Present the methodology for measuring and parameterizing the small scale test setup 

(4) Present a summary of the small scale crash tests and crash test results 

(5) Compare the small scale crash test results to the low-order model results 

(6) Compare the small scale crash test results to the full scale crash test results 
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CHAPTER 7  
 

INTERPRETATION OF MODEL RESULTS AS PASS/FAIL 

BOUNDARIES IN THE DESIGN SPACE 

Previous chapters showed that both the simulations and scale experiments are able to 

predict motion of an impacted boulder quite well.  The intent of this chapter is to present the 

results from the low-order model simulations as pass/fail boundaries which can be quickly read 

and interpreted.  The pass/fail boundaries are based solely on variations in boulder geometries 

and not the soil conditions.  The boundaries are represented as 2-D contour plots which span 

various boulder lengths, widths for a given height.  As stated in Chapter 4, the low-order model 

begins to lose fidelity when the boulder rotates beyond 20° measured from vertical.  Therefore, a 

pass/fail boundary is imposed on the model results at a boulder rotation of 20°.  Additionally, a 

pass/fail boundary is enforced on boulders that are expected to fracture as predicted using the 

methodology presented in Chapter 3.  Lastly, the mass of the boulder is limited to a maximum 

value.  

This chapter is organized as follows:  

The methods for creating and interpreting the pass/fail boundaries are presented in 

Section 7.1.  The pass/fail boundaries for a maximum boulder mass and omnidirectional predicted 

fracture are presented in Section 7.2 and Section 7.3, respectively.  The pass/fail boundaries 

associated with an angular rotation beyond 20° is presented in Section 7.4.  The pass/fail contours 

for a single impact direction are presented in Section 7.5 as a combination of the aforementioned 

pass/fail boundaries.  Lastly, the pass/fail contour plots are presented for omnidirectional impacts 

in Section 7.6. 
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7.1 Creation of 2-D contour plots for typical, full scale, governing crash test 

parameters 

The 2-D contour plots are created by iterating the low-order model simulation for various 

boulder geometries and recording the simulated output.  Table 7–1 shows the nominal set of 

governing parameters which are not varied between simulation iterations.  The effect of variations 

in other model parameters is beyond the scope of this work. 

Table 7–1. Nominal parameters used in generating pass/fail contour plots 

                                            

                                      

                                

 

The boulder geometries were varied from 0.5 m to 2 m with respect to length and width.  

The lengths and widths were divided into 100 evenly spaced elements, and the heights of the 

boulders were varied from 1.5 m to 4 m in increments of 0.5 m.  The embedment depth for each 

boulder was such that 1 m of the boulder protruded above the surface of the soil.  For example, a 

3 m-H boulder is assumed to have a 2 m embedment depth.  The results of the simulations are 

stored in a matrix format which is then easily represented on 2-D contour plots using 

MATLAB®.  The pass/fail contour plots are presented simply as a black fail zone and a gray pass 

zone, similar to the fracture contour plot presented in Section 4.6. 

7.2 Application of pass/fail boundaries associated with the mass of various 

sized boulders 

The most straightforward pass/fail boundary is imposing a limiting maximum mass of a 

boulder.  It should be obvious that extremely large boulders will not rotate beyond the 20° limit.  
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It becomes unreasonable, however, to analyze boulders of excessive size from both a 

computational and experimental standpoint.  Experimental limitations are partially due to full 

scale test setups and apparatus.  Particularly, the mass of a boulder should be constrained to 

adhere to viable installation processes and associated installation equipment.   

Assuming the desired test boulder is not at the same location as where it will be installed, 

the largest allowable mass is assumed to be related to the maximum gross vehicular weight 

allowed on a road as this will limit the boulder mass according to shipping restrictions.    The 

maximum gross vehicular weight on a United States highway is limited to 80,000 lbs. [29].  

Gross vehicular weights may be permitted above 80,000 lbs., but overweight fees must be 

applied.  The 80,000 lbs. (36,287 kg) GVWR is used to determine upper bounds for boulder sizes.  

It is assumed that towing vehicle and trailer weight approximately 34,000 lbs. (15,422 kg) [30], 

which imposes a maximum boulder mass of approximately 46,000 lbs. (20,865 kg).  Figure 7-1 – 

Figure 7-6 shows the pass/fail contour plots with respect to a maximum boulder mass.  
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Figure 7-1. Maximum mass 

pass/fail contour plot for 

boulders of 1.5 m - H 

 

Figure 7-2. Maximum mass 

pass/fail contour plot for 

boulders of 2 m - H 

 

Figure 7-3. Maximum mass 

pass/fail contour plot for 

boulders of 2.5 m - H 

 

Figure 7-4. Maximum mass 

pass/fail contour plot for 

boulders of 3 m - H 

 

Figure 7-5. Maximum mass 

pass/fail contour plot for 

boulders of 3.5 m - H 

 

Figure 7-6. Maximum mass 

pass/fail contour plot for 

boulders of 4 m - H 
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7.3 Application of pass/fail boundaries associated with static fracture 

predictions for boulders 

The application of fracture pass/fail conditions simply cuts off all boulder geometries 

below the pass/fail contours plots presented in Section 4.6.  The pass/fail contour is applied for 

impact conditions with respect to both the length and the width of the boulder.  Doing so better 

ensures that the selected boulder will not fracture regardless of impact direction.  Figure 7-7  

shows the pass/fail contour plot for an omnidirectional impact.  It should be noted that there is 

only one fracture contour plot since the simulation always assumes that 1 m of the boulder is 

protruding above the surface of the soil. 

 

Figure 7-7. Predicted fracture contour plot for omnidirectional impact of rigidly fixed boulders 

It should be noted that Figure 7-7 is similar in appearance to Figure 4-68, since it is a transposed 

overlay of Figure 4-68.  It should also be noted that the factors of safety are not shown because of 

the omnidirectional loading. 
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7.4 Application of pass/fail boundaries associated with maximum angular 

rotation of the boulder in a full scale crash test 

The maximum angular rotation contour plots formed by imposing a maximum angular 

rotation of 20° is, which results in Figure 7-8 – Figure 7-13. 

 

Figure 7-8. Angular pass/fail 

contour plot for 1.5 m – H 

 

Figure 7-9. Angular pass/fail 

contour plot for 2 m - H 

 

Figure 7-10. Angular pass/fail 

contour plot for 2.5 m - H 

 

Figure 7-11. Angular pass/fail 

contour plot for  3 m - H 

 

Figure 7-12. Angular pass/fail 

contour plot for 3.5 m - H 

 

Figure 7-13. Angular pass/fail 

contour plot for 4 m - H 
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7.5 Combined Pass/fail contour plots with respect to design criteria in a single 

direction 

The 2-D design contour plots for boulders impacted in a single direction with respect to a 

typical M30 rated impact are created by overlaying the individual contour plots in Sections 7.2 – 

7.4 such that a single fail zone will cause that geometry to be a failure on all of the contour plots.  

Another way to envision this process is to send all of the pass/fail contour plots through a logical 

AND gate.  The only remaining pass zones are those that demonstrate pass criteria across all 

contour plots.  Figure 7-14 – Figure 7-19 show the final pass/fail design contour plots for various 

sized boulders.   

 

Figure 7-14. Final pass/fail design contour plot for boulders of 1.5 m - H 
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Figure 7-15. Final pass/fail design contour plot for boulders of 2 m - H 

 

Figure 7-16. Final pass/fail design contour plot for boulders of 2.5 m - H 
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Figure 7-17. Final pass/fail design contour plot for boulders of 3 m - H 

 

Figure 7-18. Final pass/fail design contour plot for boulders of 3.5 m - H 
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Figure 7-19. Final pass/fail design contour plot for boulders of 4 m - H 

7.6 Combined pass/fail contour plots for design criteria for omnidirectional 

impacts 

Figure 7-20 – Figure 7-25 show the pass/fail design contour plots for various sized 

boulders for omnidirectional impact.  Similar to the fracture contour plot, the pass/fail contour for 

the angular rotation is applied for impact conditions with respect to both the length and the width 

of the boulder.  Doing so better ensures that the selected boulder will not exceed the maximum 

angular rotation regardless of impact direction.  It should be noted that the angular displacements 

are not shown on the contour plot since the correlation is not one to one. 
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Figure 7-20. Omnidirectional 

pass/fail design contour plot 

for boulders of 1.5 m - H 

 

Figure 7-21. Omnidirectional 

pass/fail design contour plot 

for boulders of 2 m - H 

 

Figure 7-22. Omnidirectional 

pass/fail design contour plot 

for boulders of 2.5 m - H 

 

Figure 7-23. Omnidirectional 

pass/fail design contour plot 

for boulders of 3 m - H 

 

Figure 7-24. Omnidirectional 

pass/fail design contour plot 

for boulders of 3.5 m - H 

 

Figure 7-25. Omnidirectional 

pass/fail design contour plot 

for boulders of 4 m - H 

7.7 Contributions of this chapter 

The contributions of this chapter are as follows: 

(1) Create 2-D contour plots for representing simulation results of various sized boulders 
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(2) Create pass/fail contours for maximum boulder mass constraints 

(3) Create pass/fail contours fracture constraints 

(4) Create pass/fail contours boulder motion constraints 

(5) Combine the pass/fail contours into a single design tool for selecting boulder geometries 

(6) Present omnidirectional impact pass/fail contours 
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CHAPTER 8  
 

APPLICATION OF THE LOW-ORDER MODEL AND DIMENSIONAL 

ANALYSIS 

Until this point, the low-order model and small scale crash tests were performed with the 

goal of model and scaling verification.  The intent of this chapter is to present the use of the low-

order model and small scale crash tests as a tool used in the design a boulder based on specific 

dynamic requirements.  The design of a potential minimized-mass boulder which exhibits 20° or 

less of rotation in a M30 rated omnidirectional impact is presented.  The design methodology and 

verification process is presented in chronological stages.  First, boulder geometry is selected from 

the 2-D design contour plots in Chapter 7, and a small scale version of the boulder is created and 

tested as presented in Chapter 6.  Following small scale testing, medium scale testing is 

performed along with other higher-order simulation models such as LS-DYNA™.  Lastly, a full 

scale experiment is performed to verify the design concept.   

At this time, only pass/fail boundaries, small scale testing, and higher-order simulations 

have been created or performed with respect to the potential minimum-mass boulder.  Medium 

scale testing and the full scale experiment are currently in process.   

This chapter is organized as follows:  

The selection process of the boulder geometries for a potential minimum-mass boulder is 

presented in Section 8.1, and the small scale testing of the potential minimum-mass boulder is 

presented in Section 8.2.  The comparison of the low-order model, LS-DYNA™ finite element 

simulation, and small scale testing is presented in Section 8.3.   
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8.1 Selection of geometries for a potential minimum-mass boulder 

The dimensions of the potential minimum-mass boulder are chosen from the 2-D design 

contours, Figure 7-20 – Figure 7-25, such that the selected boulder is within the pass zone while 

potentially achieving a minimum mass.  Upon inspection of the 2-D design contours, it can 

quickly be concluded that no boulder of 1.5, 2, and 2 m– H will meet the design requirements.  

Similarly the 4 m – H boulders do not meet the minimum mass requirements.  For conceptual 

purposes, the 3 m – H contour plot is chosen for boulder selection.  After closer inspection using 

the low-order model, the corresponding dimensions for the minimum-mass boulder from Figure 

7-23 are 1.1 m-L x 1.1 m-W x 3 m-H, and the calculated mass is 11,100 kg when using the 

density of American Black Granite.  The corresponding location of the minimum mass boulder in 

Figure 7-23 is shown in Figure 8-1. 

 

Figure 8-1. Potential minimum-mass boulder for height of 3 m 

Table 8–1 shows the corresponding full scale properties for the potential minimum-mass boulder. 
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Table 8–1. Desired parameters for the full scale minimum-mass boulder 

                                     

                              

                             

                     

8.2 Small scale testing and results 

The small scale parameters in SSMMBST-1 were calculated as presented in Section 5.6 

when using the full scale parameter listed in Table 8–1.  Table 8–2 shows the desired small scale 

parameters and the measured small scale parameters for SSBST-1.  The small scale dimensionally 

similar boulder was created from American Black granite, and was impacted using the small scale 

Crash Safety Research pendulum presented in Chapter 5.   
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Table 8–2. Desired and measured governing parameters for SSMMBST-1 

Parameter Desired Measured 

   
           

   
                   

                       

                        

      
                          

   
                         

                     

                     

                    

                 

                    

   
                     

   
                           

 

The small scale minimum-mass boulder test is referred to as SSMMBST-1.  The small 

scale, minimum-mass American Black Granite boulder, SSMMABG-01, was cut from ABG-01 

The installation of SSMMABG -01 is shown in Figure 8-2, and the pre-test condition of the 

boulder is shown in Figure 8-3. 
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Figure 8-2. Installation of SSMMABG-01 in SSMMBST-1 
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Figure 8-3. Pre-test condition of SSMMABG-01 in SSMMBST-1 

 

The orientation of the installed crush material, the centerline of the impact beam relative 

to the critical impact point, and the eccentricity of the crush material with respect to the boulder 

are shown in Figure 8-4. 

   
   

Figure 8-4. Pre-test conditions of the impact beam and crush material in SSMMBST-1 

  Figure 8-5 shows the side-view still images extracted from the high-speed video in a 

chronological sequence of the impact. 
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Figure 8-5. High-speed image sequence of SSMMBST-1 

Figure 8-6 shows the linear displacement of the center of mass of SSMMABG-01 from 

the point of impact, and Figure 8-7 shows the angle of rotation of SSMMABG-01 from the point 
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of impact.  The linear displacement of the impact beam as tracked using the forward fiducial is 

shown in Figure 8-8.   

 

Figure 8-6. Measured displacement of the center of mass of SSMMABG-01 in SSMMBST-1 

 

Figure 8-7. Measured angle of rotation of SSMMABG-01 in SSMMBST-1 
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Figure 8-8. Measured linear displacement of the impact beam in SSMMBST-1 

Photographs of the post-test condition of the impact beam are shown in Figure 8-9, and 

Figure 8-10 shows the post-test condition of SSMMABG-01 in SSMMBST-1. 

 

 

Figure 8-9. Post-test impact beam condition in SSMMBST-1 
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Figure 8-10. Post-test condition of SSMMABG-01 in SSMMBST-1 

8.3 Comparison of scaled up small scale crash test results to full scale low-

order and full scale LS-DYNA™ simulations for potential minimum-mass 

boulder 

A LS-DYNA™ finite element simulation was performed by LTI personnel after the low-

order model and small scale testing confirmed the dynamics of the potential minimum-mass 

boulder.  Figure 8-11 shows the impact sequence and subsequent boulder and vehicle 

displacements of the LS-DYNA™ finite element simulation. 
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Figure 8-11. Finite Element LS-DYNA™ simulation of an M30 impact upon the full scale 

minimum-mass boulder 
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As presented in Chapter 6, the results from the small scale testing can be scaled up to the 

full scale dimensions though the use of the scaling laws presented in Chapter 5.  Figure 8-12 

shows the comparison of the impact sequence from the high-speed videos for SSMMBST-1 and 

the full scale LS-DYNA™ simulation.  It should be noted that the time dimension of the small 

scale test was scaled up to the full scale size when comparing the high-speed image sequence.  

  

  

  

Figure 8-12. Comparison of high-speed image sequences from SSMMBST-1 and LS-DYNA™ 
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Figure 8-13, Figure 8-14, and Figure 8-15 show the comparison of the scaled up crash 

test results from SSMMBST-1 to the equivalent full scale simulated low-order and LS-DYNA™ 

results using the parameters listed in Table 8–1.  Figure 8-13 shows the comparison of the linear 

displacement of the center of mass of the boulder, Figure 8-14 shows the comparison of the angle 

of rotation of the boulder, and Figure 8-15  shows the comparison of the linear displacement of 

the impact vehicle. 

 

Figure 8-13. Comparison of the scaled up linear displacement of the center of mass of 

SSMMABG-01 in SSMMBST-1 to the full scale, low-order simulation and LS-DYNA™  

simulation 
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Figure 8-14. Comparison of the scaled up angular displacement of SSMMABG-01 in 

SSMMBST-1 to the full scale, low-order simulation and LS-DYNA™ simulation 

 

Figure 8-15. Comparison of the scaled up vehicle displacement in SSMMBST-1 to the full scale, 

low-order simulation and LS-DYNA™ simulation 
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Figure 8-16, Figure 8-17, and Figure 8-18 show the comparison of the crash test results 

from SSMMBST-1 to the small scale simulated low-order model results using the measured 

parameters listed in Table 8–2.  Figure 8-16 shows the comparison of the linear displacement of 

the center of mass of the boulder, Figure 8-17 shows the comparison of the angle of rotation of 

the boulder, and Figure 8-18 shows the comparison of the linear displacement of the impact 

vehicle. 

 

Figure 8-16. Comparison of the linear displacement of the center of mass of SSMMABG-01 in 

SSMMBST-1 to the small scale, low-order simulation using Table 8–2 measured parameters 
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Figure 8-17. Comparison of the angular displacement of SSMMABG-01 in SSMMBST-1 to the 

small scale, low-order simulation using Table 8–2 measured parameters 

 

Figure 8-18. Comparison of the vehicle displacement in SSMMBST-1 to the small scale, low-

order simulation using Table 8–2 measured parameters 
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Further tests and simulations have not been performed at this time, but based on the small 

scale results, it is expected that a medium scale and full scale crash test will confirm the boulder 

geometries for a 20° rotation.  Preparations are currently underway for conducting medium scale 

crash testing, and full scale crash test preparations are being made to acquire the full scale 

minimum-mass boulder. 

8.4 Contributions of this chapter 

The contributions of this chapter are as follows: 

(1) Select the geometries for a minimum-mass boulder which is predicted to rotate 20° 

(2) Perform small scale crash tests to confirm boulder dynamics 

(3) Compare small scale crash test results to low-order simulations and LS-DYNA™ 

simulations 

(4) Propose the methodology for final verification of the minimum-mass boulder 
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CHAPTER 9  
 

CONCLUSIONS AND FUTURE WORK 

The intent of this chapter is to discuss the validation of the low-order model and small 

scale testing presented in this thesis.  Additionally, future work related to the scope of this thesis 

is proposed which can be used to improve not only the analysis and modeling, but also the 

methodology for performing small scale crash tests.  The conclusions of this thesis are presented 

in Section 9.1, and the proposed future work is presented in Section 9.2. 

9.1 Conclusions 

The literature relevant to the topics presented in this thesis was reviewed in Chapter 2.  

Existing higher and lower-order models for laterally loaded piles were reviewed, and it was 

determined that use of such existing models did not accurately account for the dynamics observed 

in a full scale crash test.  It was further determined that the existing soil modeling techniques 

could be combined with the dynamics of a vehicle impacts to create a low-order model for 

vehicle impacts upon soil-fixed boulders. 

A low-order model for vehicle impact upon soil-fixed boulders was presented in Chapter 

3.  The low-order model is based on three degrees of freedom, the linear translation of the boulder 

and vehicle and the angular rotation of the boulder.  Unlike the models reviewed in literature, the 

low-order model does not couple the linear translation of the boulder with the angular 

displacement of the boulder.  The soil was modeled using a system of lumped-parameter Kelvin 

models of which the equivalent soil mass was attached to the boulder.  The vehicle was modeled 

as a lumped-parameter Maxwell model.  The governing equations of motion were derived based 

on the force-moment analysis of the free body diagrams for the vehicle and boulder-soil 
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subsystem.  Fracture prediction methods for the boulders were presented based on the assumed 

peak force in a M30 rated impact.  Additionally, in-situ and experimental methods were presented 

for determining the lumped-parameter values of the soil and vehicle. 

In Chapter 4, the low-order model was simulated using MATLAB® ODE45 and the 

results were compared to past full scale crash tests.  The comparison of the full scale simulations 

to the full scale crash test results showed good agreement between the low-order model and the 

crash tests.  The low-order model accurately predicts boulder motion until approximately 20° of 

rotation has occurred.  After 20° of rotation, the model loses fidelity and becomes less accurate.  

The overall results of the simulations however, still predict the overall observed motion of the 

crash test such as the boulder flipping out of the soil.  The presented fracture prediction 

methodology was compared to two full scale crash tests in which the boulder was rigidly 

embedded in concrete footings.  The fracture prediction methodology accurately predicted that 

both boulders would indeed break.  The fracture model indicated that the boulders were close to 

the pass/fail line, yet within the failure zone.  The deceleration of the vehicle after impact 

indicates that the boulders absorbed a vast amount of the energy of the vehicle.  Thus, it can be 

inferred and that a slight increase in boulder dimensions would resist fracture.  This coincides 

with the boulders lying near the pass/fail curve in the fracture contour plot. 

Dimensional analysis was applied to the low-order model in Chapter 5, from which 

dimensionless equations of motion and scaling factors were derived.  Unlike most scaling laws 

associated with laterally loaded piles, the salient feature of the scaling factors presented in 

Chapter 5 is the ability to perform small scale crash tests in a 1G environment with equivalent 

bulk soil and boulder properties between small and full scale experiments.  The dimensionless 

equations of motion were arranged in a state-space form similar to the governing equations of 

motion for the low-order model as a precursor to simulating the dimensionless models.  
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In Chapter 6, the verification of the dimensionless equations of motion and the scaling 

laws was first made through the simulations of dimensionless models and comparison of small 

scale and full scale simulations.   Small scale experiments were then created to be dimensionally 

similar to the past full scale crash tests of vehicle impacts on soil-fixed boulders.  The small scale 

low-order model results were directly compared to the small scale crash test results, and the small 

scale crash test results were scaled up and compared to the full scale crash test results.  As 

anticipated from full scale simulations, the small scale low-order simulations show good 

agreement with the small scale tests.   The scaled results from small scale crash testing also show 

excellent agreement with the full scale crash results through approximately 20° of boulder 

rotation. 

A set of boulder design parameters for typical M30 impact conditions was presented in 

Chapter 7.  The design parameters were based solely on the variations in boulder geometries and 

were represented on 2-D design contour plots.  Additional constraints were imposed on the 

contour plots which account for predicted fracture and a limiting maximum boulder mass.  The 

design contour plots allows for extremely quick analysis of boulder dynamics based on the 

variation in boulder sizes. 

 Chapter 8 briefly presented the methodology for using the low-order model, small scale 

crash tests, and 2-D design contour plots as a boulder design tool.  The overall boulder 

dimensions were selected using the 2-D design contour plot presented in Chapter 7, and then 

small scale tests were created and performed following the methodology presented in Chapter 6.  

The low-order model results, small scale results, and full scale LS-DYNA™ finite element 

simulation results were compared and showed good agreement between all three.  Medium scale 

tests are currently being performed, and preparations are being made for full scale testing. 
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9.2 Future work 

The breadth of topics which were presented in this thesis allows for several future works 

as related to this thesis. The more obvious next immediate step in this research is to complete the 

verification process of the minimum-mass boulder through the conduction of medium scale crash 

tests followed by a full scale crash test.   

Following the verification of the minimum-mass boulder, the next step logical step would 

be to perform a parametric study of the variations in dimensionless   groupings and low-order 

variables.  The 2-D design contours presented in Chapter 7 were created by varying only 3 of the 

11 governing dimensionless   groupings.  It is anticipated that changing the soil and/or soil 

properties would result in the greatest change in output of the low-order model and small scale 

testing.  A parametric study in the variation of soil properties would allow for extremely quick in-

situ evaluations of pre-existing boulders or desired boulder geometries based on on-site 

conditions.   

Additionally, an investigation into cohesive soils would prove to be beneficial to low-

order modeling.  As seen in literature [31], the modulus of subgrade reaction for cohesive soil 

does not increase linearly with depth, but rather remains constant.  The units for the constant of 

horizontal subgrade reaction for cohesive soils take the form N/m
2
.  It is anticipated that even this 

slight variation in units may result in drastic changes of the dimensionless   groupings. 

A similar topic of interest includes a sensitivity study of the effects of partial similitude 

between crash tests and simulations.  The research performed as related to this thesis was done so 

to be as close as possible to full similitude or perfectly matching   groupings.  Obviously 

perfectly matching   groupings is not feasible, but it would be beneficial to know which   

groupings are “hard” variables which cannot be varied without large changes in output and which 
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  groupings could be considered “soft” variables which can be varied to a certain degree without 

drastic changes in output. 

Additionally, the presently-used low-order model neglects motion in the   direction.  The 

next step in modeling may be to return to the equations of motion and include the   component.  

This is much easier said than done because, unlike the lateral displacement of the boulder, the   

component of the boulder motion is more so coupled with the angular rotation of the boulder.  In 

order to better predict the motion in the   direction, the time-varying pivot point of rotation for 

the boulder must be known.  As observed in full scale testing, the location of the pivot does not 

remain constant throughout a crash test;  for small angular displacements, the pivot point is near 

the base of the boulder, whereas for large angular deflection, the pivot point moves towards the 

surface of the soil.  This concept is easily seen in the analysis of ABG01 in BST-1 since the 

boulder ended up on top of the soil surface.  It is this non-trivial aspect of rotation that has driven 

other models to using a repetitive non-linear approach to solving the equations of motion.   It is 

desirable, however, to be able to calculate the displacement of the boulder in a single calculation, 

as demonstrated in this thesis.  
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APPENDIX A 

 

DATA SHEETS FOR VEHICLES USED IN FULL SCALE CRASH TESTS 

BST-1 VEHICLE DATA SHEET 
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BST-2 VEHICLE DATA SHEET 
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BFT-1 VEHICLE DATA SHEET 
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BFT-2 VEHICLE DATA SHEET 
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APPENDIX B 

 

IN-SITU SOIL MEASUREMENTS AND MODIFIED PROCTOR TEST 

RESULTS 

MODIFIED PROCTOR TEST RESULTS 

Test number 1 2 3 4 

Mass of mold + base plate, M1 4132.8 4132.8 4132.8 4132.8 
Mass of mold + base plate + moist soil, 
M2 6047 6222 6311 6333 

Mass of moist soil, M2-M1 1914.2 2089.2 2178.2 2200.2 

Moist density 1.94514 2.122968 2.213407 2.235762 

Moisture can 1 2 3 4 

mass of moisture can, M3 33.8 35.47 34.77 21.45 

mass of can + moist soil, M4 112.1 199.4 110.3 99.2 

Mass of can + dry soil, M5 106.5 184.5 103.4 91.5 

Moisture content 7.702889 9.997987 10.05391 10.99215 

dry density of compaction 1.806024 1.930006 2.011202 2.014343 

     mold volume in^3 m^3 
   60.05309481 984.0939 
    

 
 

Figure B-1. Compaction level of the limestone dust vs. moisture content 
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DCPT RESULTS 

 

Figure B-2. DCPT results for SSBST-1 

 

 

Figure B-3. DCPT results for SSBST-2 
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Figure B-4. DCPT results for SSBST-3 

 

Figure B-5. DCPT results for SSBST-4 
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Figure B-6. DCPT results for SSBST-5 

 

Figure B-7. DCPT results for SSMMSBT-1 
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APPENDIX C 

 

SMALL SCALE RIGID WALL CRUSH TEST RESULTS 

 

The results from the parameterization of the small scale crush material are presented in 

increasing tape spacing.  The tape spacing was varied roughly between three amounts, heavily 

taped (1 cm spacing), medium taped (1.25 cm spacing), and lightly taped (1.5 cm spacing).  As 

expected, the amount of tape is directly correlated to the equivalent spring and damping values 

such that heavily taped cans generally exhibited the highest equivalent spring and damper values.  

An additional method for loosely determining the spring and damper values, or more so the 

applicability of the specific crush material, one can simply scale the measured crush test results 

and compare them to the full scale LS-DYNA™ and low-order model simulation results.  This 

method provides for an instant knowledge basis on the parameters of the material since scaled 

similar parameters will more or less match.  The traversed distance was measured using the rotary 

encoder described in 6.2.   

This appendix is organized as follows: 

The heavily taped crush test results are first presented, followed by the medium taped 

results, and then the lightly taped results.  The comparison of all three is then shown at the end of 

this appendix. 
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RESULTS OF HEAVILY TAPED (1 CM SPACING) CRUSH TESTS 

Six heavily taped crush tests were performed using the small scale crash safety research 

pendulum.  Figure C-1 – Figure C-6 show the pre-test and post-test condition of the heavily taped 

cans (HTC).  Figure C-7 and Figure C-8 show the linear displacement of the individual tests with 

the resulting average displacement and the scaled up comparison to the LS-DYNA and low-order 

simulations.  

 
 

 

Figure C-1.  HTC-1 

 

 
 

 

Figure C-2. HTC-2 
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Figure C-3. HTC-3 

 

 
 

 

Figure C-4. HTC-4 

 

 
 

 

Figure C-5. HTC-5 
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Figure C-6. HTC-6 

 

 

Figure C-7. Crush of heavily taped cans 
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Figure C-8. Comparison of heavily taped cans to full scale crush simulations 
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RESULTS OF MEDIUM TAPED (1.25CM SPACING) CRUSH TESTS 

13 medium taped crush tests were performed using the small scale crash safety research 

pendulum.  Figure C-9 – Figure C-21 show the pre-test and post-test condition of the heavily 

taped cans (MTC).  Figure C-22 and Figure C-23 show the linear displacement of the individual 

tests with the resulting average displacement and the scaled up comparison to the LS-DYNA and 

low-order simulations. 

 
 

 

Figure C-9. MTC-1 

 

 
 

 

Figure C-10. MTC-2 
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Figure C-11. MTC-3 

 

 
 

 

Figure C-12. MTC-4 

 

 
 

 

Figure C-13. MTC-5 
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Figure C-14. MTC-6 

 

 
 

 

Figure C-15. MTC-7 

 

 
 

 

Figure C-16. MTC-8 
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Figure C-17. MTC-9 

 

 
 

 

Figure C-18. MTC-10 

 

 
 

 

Figure C-19. MTC-11 
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Figure C-20. MTC-12 

 

 
 

 

Figure C-21. MTC-13 
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Figure C-22. Crush of medium taped cans 

 

Figure C-23. Comparison of medium taped cans to full scale crush simulations 
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RESULTS OF LIGHTLY TAPED (1.5 CM SPACING) CRUSH TESTS 

8 lightly taped crush tests were performed using the small scale crash safety research 

pendulum.  Figure C-24 – Figure C-31 show the pre-test and post-test condition of the lightly 

taped cans (LTC).  Figure C-32 and Figure C-33 show the linear displacement of the individual 

tests with the resulting average displacement and the scaled up comparison to the LS-DYNA and 

low-order simulations. 

 
 

 

Figure C-24. LTC-1 

 

 
 

 

Figure C-25. LTC-2 
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Figure C-26. LTC-3 

 

 
 

 

Figure C-27. LTC-4 

 

 
 

 

Figure C-28. LTC-5 
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Figure C-29. LTC-6 

 

 
 

 

Figure C-30. LTC-7 

 

 
 

 

Figure C-31. LTC-8 
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Figure C-32. Crush of lightly taped cans 

 

 

Figure C-33. Comparison of lightly taped cans to full scale crush simulations 
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COMPARISON OF CRUSH TEST RESULTS 

Figure C-34 shows the comparison and resulting fits for the crush tests. 

 

Figure C-34. Comparison of the three levels of taping for the small scale crush material 

 

The average initial velocity of the heavily taped can tests was approximately 5.1, and the 

resulting spring and damping coefficients were then calculated to be 48.8 kN/m and 0.556 kN-

s/m.  The average initial velocity of the medium taped can tests was approximately 4.9 m/s, and 

the resulting spring and damping coefficients were then calculated to be 58.9 kN/m and 0.503 

kN-s/m.  The average initial velocity of the lightly taped can tests was approximately 5.25 m/s, 

and the resulting spring and damping coefficients were then calculated to be 35.9 kN/m and 0.538 

kN-s/m.  
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APPENDIX D 

 

EXAMPLE LOW-ORDER MODEL MATLAB® CODE 

The example MATLAB® code is presented using the parameters associated with BST-2.  

Various other geometries and conditions can be simulated by simply changing the desired 

parameters Pi_Parameters.m.  The script defaults to simulating the theoretical small scale 

parameters and not the measured small scale parameters.  If the as-measured small scale 

parameters are to be simulated, they must be entered manually.  The order for running the codes 

is as follows: 

(1) Prepare the variables for simulation 

a. The full scale crash test parameters are entered in Pi_Parameters.m 

b. The corresponding small scale test size is entered as m_truck_model 

c. The as measured small scale test parameters are entered, if desired 

d. Pi_Parameters.m is saved after modifications have been made. 

(2) Either script_Simulation.m, script_Simulation_small.m, or 

script_Simulation_dimensionless.m is opened and ran 
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PI_PARAMETERS.M 

%this script will calculate the groupings of the scaling factors 

  
%Mark P. Keske; mark.keske@gmail.com  
close all 
clear all 
clc 

  
%% perform D.A. 

  
% A = [mt vt g], the set of repeating parameters in 
% [Length 
%           Mass 
%                   Time] 
A = [0  1  1;... 
     1  0  0;... 
     0 -1 -2]; 

  
 %lets figure out some sizes so we can make matrix inversion and allocation 
 %real nice and quick 
[rows_A cols_A] = size(A); 

  
% B = rho_soil   
%         rho_rock   
%            c_truck   
%                k_truck  
%                   es 
%                       W 
%                         L 
%                           H     
%                             d  
%                               d_truck 
%                                    time 
%                                       velocity 
%                                           acceleration 
%                                               angular vel 
%                                                  angular vel 
%                                                      Moment 

  
B = [-3 -3  0  0 -2 -1  1  1  1  1  1  0  1  1  0  0  2;... 
      1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  1;... 
      0  0 -1 -2 -2 -2  0  0  0  0  0  1 -1 -2 -1 -2  0]; 

   
% determine the size of B for future allocations 
[rows_B cols_B] = size(B); 

  
%create I vector for computation and allocations 
E = eye(cols_B); 

  
%Perform the matrix inversion and transpose for finding the pi parameters 
S = -inv(A)*B*E; 
S = S'; 

  
%Fill out Complete Matrix, Totes will have the entire dimensional set 
%filled, so all you have to do is copy Totes into a spreadsheet that has 
%variables orangized 
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Totes = zeros(cols_A+cols_B); 
Totes(1:rows_B,1:cols_B) = B; 
Totes(1:rows_A,end-cols_A+1:end) = A; 
Totes(rows_B+1:end,1:cols_B) = E; 
Totes(rows_B+1:end,end-cols_A+1:end) = S; 

  
%% Apply D.A. to obtain small scale parameters 

  
%give the prototype parameters to be scaled 

  
%estimated modulus value for a full scale test using modified 2A limestone 
%gravel, ASTM F2656-07 states that the soil should be no less than 90% 
%compacted, where 95 MN/m^3 modulus correlates to a 94% compaction state 
Modulus=95; %MN/m^3 

  
% calcuate the relative density of the soil based on the modulus 
D_r = 1/(2*.01221)*(0.1748+sqrt(0.1748^2-4*0.01221*(2.86-Modulus))); %...%,  
%its in percent 

  
%constants from curve fit of the relation between relative density and 
%angle of internal friction 
p1 = 0.0015; 
p2 = 0.02; 
p3 = 28; 

  
%calcuate the effective angle of internal friction for the density 
phi = p1*D_r^2+p2*D_r+p3; %degrees 
phi = phi*pi/180; %radians 

  
%give the reamining measured prototype parameters to be scaled, prototype 
%means full scale 

  
%rock mass density 
rho_rock_proto = 2596;  %kg/m^3 

  
%soil mass density 
rho_soil_proto = 2010*D_r/100; %kg/m^3 

  
%soil modulus of subgrade reaction 
E_soil_proto = Modulus*10^6; %N/m^3 

  
%graviational constant 
g_proto =9.81;%m/s/s 

  
%mass of the truck from BST-1 
m_truck_proto = 6722;%kg 

  
%initial velocity of the truck from BST-1 
v_truck_proto = 14.5;%m/s 

  
%Length, Width, and Height  
L_proto = 1.65;         %m 
W_proto = 1.68;         %m 
H_proto = 3.44;         %m 

  
%embedment depth 
d_proto = 2.03;    %m 
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%distance from the soil surface to the equivalent point load of the truck, 
%dimensions are taken from the vehicle data sheets 
d_truck_proto = (1.4-18.75*.0254)/2+18.75*.0254;%.0254 means meters 

  
%equivalent damping and spring of a M30 truck 
c_truck_proto = 1.3891e5; %N-s/m 
k_truck_proto = 3.1033e6; %N/m 

  
%time at which to end the simulation and time step size 
t_end_proto = .3;%s 
t_step_proto = .002;%s 

  
%just for curiosity's sake how big is this boulder? 
m_rock_proto = L_proto*W_proto*H_proto*rho_rock_proto;%kg 

  
%number of elements in the soil model 
nelements_proto = 5000; %# 

  
%height of soil elements based on equal spacing 
delta_proto = d_proto/nelements_proto; %m 

  
%% Group the parameters and calculate the pieye parameters 
%determine the pi parameter values 
%all of the variables use the same nomenclature as above, and the parameter 
%is always on the left 
pi_rho_rock = rho_rock_proto*v_truck_proto^6/(m_truck_proto*g_proto^3); 

  
pi_rho_soil = rho_soil_proto*v_truck_proto^6/(m_truck_proto*g_proto^3); 

  
pi_c_truck = c_truck_proto*v_truck_proto/(m_truck_proto*g_proto); 

  
pi_k_truck = k_truck_proto*v_truck_proto^2/(m_truck_proto*g_proto^2); 

  
pi_Es = E_soil_proto*v_truck_proto^6/(m_truck_proto*g_proto^4); 

  
pi_L = L_proto*g_proto/v_truck_proto^2; 

  
pi_d_truck = d_truck_proto*g_proto/v_truck_proto^2; 

  
pi_W = W_proto*g_proto/v_truck_proto^2; 

  
pi_H = H_proto*g_proto/v_truck_proto^2; 

  
pi_d = d_proto*g_proto/v_truck_proto^2; 

  
pi_t = t_end_proto*g_proto/v_truck_proto; 

  
pi_t_step = t_step_proto*g_proto/v_truck_proto; 

  
pi_delta = delta_proto*g_proto/v_truck_proto^2; 

  
pi_nelements = pi_d/pi_delta; 

  
pi_m_truck = 1; 
pi_v_truck = 1; 
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pi_g = 1; 

  
%% Find model parameters based on scaling laws 
%model means small scale 
%give the model constants, you can alter E_soil, which will then give you a 
%different set of pi parameters 
E_soil_model = E_soil_proto; 
g_model = g_proto; 

  
%reverse the direction of the pigh parameters to solve for the small scale 
%parameters. 

  
%it all starts with one 
m_truck_model = 8; %kg 

  
%and the rest just fall out like an uneasy jinga tower balancing on a 
%single block...that's not in the middle. 
v_truck_model = (pi_Es*m_truck_model*g_model^4/E_soil_model)^(1/6); 

  
rho_rock_model = pi_rho_rock*m_truck_model*g_model^3/v_truck_model^6; 

  
rho_soil_model = pi_rho_soil*m_truck_model*g_model^3/v_truck_model^6; 

  
k_truck_model = pi_k_truck*m_truck_model*g_model^2/v_truck_model^2; 

  
c_truck_model = pi_c_truck*m_truck_model*g_model/v_truck_model; 

  
W_model = pi_W*v_truck_model^2/g_model; 

  
L_model = pi_L*v_truck_model^2/g_model; 

  
H_model = pi_H*v_truck_model^2/g_model; 

  
d_model = pi_d*v_truck_model^2/g_model; 

  
d_truck_model = pi_d_truck*v_truck_model^2/g_model; 

  
t_end_model = pi_t*v_truck_model/g_model; 

  
t_step_model = pi_t_step*v_truck_model/g_model; 

  
delta_model = (pi_delta)*(v_truck_model^2/(g_model)); 

  
nelements_model = d_model/delta_model; 

  
% now, lets save all these numbas so we can use them in the script 

  
save('Model Parameters','L_model','W_model','H_model','d_model',... 
    'd_truck_model','m_truck_model',... 
    'v_truck_model','k_truck_model','c_truck_model','E_soil_model',... 
    'g_model','rho_soil_model','rho_rock_model','rho_soil_proto',... 
    't_end_model','t_step_model',... 
    'delta_model','nelements_model','phi'); 

  
save('Proto Parameters','L_proto','W_proto','H_proto','d_proto',... 
    'd_truck_proto','m_truck_proto',... 
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    'v_truck_proto','k_truck_proto','c_truck_proto','E_soil_proto',... 
    'g_proto','rho_soil_proto','rho_rock_proto',... 
    't_end_proto','t_step_proto',... 
    'delta_proto','nelements_proto','phi'); 

  
save('Dimensionless Parameters','pi_m_truck','pi_v_truck','pi_g',... 
    'pi_rho_rock','pi_rho_soil',... 
    'pi_c_truck','pi_k_truck','pi_Es','pi_L','pi_d_truck','pi_W',... 
    'pi_H','pi_d','pi_t','pi_t_step','pi_delta','phi','pi_nelements') 
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SCRIPT_SIMULATION.M 

%% Rotation Model based on FEA of soil parameters 
% Mark P. Keske, mark.keske@gmail.com 
% Alex Brown, aab5009@psu.edu 
% Sean Brennan, sbrennan@psu.edu, 

  
clc 
clear 
close all 

  
%Just in case there were other parameters that had been loaded, we're going 
%to run the code here at the beginning 
Pi_Parameters 

  
%this code is created such that Pi_Parameters_Appendix is all that needs to 
%be changed, it will load all of the parameters defined in the above .m 

  
%define the number of soil elements 
nelements = nelements_proto; 

  
%% Define constants 
%soil and rock density 
rho_soil = rho_soil_proto; % kg/m^3 
rho_rock = rho_rock_proto; % kg/m^3 

  
%vehicle mass and initial velocity 
m_truck = m_truck_proto; %kg 
v_truck = v_truck_proto; %m/s 

  
%graviational constant 
g = g_proto; %m/s^2 

  
% equivalent distance for the point load above the soil surface 
d_truck = -d_truck_proto; %m 

  
%equivalent damper and spring values for the truck 
c_truck = c_truck_proto; %N-s/m 
k_truck = k_truck_proto; %N/m 

  
%angle of the soil wedge as measured from vertical down 
theta = pi/4+phi/2; 

  
%Modulus of subgrade reaction 
E_soil = E_soil_proto;  %N/m^3 

  
%Strain rate scaling factor for laterally loaded soil 
Kg = tan(theta)/cos(phi); 

  
%length of the assumed cantilever for fracture calcuations 
lengthCantilever = 0.75;%m 

  
%peak force from a rigid wall impact 
peakForce = m_truck*g*100; %N 

  
%Conversion from ksi to MPa 
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ksi2Mpa = 6.89475728;  

  
%material properties for American Black Granite, tensile and compressive 
%strengths 
sigmaTensileUltimate = 4.63*ksi2Mpa;%MPa 
sigmaCompressionUltimate = 26.4*ksi2Mpa;%MPa 

  

  
%% Define boulder geometry 
% Inputs are arranged as Height, Embedment depth, Length, all measured in 
Lengths = L_proto; 
Widths = W_proto; 
Heights = H_proto; 

  
% Initialize arrays for multiple Lengths, Widths and Heights for contour 
% plots, not demonstrated in this code 

  
%matrix for the maximum distance traversed by the boulder 
distanceMoved = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the maximum angle traversed by the boulder 
angleTraversed = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the mass of the various sized boulders 
massBoulder   = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the peak stress for a given boulder geometry wrt fracture 
peakStress = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the factor of safety wrt fracture 
factorSafety = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the maximum mass for the boulders 
max_massBoulder = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for saving the maximum distance traversed by the vehicle 
distanceTruckMoved = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%% Permutate through the different rock geometries 
for H=Heights 
    for W=Widths 
        for L=Lengths 

             
            %set the indices for the above variables which will be saved 
            i_width = find(Widths == W); %row 
            j_length = find(Lengths == L);%column 
            k_height = find(Heights == H);%depth 

             
            %boulder embedment depth, 
            d = d_proto;%m 

            
            % Calculate initial fixed mass of the boulder and the mass 
            % moment of inertia about the boulder C.G., note this will 
            % later be translated over to the boulder-soil subsystem C.G. 
            m_boulder =rho_rock*H*L*W;  %kg 
            I_b = m_boulder*(H^2+L^2)/12;  %kg-m^2 
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            %check to see if the boulder is embedded, if not then skip 
            %straight to the function 
            if d>0 
                %total spring stiffness of the soil elemetns, as idealized 
                %from a long slender rod, cross section area divided by the 
                %intial undeformed length of the soil element 
                k_soil_total = E_soil*d*W/(d/tan(phi)*nelements); %N/m^2 

                 
                %total soil damping constant, density times swept area, 
                %will be mulitplied by the velocity squared of each element 
                c_soil_total = rho_soil*d*W; %N-s^2/m^2 

                 
                %total mass of the soil wedge, treated as a triangle 
                m_soil_total = rho_soil*d*W*(d*tan(theta))/2;%kg 

                              
                %distribute the spring and damping constants, the spring 
                %constant increases linearly with depth, the soil damping 
                %value is assumed to remain constant with depth and is even 
                %distributed 
                ki = k_soil_total*linspace(0,abs(d),nelements); %N/m 
                ci = c_soil_total/nelements; %N -s^2/m^2  

                 
                %set the height of the soil elements 
                delta = delta_proto;%m 

                 
                %calculate the mass of each trapezoidal soil element 
                %treated as a rectangle with a triangle attached to the end 

                 
                %length of the base of the soil wedge 
                L_wedge = d*tan(theta); %m 

                 
                %length of each soil element along the top 
                L_delta = (1:nelements)*delta*tan(theta); %m 

                 
                %length of each soil element along the bottom, short side 
                L_flat = L_wedge-L_delta;%m 

                 
                %mass of the end triangle of each soil element 
                m_tip = 1/2*delta*W*L_delta(1)*rho_soil;%kg 

                 
                %cross sectional area of each soil element 
                Af = W*delta;%m^2 

                 
                %mass vector of the soil elements from soil surface to 
                %bottom of boulder 
                mi = Af*L_flat*rho_soil+m_tip;%kg 

  

                 
                %calcuate the center of mass of the boulder-soil subsystem 

                 
                %divide the embedment depth of the boulder into nelements 
                %along the boulder 
                spaces = d*linspace(1,0,nelements); %m 

                 
                %calculate the center of mass wrt x from the impact side of 
                %the boulder 
                mass_center_x = 1/(sum(mi)+m_boulder)*... 
                    (sum(mi)*L+m_boulder*L/2);%m 
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                %calcuate the center of mass wrt y from the bottom of the 
                %boulder 
                mass_center_y = 1/(sum(mi)+m_boulder)*... 
                    (sum(mi.*spaces)+m_boulder*H/2);%m 

                 
                %distribute the soil elements wrt the center of mass of the 
                %boulder-soil subsystem such that elements above the C.M. 
                %have negative distances and elements below are positive 
                %x positive right, y positive down from the C.M. 

                 
                %pretty self explanitory 
                cg_from_bottom = mass_center_y;%m 

                 
                %determine where the surface of the soil is wrt the C.M.  
                % if this is a negative number, soil line is ABOVE CG. 
                soil_line_y = (cg_from_bottom-d);%m 

                 
                %redistribute the soil elements wrt the C.M. 
                di = linspace(soil_line_y,cg_from_bottom,nelements);%m 

                 
            else %if the boulder aint burried, then don't burry it 
                k_soil_total = 0; 
                c_soil_total = 0; 
                m_soil_total = 0; 
                ki = 0; 
                ci = 0; 
                mi = 0; 

                 
                %the distance to the bottome 
                di = H/2; 
            end 

             
            %calculate the radial distance from the C.M. to the soil 
            %elements 
            li = sqrt(di.^2+(L-mass_center_x)^2); %m 

             
            %calcuate the angle from vertical for the soil elements 
            gamma = atan(di/(L-mass_center_x))+pi/2;   %radians 

             
            %calcuate the distance from the boulder C.G. to the 
            %boulder-soil subsystem C.M. to be used in the // axis theorem 
            r_center = (H/2-mass_center_y)^2+(L/2-mass_center_x)^2;%m 

             
            %apply the parallel axis theorem 
            I_b = I_b + m_boulder*r_center; %kg-m^2 

             
            %time to create a time vector for ODE45 
            tspan = 0:t_step_proto:t_end_proto; 

                         
            %initial velocity of the truck drives the simulation 
            % states = [xb, xbdot, thetab, thetabdot, xt, xtdot, xtddot], 
            % the maxwell model uses jerk, so acceleratoin is a state 
            x0 = [0 0 0 0 0 v_truck 0];%states 

             
            %truck-boulder model 
            %run numerical integration 
            options = []; 
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            %Send the function all of the goodies so we get the time and 
            %states back from ODE45 
            [t_r,x_r] = ode45(@fcn_Low_Order_EOM,tspan,x0,options,mi,... 
                ki,ci,m_boulder,I_b,di,c_truck,k_truck,m_truck,d_truck,... 
                L,H,li,gamma,mew,d,phi,rho_soil,W,g,mass_center_x,... 
                mass_center_y,v_truck,Kg); 

             
            %send the fracture function its goodies so it will tell us the 
            %resulting factor of safety, n, and the principle stress 
            [n,sigma1] = fcn_fracture(lengthCantilever,peakForce,W,L,... 
                sigmaTensileUltimate,sigmaCompressionUltimate); 

             

             
            %Pass/Fail Criteria used with contour plots 

             
            %based on experiments and the simulation, a failure criterion 
            %for angle. 
            AngleCriteria = 20; %degrees,  

             
            %save the distance the boulder translates 
            distanceMoved(i_width,j_length,k_height) = max(x_r(:,1)); 

             
            %save the angle traversed wrt the pass/fail criteria.  A 
            %positive value indicates a failure since it would go + degrees 
            %past 20 
            angleTraversed(i_width,j_length,k_height) = max(x_r(:,3)*... 
                180/pi)-AngleCriteria; %degrees 

             
            %save the principle stress 
            peakStress(i_width,j_length,k_height) = sigma1; % Units are MPa 

             
            %save the factor of safety, the factors of safety are 
            %represented as negative number for contour plotting, abs(n)>1 
            %indicated expected pass 
            factorSafety(i_width,j_length,k_height) = n;  

             
            %save the masses of the boulders 
            massBoulder(i_width,j_length,k_height) = m_boulder/1000;%Mg 
            max_massBoulder(i_width,j_length,k_height) = ... 
                massBoulder(i_width,j_length,k_height)-27.215;  % Mg 

             
            %save the distance the truck moved 
            distanceTruckMoved(i_width,j_length,k_height) = max(x_r(:,5)); 
            %m 

             
            %since things are pretty well commented, lets take a peek at 
            %how far the boulder rotated 
            disp(angleTraversed); 
        end 
    end 
end 

  
%save the data as a .mat file for later usage 
save('BST-2 Results', 'Lengths','Widths','Heights','distanceMoved',... 
    'angleTraversed','massBoulder','max_massBoulder','distanceTruckMoved'); 

  
%% Plotting time 
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figure; 
plot(t_r,x_r(:,3)*180/pi,'sr') 
xlabel('Time (s)') 
ylabel('Angular displacement (degrees)') 
legend('Full scale crash test','Full scale simulation','location','best') 
saveas(gcf,'fig Full Scale BAB30 Angle and Simulation.fig') 

  
%calculate the linear displacement of the center of the boulder since the 
%video tracking is done wrt the boulder C.G. and not the boulder-soil 
%subsystem 

  
%calculate radial distance form the center of mass of the boulder to the 
%boulder-soil subsystem 
Rbp = sqrt((mass_center_x-L/2)^2+(mass_center_y-H/2)^2);%m 

  
%calculate the angle from center of mass of the boulder-soil subsystem to 
%the boulder C.G. 
gamma_bp = atan((mass_center_x-L/2)/(mass_center_y-H/2));%radians 

  
%fix the corridinate locations such that the angle is measure from the 
%positive x direction 
if gamma_bp<0 
    gamma_bp = abs(gamma_bp)+pi/2; 
    xb = x_r(:,1)+Rbp*cos(gamma_bp-x_r(:,3))-Rbp*cos(gamma_bp); 
elseif gamma_bp>0 
    gamma_bp = (gamma_bp)+pi/2; 
    xb = x_r(:,1)+Rbp*cos(gamma_bp+x_r(:,3))-Rbp*cos(gamma_bp); 
end 

  
figure; 
plot(t_r,xb,'sr') 
legend('Full scale crash test','Full scale simulation','location','best') 
xlabel('Time (s)') 
ylabel(Linear displacement (m)') 
saveas(gcf,'fig Full Scale BAB30 CG Disp and Simulation.fig') 

  

  
figure; 
plot(t_r,x_r(:,5),'sr') 
legend('Full scale crash test','Full scale simulation','location','best') 
xlabel('Time (s)') 
ylabel('Linear displacement (m)') 
saveas(gcf,'fig Full Scale BAB30 Truck and Simulation.fig') 
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SCRIPT_SIMULATION_SMALL.M 

%% Rotation Model based on FEA of soil parameters 
% Mark P. Keske, mark.keske@gmail.com 
% Alex Brown, aab5009@psu.edu 
% Sean Brennan, sbrennan@psu.edu, 

  
clc 
clear 
close all 

  
%Just in case there were other parameters that had been loaded, we're going 
%to run the code here at the beginning 
Pi_Parameters 

  
%this code is created such that Pi_Parameters_Appendix is all that needs to 
%be changed, it will load all of the parameters defined in the above .m 

  
%define the number of soil elements 
nelements = nelements_model; 

  
%% Define constants 
%soil and rock density 
rho_soil = rho_soil_model; % kg/m^3 
rho_rock = rho_rock_model; % kg/m^3 

  
%vehicle mass and initial velocity 
m_truck = m_truck_model; %kg 
v_truck = v_truck_model; %m/s 

  
%graviational constant 
g = g_model; %m/s^2 

  
% equivalent distance for the point load above the soil surface 
d_truck = -d_truck_model; %m 

  
%equivalent damper and spring values for the truck 
c_truck = c_truck_model; %N-s/m 
k_truck = k_truck_model; %N/m 

  
%angle of the soil wedge as measured from vertical down 
theta = pi/4+phi/2; 

  
%Modulus of subgrade reaction 
E_soil = E_soil_model;  %N/m^3 

  
%Strain rate scaling factor for laterally loaded soil 
Kg = tan(theta)/cos(phi); 

  
%length of the assumed cantilever for fracture calcuations 
lengthCantilever = 0.75;%m 

  
%peak force from a rigid wall impact 
peakForce = m_truck*g*100; %N 

  
%Conversion from ksi to MPa 
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ksi2Mpa = 6.89475728;  

  
%material properties for American Black Granite, tensile and compressive 
%strengths 
sigmaTensileUltimate = 4.63*ksi2Mpa;%MPa 
sigmaCompressionUltimate = 26.4*ksi2Mpa;%MPa 

  

  
%% Define boulder geometry 
% Inputs are arranged as Height, Embedment depth, Length, all measured in 
Lengths = L_model; 
Widths = W_model; 
Heights = H_model; 

  
% Initialize arrays for multiple Lengths, Widths and Heights for contour 
% plots, not demonstrated in this code 

  
%matrix for the maximum distance traversed by the boulder 
distanceMoved = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the maximum angle traversed by the boulder 
angleTraversed = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the mass of the various sized boulders 
massBoulder   = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the peak stress for a given boulder geometry wrt fracture 
peakStress = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the factor of safety wrt fracture 
factorSafety = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the maximum mass for the boulders 
max_massBoulder = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for saving the maximum distance traversed by the vehicle 
distanceTruckMoved = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%% Permutate through the different rock geometries 
for H=Heights 
    for W=Widths 
        for L=Lengths 

             
            %set the indecies for the above variables which will be saved 
            i_width = find(Widths == W); %row 
            j_length = find(Lengths == L);%column 
            k_height = find(Heights == H);%depth 

             
            %boulder embedment depth, 
            d = d_model;%m 

            
            % Calculate initial fixed mass of the boulder and the mass 
            % moment of inertia about the boulder C.G., note this will 
            % later be translated over to the boulder-soil subsystem C.G. 
            m_boulder =rho_rock*H*L*W;  %kg 
            I_b = m_boulder*(H^2+L^2)/12;  %kg-m^2 
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            %check to see if the boulder is embedded, if not then skip 
            %straight to the function 
            if d>0 
                %total spring stiffness of the soil elemetns, as idealized 
                %from a long slender rod, cross section area divided by the 
                %intial undeformed length of the soil element 
                k_soil_total = E_soil*d*W/(d/tan(phi)*nelements); %N/m^2 

                 
                %total soil damping constant, density times swept area, 
                %will be mulitplied by the velocity squared of each element 
                c_soil_total = rho_soil*d*W; %N-s^2/m^2 

                 
                %total mass of the soil wedge, treated as a triangle 
                m_soil_total = rho_soil*d*W*(d*tan(theta))/2;%kg 

                              
                %distribute the spring and damping constants, the spring 
                %constant increases linearly with depth, the soil damping 
                %value is assumed to remain constant with depth and is even 
                %distributed 
                ki = k_soil_total*linspace(0,abs(d),nelements); %N/m 
                ci = c_soil_total/nelements; %N -s^2/m^2  

                 
                %set the height of the soil elements 
                delta = delta_model;%m 

                 
                %calculate the mass of each trapezoidal soil element 
                %treated as a rectangle with a triangle attached to the end 

                 
                %length of the base of the soil wedge 
                L_wedge = d*tan(theta); %m 

                 
                %length of each soil element along the top 
                L_delta = (1:nelements)*delta*tan(theta); %m 

                 
                %length of each soil element along the bottom, short side 
                L_flat = L_wedge-L_delta;%m 

                 
                %mass of the end triangle of each soil element 
                m_tip = 1/2*delta*W*L_delta(1)*rho_soil;%kg 

                 
                %cross sectional area of each soil element 
                Af = W*delta;%m^2 

                 
                %mass vector of the soil elements from soil surface to 
                %bottom of boulder 
                mi = Af*L_flat*rho_soil+m_tip;%kg 

  

                 
                %calcuate the center of mass of the boulder-soil subsystem 

                 
                %divide the embedment depth of the boulder into nelements 
                %along the boulder 
                spaces = d*linspace(1,0,nelements); %m 

                 
                %calculate the center of mass wrt x from the impact side of 
                %the boulder 
                mass_center_x = 1/(sum(mi)+m_boulder)*... 
                    (sum(mi)*L+m_boulder*L/2);%m 
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                %calcuate the center of mass wrt y from the bottom of the 
                %boulder 
                mass_center_y = 1/(sum(mi)+m_boulder)*... 
                    (sum(mi.*spaces)+m_boulder*H/2);%m 

                 
                %distribute the soil elements wrt the center of mass of the 
                %boulder-soil subsystem such that elements above the C.M. 
                %have negative distances and elements below are positive 
                %x positive right, y positive down from the C.M. 

                 
                %pretty self explanitory 
                cg_from_bottom = mass_center_y;%m 

                 
                %determine where the surface of the soil is wrt the C.M.  
                % if this is a negative number, soil line is ABOVE CG. 
                soil_line_y = (cg_from_bottom-d);%m 

                 
                %redistribute the soil elements wrt the C.M. 
                di = linspace(soil_line_y,cg_from_bottom,nelements);%m 

                 
            else %if the boulder aint burried, then don't burry it 
                k_soil_total = 0; 
                c_soil_total = 0; 
                m_soil_total = 0; 
                ki = 0; 
                ci = 0; 
                mi = 0; 

                 
                %the distance to the bottome 
                di = H/2; 
            end 

             
            %calculate the radial distance from the C.M. to the soil 
            %elements 
            li = sqrt(di.^2+(L-mass_center_x)^2); %m 

             
            %calcuate the angle from vertical for the soil elements 
            gamma = atan(di/(L-mass_center_x))+pi/2;   %radians 

             
            %calcuate the distance from the boulder C.G. to the 
            %boulder-soil subsystem C.M. to be used in the // axis theorem 
            r_center = (H/2-mass_center_y)^2+(L/2-mass_center_x)^2;%m 

             
            %apply the parallel axis theorem 
            I_b = I_b + m_boulder*r_center; %kg-m^2 

             
            %time to create a time vector for ODE45 
            tspan = 0:t_step_model:t_end_model; 

                         
            %initial velocity of the truck drives the simulation 
            % states = [xb, xbdot, thetab, thetabdot, xt, xtdot, xtddot], 
            % the maxwell model uses jerk, so acceleratoin is a state 
            x0 = [0 0 0 0 0 v_truck 0];%states 

             
            %truck-boulder model 
            %run numerical integration 
            options = []; 
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            %Send the function all of the goodies so we get the time and 
            %states back from ODE45 
            [t_r,x_r] = ode45(@fcn_Low_Order_EOM,tspan,x0,options,mi,... 
                ki,ci,m_boulder,I_b,di,c_truck,k_truck,m_truck,d_truck,... 
                L,H,li,gamma,mew,d,phi,rho_soil,W,g,mass_center_x,... 
                mass_center_y,v_truck,Kg); 

             
            %send the fracture function its goodies so it will tell us the 
            %resulting factor of safety, n, and the principle stress 
            [n,sigma1] = fcn_fracture(lengthCantilever,peakForce,W,L,... 
                sigmaTensileUltimate,sigmaCompressionUltimate); 

             

             
            %Pass/Fail Criteria used with contour plots 

             
            %based on experiments and the simulation, a failure criterion 
            %for angle. 
            AngleCriteria = 20; %degrees,  

             
            %save the distance the boulder translates 
            distanceMoved(i_width,j_length,k_height) = max(x_r(:,1)); 

             
            %save the angle traversed wrt the pass/fail criteria.  A 
            %positive value indicates a failure since it would go + degrees 
            %past 20 
            angleTraversed(i_width,j_length,k_height) = max(x_r(:,3)*... 
                180/pi)-AngleCriteria; %degrees 

             
            %save the principle stress 
            peakStress(i_width,j_length,k_height) = sigma1; % Units are MPa 

             
            %save the factor of safety, the factors of safety are 
            %represented as negative number for contour plotting, abs(n)>1 
            %indicated expected pass 
            factorSafety(i_width,j_length,k_height) = n;  

             
            %save the masses of the boulders 
            massBoulder(i_width,j_length,k_height) = m_boulder/1000;%Mg 
            max_massBoulder(i_width,j_length,k_height) = ... 
                massBoulder(i_width,j_length,k_height)-27.215;  % Mg 

             
            %save the distance the truck moved 
            distanceTruckMoved(i_width,j_length,k_height) = max(x_r(:,5)); 
            %m 

             
            %since things are pretty well commented, lets take a peek at 
            %how far the boulder rotated 
            disp(angleTraversed); 
        end 
    end 
end 

  
%save the data as a .mat file for later usage 
save('BST-2 Results', 'Lengths','Widths','Heights','distanceMoved',... 
    'angleTraversed','massBoulder','max_massBoulder','distanceTruckMoved'); 

  
%% Plotting time 
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figure; 
plot(t_r,x_r(:,3)*180/pi,'sr') 
xlabel('Time (s)') 
ylabel('Angular displacement (degrees)') 
saveas(gcf,'fig Small Scale BAB30 Angle and Simulation.fig') 

  
%calculate the linear displacement of the center of the boulder since the 
%video tracking is done wrt the boulder C.G. and not the boulder-soil 
%subsystem 

  
%calculate radial distance form the center of mass of the boulder to the 
%boulder-soil subsystem 
Rbp = sqrt((mass_center_x-L/2)^2+(mass_center_y-H/2)^2);%m 

  
%calcuate the angle from center of mass of the boulder-soil subsystem to 
%the boulder C.G. 
gamma_bp = atan((mass_center_x-L/2)/(mass_center_y-H/2));%radians 

  
%fix the corridinate locations such that the angle is measure from the 
%positive x direction 
if gamma_bp<0 
    gamma_bp = abs(gamma_bp)+pi/2; 
    xb = x_r(:,1)+Rbp*cos(gamma_bp-x_r(:,3))-Rbp*cos(gamma_bp); 
elseif gamma_bp>0 
    gamma_bp = (gamma_bp)+pi/2; 
    xb = x_r(:,1)+Rbp*cos(gamma_bp+x_r(:,3))-Rbp*cos(gamma_bp); 
end 

  
figure; 
plot(t_r,xb,'sr') 
xlabel('Time (s)') 
ylabel('Linear displacement (m)') 
saveas(gcf,'fig Small Scale BAB30 CG Disp and Simulation.fig') 

  

  
figure; 
plot(t_r,x_r(:,5),'sr') 
xlabel('Time (s)') 
ylabel('Linear displacement (m)') 
saveas(gcf,'fig Small Scale BAB30 Truck and Simulation.fig') 
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SCRIPT_SIMULATION_DIMENSIONLESS.M 

%% Rotation model based on FEA of soil parameters 
% Mark P. Keske, mark.keske@gmail.com 
% Alex Brown, aab5009@psu.edu 
% Sean Brennan, sbrennan@psu.edu, 

  
clc 
clear 
close all 

  
%Just in case there were other parameters that had been loaded, we're going 
%to run the code here at the beginning 
Pi_Parameters 

  
%this code is created such that Pi_Parameters_Appendix is all that needs to 
%be changed, it will load all of the parameters defined in the above .m 

  
%define the number of soil elements 
nelements = nelements_model; 

  
%% Define constants 
%soil and rock density 
rho_soil = rho_soil_model; % kg/m^3 
rho_rock = rho_rock_model; % kg/m^3 

  
%vehicle mass and initial velocity 
m_truck = m_truck_model; %kg 
v_truck = v_truck_model; %m/s 

  
%graviational constant 
g = g_model; %m/s^2 

  
% equivalent distance for the point load above the soil surface 
d_truck = -d_truck_model; %m 

  
%equivalent damper and spring values for the truck 
c_truck = c_truck_model; %N-s/m 
k_truck = k_truck_model; %N/m 

  
%angle of the soil wedge as measured from vertical down 
theta = pi/4+phi/2; 

  
%Modulus of subgrade reaction 
E_soil = E_soil_model;  %N/m^3 

  
%Strain rate scaling factor for laterally loaded soil 
Kg = tan(theta)/cos(phi); 

  
%length of the assumed cantilever for fracture calcuations 
lengthCantilever = 0.75;%m 

  
%peak force from a rigid wall impact 
peakForce = m_truck*g*100; %N 

  
%Conversion from ksi to MPa 
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ksi2Mpa = 6.89475728;  

  
%material properties for American Black Granite, tensile and compressive 
%strengths 
sigmaTensileUltimate = 4.63*ksi2Mpa;%MPa 
sigmaCompressionUltimate = 26.4*ksi2Mpa;%MPa 

  

  
%% Define boulder geometry 
% Inputs are arranged as Height, Embedment depth, Length, all measured in 
Lengths = L_model; 
Widths = W_model; 
Heights = H_model; 

  
% Initialize arrays for multiple Lengths, Widths and Heights for contour 
% plots, not demonstrated in this code 

  
%matrix for the maximum distance traversed by the boulder 
distanceMoved = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the maximum angle traversed by the boulder 
angleTraversed = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the mass of the various sized boulders 
massBoulder   = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the peak stress for a given boulder geometry wrt fracture 
peakStress = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the factor of safety wrt fracture 
factorSafety = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for the maximum mass for the boulders 
max_massBoulder = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%matrix for saving the maximum distance traversed by the vehicle 
distanceTruckMoved = zeros(length(Widths),length(Lengths),length(Heights)); 

  
%% Permutate through the different rock geometries 
for H=Heights 
    for W=Widths 
        for L=Lengths 

             
            %set the indecies for the above variables which will be saved 
            i_width = find(Widths == W); %row 
            j_length = find(Lengths == L);%column 
            k_height = find(Heights == H);%depth 

             
            %boulder embedment depth, 
            d = d_model;%m 

            
            % Calculate initial fixed mass of the boulder and the mass 
            % moment of inertia about the boulder C.G., note this will 
            % later be translated over to the boulder-soil subsystem C.G. 
            m_boulder =rho_rock*H*L*W;  %kg 
            I_b = m_boulder*(H^2+L^2)/12;  %kg-m^2 
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            %check to see if the boulder is embedded, if not then skip 
            %straight to the function 
            if d>0 
                %total spring stiffness of the soil elemetns, as idealized 
                %from a long slender rod, cross section area divided by the 
                %intial undeformed length of the soil element 
                k_soil_total = E_soil*d*W/(d/tan(phi)*nelements); %N/m^2 

                 
                %total soil damping constant, density times swept area, 
                %will be mulitplied by the velocity squared of each element 
                c_soil_total = rho_soil*d*W; %N-s^2/m^2 

                 
                %total mass of the soil wedge, treated as a triangle 
                m_soil_total = rho_soil*d*W*(d*tan(theta))/2;%kg 

                              
                %distribute the spring and damping constants, the spring 
                %constant increases linearly with depth, the soil damping 
                %value is assumed to remain constant with depth and is even 
                %distributed 
                ki = k_soil_total*linspace(0,abs(d),nelements); %N/m 
                ci = c_soil_total/nelements; %N -s^2/m^2  

                 
                %set the height of the soil elements 
                delta = delta_model;%m 

                 
                %calculate the mass of each trapezoidal soil element 
                %treated as a rectangle with a triangle attached to the end 

                 
                %length of the base of the soil wedge 
                L_wedge = d*tan(theta); %m 

                 
                %length of each soil element along the top 
                L_delta = (1:nelements)*delta*tan(theta); %m 

                 
                %length of each soil element along the bottom, short side 
                L_flat = L_wedge-L_delta;%m 

                 
                %mass of the end triangle of each soil element 
                m_tip = 1/2*delta*W*L_delta(1)*rho_soil;%kg 

                 
                %cross sectional area of each soil element 
                Af = W*delta;%m^2 

                 
                %mass vector of the soil elements from soil surface to 
                %bottom of boulder 
                mi = Af*L_flat*rho_soil+m_tip;%kg 

  

                 
                %calcuate the center of mass of the boulder-soil subsystem 

                 
                %divide the embedment depth of the boulder into nelements 
                %along the boulder 
                spaces = d*linspace(1,0,nelements); %m 

                 
                %calculate the center of mass wrt x from the impact side of 
                %the boulder 
                mass_center_x = 1/(sum(mi)+m_boulder)*... 
                    (sum(mi)*L+m_boulder*L/2);%m 
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                %calcuate the center of mass wrt y from the bottom of the 
                %boulder 
                mass_center_y = 1/(sum(mi)+m_boulder)*... 
                    (sum(mi.*spaces)+m_boulder*H/2);%m 

                 
                %distribute the soil elements wrt the center of mass of the 
                %boulder-soil subsystem such that elements above the C.M. 
                %have negative distances and elements below are positive 
                %x positive right, y positive down from the C.M. 

                 
                %pretty self explanitory 
                cg_from_bottom = mass_center_y;%m 

                 
                %determine where the surface of the soil is wrt the C.M.  
                % if this is a negative number, soil line is ABOVE CG. 
                soil_line_y = (cg_from_bottom-d);%m 

                 
                %redistribute the soil elements wrt the C.M. 
                di = linspace(soil_line_y,cg_from_bottom,nelements);%m 

                 
            else %if the boulder aint burried, then don't burry it 
                k_soil_total = 0; 
                c_soil_total = 0; 
                m_soil_total = 0; 
                ki = 0; 
                ci = 0; 
                mi = 0; 

                 
                %the distance to the bottome 
                di = H/2; 
            end 

             
            %calculate the radial distance from the C.M. to the soil 
            %elements 
            li = sqrt(di.^2+(L-mass_center_x)^2); %m 

             
            %calcuate the angle from vertical for the soil elements 
            gamma = atan(di/(L-mass_center_x))+pi/2;   %radians 

             
            %calcuate the distance from the boulder C.G. to the 
            %boulder-soil subsystem C.M. to be used in the // axis theorem 
            r_center = (H/2-mass_center_y)^2+(L/2-mass_center_x)^2;%m 

             
            %apply the parallel axis theorem 
            I_b = I_b + m_boulder*r_center; %kg-m^2 

             
            %time to create a time vector for ODE45 
            tspan = 0:pi_t_step:pi_t; 

                         
            %initial velocity of the truck drives the simulation 
            % states = [xb, xbdot, thetab, thetabdot, xt, xtdot, xtddot], 
            % the maxwell model uses jerk, so acceleratoin is a state 
            x0 = [0 0 0 0 0 1 0];%states 

             
            %truck-boulder model 
            %run numerical integration 
            options = []; 
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            %Send the function all of the goodies so we get the time and 
            %states back from ODE45 
            [pi_t_r,x_r] = ode45(@fcn_DEOM,tspan,x0,options,mi,... 
                ki,ci,m_boulder,I_b,di,c_truck,k_truck,m_truck,d_truck,... 
                L,H,li,gamma,mew,d,phi,rho_soil,W,g,mass_center_x,... 
                mass_center_y,v_truck,Kg); 

             
            %send the fracture function its goodies so it will tell us the 
            %resulting factor of safety, n, and the principle stress 
            [n,sigma1] = fcn_fracture(lengthCantilever,peakForce,W,L,... 
                sigmaTensileUltimate,sigmaCompressionUltimate); 

             

             
            %Pass/Fail Criteria used with contour plots 

             
            %based on experiments and the simulation, a failure criterion 
            %for angle. 
            AngleCriteria = 20; %degrees,  

             
            %save the distance the boulder translates 
            distanceMoved(i_width,j_length,k_height) = max(x_r(:,1)); 

             
            %save the angle traversed wrt the pass/fail criteria.  A 
            %positive value indicates a failure since it would go + degrees 
            %past 20 
            angleTraversed(i_width,j_length,k_height) = max(x_r(:,3)*... 
                180/pi)-AngleCriteria; %degrees 

             
            %save the principle stress 
            peakStress(i_width,j_length,k_height) = sigma1; % Units are MPa 

             
            %save the factor of safety, the factors of safety are 
            %represented as negative number for contour plotting, abs(n)>1 
            %indicated expected pass 
            factorSafety(i_width,j_length,k_height) = n;  

             
            %save the masses of the boulders 
            massBoulder(i_width,j_length,k_height) = m_boulder/1000;%Mg 
            max_massBoulder(i_width,j_length,k_height) = ... 
                massBoulder(i_width,j_length,k_height)-27.215;  % Mg 

             
            %save the distance the truck moved 
            distanceTruckMoved(i_width,j_length,k_height) = max(x_r(:,5)); 
            %m 

             
            %since things are pretty well commented, lets take a peek at 
            %how far the boulder rotated 
            disp(angleTraversed); 
        end 
    end 
end 

  
%save the data as a .mat file for later usage 
save('BST-2 Results', 'Lengths','Widths','Heights','distanceMoved',... 
    'angleTraversed','massBoulder','max_massBoulder','distanceTruckMoved'); 

  
%% Plotting time or shood I say, plotting pi time 
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figure; 
plot(pi_t_r,x_r(:,3)*180/pi,'+g') 
xlabel('Dimensionless time') 
ylabel('Angular displacement (degrees)') 
saveas(gcf,'fig Full Scale BAB30 Angle and Simulation.fig') 

  
%calculate the linear displacement of the center of the boulder since the 
%video tracking is done wrt the boulder C.G. and not the boulder-soil 
%subsystem 

  
%calculate radial distance form the center of mass of the boulder to the 
%boulder-soil subsystem and then turn it into the dimensionless radial 
%distnace, since the output of the numerical integration were the 
%dimensionless states 
Rbp = sqrt((mass_center_x-L/2)^2+(mass_center_y-H/2)^2)*g/v_truck^2; 

  
%calcuate the angle from center of mass of the boulder-soil subsystem to 
%the boulder C.G. 
gamma_bp = atan((mass_center_x-L/2)/(mass_center_y-H/2)); 

  
%fix the corridinate locations such that the angle is measure from the 
%positive x direction 
if gamma_bp<0 
    gamma_bp = abs(gamma_bp)+pi/2; 
    xb = x_r(:,1)+Rbp*cos(gamma_bp-x_r(:,3))-Rbp*cos(gamma_bp); 
elseif gamma_bp>0 
    gamma_bp = (gamma_bp)+pi/2; 
    xb = x_r(:,1)+Rbp*cos(gamma_bp+x_r(:,3))-Rbp*cos(gamma_bp); 

     
end 

  

  
figure; 
plot(pi_t_r,xb,'+g') 
xlabel('Dimensionless time') 
ylabel('Dimensionless displacement') 

  

  
figure; 
plot(pi_t_r,x_r(:,5),'+g') 
xlabel('Dimensionless time') 
ylabel('Dimensionless displacement') 
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FCN_LOW_ORDER_EOM.M 

function xprime = fcn_Low_Order_EOM(~,x,mi,ki,ci,m_boulder,... 
    I_b,di,ct,kt,m_truck, dt,L,H,li,gamma,mew,d,phi,... 
    rho_soil,W,g,mass_center_x,mass_center_y,v_initial,Kg) 

  
%Mark P. Keske, mark.keske@gmail.com, Alex Brown, aab5009@psu.edu 

  
%this file is commented such that the comments in line with the variables 
%describes the units 

  
%state vector is [x boulder; v boulder; theta boulder; w boulder; x truck; 
%v truck; a truck] 

  
%calcuate the position of the restoring reaction 
gamma_reac = atan(mass_center_y/(L-mass_center_x));%radians 
lr = sqrt((H-mass_center_y)^2+(L-mass_center_x)^2);%m 

  
%divide the embedment depth into N equally spaced elements 
depth = linspace(0,d,length(mi));%m 

  
%Passive earth pressure coefficent 
Kp = tan(pi/4+phi/2)^2; 

  
%Preallocate vectors used within the soil force loop 
Fix= zeros(length(di),1);%total force from soil 
Fki= zeros(length(di),1);%soil spring force 
Fci= zeros(length(di),1);%soil damping force 
Mi = zeros(length(di),1);%moments of the soil forces about C.M. 
xi = zeros(length(di),1);%linear position of each soil element 
xi_dot = zeros(length(di),1);%linear velocity of soil elements 
delta_xi = zeros(length(di),1);%change in linear positio of soil elements 
Pu_max = zeros(length(di),1);%maximum lateral pressure for soil  
%based on depth 
Area = zeros(length(di),1);%Cross sectional area of soil elements 
max_force = zeros(length(di),1);%maximum lateral force for soil 

  
%% Calculate the Soil Forces and Moments 

  
%from the top of soil surface to bottom of boulder 
for z = 1:length(di)  

     
    %calcuate the linear position of the soil element 
    xi(z) = x(1)+li(z)*sin(gamma(z)+x(3));%m 

     
    %calcuate the change in linear position of the soil element 
    delta_xi(z) = xi(z)-li(z)*sin(gamma(z));%m 

     
    %calcuate the linear velocity of the soil element 
    xi_dot(z) = x(2)+x(4)*li(z)*cos(gamma(z)+x(3));%m/s 

     
    %check to ensure that the boulder is embedded, if not then don't try to 
    %calculate soil forces that aren't there 
    if d>0 

               
        %calculate the soil element spring force 
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        Fki(z) = ki(z)*(delta_xi(z));%N 

         
        %calcuate the ultimate lateral load for soil at the given depth 
        Pu_max(z) = Kp^2*rho_soil*W*depth(z)*g*Kg/depth(end);%Pa 

         
        %calcuate the height of a single soil element 
        delta = depth(2)-depth(1);%m 

         
        %calculate the cross sectional area of one soil element 
        Area(z) = W*delta;%m^2 

         
        %calculate the ultimate lateral force for the given depth 
        max_force(z) = Pu_max(z)*Area(z);%N 

         
        %apply limiting conditions on spring force such that the spring 
        %force cannot exceed the ultimate lateral load 
        if abs(Fki(z))>max_force(z)    
            Fki(z)=sign(Fki(z))*max_force(z);%N 
        end 

         
        %calculate the soil element damping force 
        Fci(z) = ci*(xi_dot(z))^2 *sign(xi_dot(z));%N 

         
        %calculate the total force from the soil element 
        Fix(z) = -(Fki(z)+Fci(z));%N 

       
        %calculat the resulting moment of the soil force for the element 
        Mi(z) = -Fix(z)*li(z)*cos(gamma(z)+x(3)-pi);%N-m 

         
    end 
    %end of soil depth if statement 
end 
%end of for loop for soil elements 

  
%display the states to the workspace; it's fun to watch the numbers scroll! 
clc 
disp(x) 

  
%% Calculate the Truck Force and Moment 

  
%calcuate the radial distance of the truck wrt C.M. of boulder-soil  
%subsystem 
lt = sqrt((di(1)+dt)^2+mass_center_x^2);%m 

  
%calcuate the angle of the truck wrt C.M. of boulder-soil subsystem 
gamma_t = atan(mass_center_x/(di(1)+dt));%radians 

  
%calculate the linear velocity of the impact point on the boulder 
x_dot_truck_boulder = x(2) + x(4)*lt*cos(gamma_t+x(3));%m/s 

  
%calcuate the foce acting on the truck 
F_truck = -m_truck*x(7);%N 

  
%truck rebound criteria 
if F_truck<0 
    F_truck = 0; 
end 
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%calculate the resultin moment of the truck acting on the boulder 
M_truck = F_truck*lt*cos((gamma_t+x(3)));%N-m 

  

  
%% Calculte the estimated restoring moment due to gravity 

  
%calculate the total moment acting on the boulder without the restoring 
%moment and set the restoring moment initially as the sum with opposite 
%sign 

  
if(sum(Mi)+sum(M_truck))~=0 
    M_reac = -sign(sin(gamma_reac+x(3)))*... 
        (sum(Mi)+sum(M_truck));%N-m 
else 
    M_reac = 0; 
end 

  
%calculate the maximum restoring momement 
M_reac_max = -sign(sin(gamma_reac+x(3)))*... 
    m_boulder*g*lr*cos((gamma_reac+x(3))); 

  
%limit the restoring moment to the maximum theoretical moment 
if abs(M_reac)>abs(M_reac_max)%N-m 
    M_reac = M_reac_max;%N-m 
end 

  

  
%% EOMS 
%Collect all of the forces and plug into the state space EOM 

  

  
% set up boundaries so the boulder will not oscilate in the soil or 
% continue to rotate beyond 90 degrees as there is no truck or mother earth 
% to push back up on the boulder and 90 degrees is well beyond the 
% approximation methods used thus far 

  
if x(3)<pi/2&&x(4)>-.1 
    xprime = [x(2);...%x dot is v 
        1/(m_boulder+sum(mi))*(sum(Fix)+sum(F_truck));...EOMr xb 
        x(4);... %theta dot is omega 
        1/(I_b+sum(mi.*(di.^2+(L-mass_center_x)^2)))*... 
        (sum(Mi)+sum(M_truck)+M_reac);... EOM for theta 
        x(6);... %xt dot is v_truck 
        x(7);... %vt dot is a_truck 
        -kt/m_truck*x(6)-kt/ct*x(7)+kt/m_truck*x_dot_truck_boulder]; 
        %EOM for the truck 
else % if the boulder goes beyond 90 degrees or starts to rock backwards, 
    %kill the sum beech 
    xprime = [0;0;0;0;0;0;0]; 
end 
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FCN_DEOM.M 

function xprime = fcn_DEOM(~,x,mi,ki,ci,m_boulder,... 
    I_b,di,ct,kt,m_truck, dt,L,H,li,gamma,mew,d,phi,... 
    rho_soil,W,g,mass_center_x,mass_center_y,v_initial,Kg) 

  
%Mark P. Keske, mark.keske@gmail.com, Alex Brown, aab5009@psu.edu 

  

  
%this file is commented such that the comments in line with the variables 
%describe the units 

  
%state vector is [pi_xb; pi_xb_dot; theta boulder; pi_omega_b; pi_x_v; 
%pi_x_v_dot; pi_x_v_double_dot] 

  
%Transform the dimensionless parameters into dimensioned form to calcuate 
%the forces.  The forces will then be transformed back into the 
%dimensionless state prior to evaluating the DEOM 

  
%Based on scaling laws, xb = pi_xb*vo^2/g, ... 
x_boulder = x(1)*v_initial^2/g;%m 
x_boulder_dot = x(2)*v_initial;%m/s 
theta = x(3);%radians 
theta_dot = x(4)*g/v_initial;%rad/s 
x_truck = x(5)*v_initial^2/g;%m 
x_truck_dot = x(6)*v_initial;%m/s 
x_truck_double_dot = x(7)*g;%m/s/s 

  
%calcuate the position of the restoring reaction 
gamma_reac = atan(mass_center_y/(L-mass_center_x));%radians 
lr = sqrt((H-mass_center_y)^2+(L-mass_center_x)^2);%m 

  
%divide the embedment depth into N equally spaced elements 
depth = linspace(0,d,length(mi));%m 

  
%Passive earth pressure coefficent 
Kp = tan(pi/4+phi/2)^2; 

  
%Preallocate vectors used within the soil force loop 
Fix= zeros(length(di),1);%total force from soil 
Fki= zeros(length(di),1);%soil spring force 
Fci= zeros(length(di),1);%soil damping force 
Mi = zeros(length(di),1);%moments of the soil forces about C.M. 
xi = zeros(length(di),1);%linear position of each soil element 
xi_dot = zeros(length(di),1);%linear velocity of soil elements 
delta_xi = zeros(length(di),1);%change in linear positio of soil elements 
Pu_max = zeros(length(di),1);%maximum lateral pressure for soil  
%based on depth 
Area = zeros(length(di),1);%Cross sectional area of soil elements 
max_force = zeros(length(di),1);%maximum lateral force for soil 

  
%% Soil Forces and Moments 

  
%from the top of soil surface to bottom of boulder 
for z = 1:length(di) 
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    %calcuate the linear position of the soil element 
    xi(z) = x_boulder+li(z)*sin(gamma(z)+theta);   %m 

     
    %calcuate the change in linear position of the soil element 
    delta_xi(z) = xi(z)-li(z)*sin(gamma(z));   %m 

     
    %calcuate the linear velocity of the soil element 
    xi_dot(z) = x_boulder_dot+theta_dot*li(z)*cos(gamma(z)+theta);   %m 

     
    %check to ensure that the boulder is embedded, if not then don't try to 
    %calculate soil forces that aren't there 
    if d>0 

         
        %calcuate the height of a single soil element 
        delta = depth(2)-depth(1);   %m 

         
        %calculate the soil element spring force 
        Fki(z) = ki(z)*(delta_xi(z));   %m 

         
        %calcuate the ultimate lateral load for soil at the given depth 
        Pu_max(z) = Kp^2*rho_soil*W*depth(z)*g*Kg/depth(end);%Pa 

         
        %calculate the cross sectional area of one soil element 
        Area(z) = W*delta;   %m^2 

         
        %calculate the ultimate lateral force for the given depth 
        max_force(z) = Pu_max(z)*Area(z);   %N 

         
        %apply limiting conditions on spring force such that the spring 
        %force cannot exceed the ultimate lateral load 
        if abs(Fki(z))>max_force(z) 
            Fki(z)=sign(Fki(z))*max_force(z);%N 
        end 

         
        %calculate the soil element damping force 
        Fci(z) = ci*(xi_dot(z))^2 *sign(xi_dot(z));%N 

         
        %calculate the total force from the soil element 
        Fix(z) = -(Fki(z)+Fci(z));%N 

         
        %calculat the resulting moment of the soil force for the element 
        Mi(z) = -Fix(z)*li(z)*cos(gamma(z)+theta-pi);%N-m 

         

         
    end 
    %end of soil depth if statement 
end 
%end of for loop for soil elements 

  
%display the states to the workspace; it's fun to watch the numbers scroll! 
clc 
disp(x) 

  
%% Calculate the Truck Force and Moment 

  
%calcuate the radial distance of the truck wrt C.M. of boulder-soil  
%subsystem 
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lt = sqrt((di(1)+dt)^2+mass_center_x^2);%m 

  
%calcuate the angle of the truck wrt C.M. of boulder-soil subsystem 
gamma_t = atan(mass_center_x/(di(1)+dt));   % in thesis 

  
%calcuate the foce acting on the truck 
F_truck = -m_truck*x_truck_double_dot;%N 

  
%truck rebound criteria 
if F_truck<0 
    F_truck = 0;%we don't want the truck to influence the boulder if it 
    %'rebounds'. 
end 

  
%truck rebound criteria 
if x_truck<0 
    F_truck = 0; 
end 

  
%calculate the resultin moment of the truck acting on the boulder 
M_truck = F_truck*lt*cos((gamma_t+theta));%N-m 

  

  
%% Calculte the estimated restoring moment due to gravity 

  
%calculate the total moment acting on the boulder without the restoring 
%moment and set the restoring moment initially as the sum with opposite 
%sign 

  
if(sum(Mi)+sum(M_truck))~=0 
    M_reac = -sign(sin(gamma_reac+x(3)))*... 
        (sum(Mi)+sum(M_truck));%N-m 
else 
    M_reac = 0; 
end 

  
%calculate the maximum restoring momement 
M_reac_max = m_boulder*g*lr*cos((gamma_reac+x(3))); 

  
%limit the restoring moment to the maximum theoretical moment 
if abs(M_reac)>abs(M_reac_max)%N-m 
    M_reac = sign(M_reac)*M_reac_max;%N-m 
end 

  

  
%% DEOM 
%Collect all of the forces and plug into the state space EOM 

  
% set up boundaries so the boulder will not oscilate in the soil or 
% continue to rotate beyond 90 degrees as there is no truck or mother earth 
% to push back up on the boulder and 90 degrees is well beyond the 
% approximation methods used thus far 
if theta<pi/2&&theta_dot>-.1 

     

     
    %convert the dimensioned form of all the forces into the equivalent pi 
    %parameters as seen in CH.5 
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    %it should be noted that the states x[] are used within the DEOM and 
    %not xb, xt, etc. 

     
    %This is done quite simpley by multiplying the entire right hand side 
    %of the equations by the scaling factor for force or moment 

     
    %the force scaling factor is which is 1/(mg) and moment is 1/(mv^2) 

     
%the states are driven by the dimensionless initial velocity of the truck 
%which is 1.  v_o_truck/v_o_truck = 1;  It can also be conceptualized using 
%the velocity vector of the truck after a simulation.  The dimensioned form 
%will start at 13.4 m/s say, and the it is transformed into the 
%dimesnionless zone by dividing the entire vector by the repeating 
%parameter v_o_truck, which low and behold gives you 1 at the time of 
%impact. 
    xprime = [x(2);...%pi_dot_xb is pi_xbdot, the dimensionless rate 
        %of change of the parameter is the next parameter 

         
    %the left hand side of the xb_dotdot code is the dimensionless form of 
    %the effective mass of the system.  meff is turned into pi_meff simply 
    %by dividing by the repeating parameter m_truck. the ratio is inverted 
    %in the xdd line because of state space form, governing DEOM for the 
    %boulder in the X direciton is mxdd = ... so xdd = 1/m*forces. 
        m_truck/(m_boulder+sum(mi))*... 
        ((sum(Fix)+sum(F_truck))/(m_truck*g));... EOM for xb 

         
        x(4);... %pi_dot_theta (if you will), is pi_thetadot 

         
        %similar to the boulder translation, the boulder rotation is made 
        %dimensionless by multiplying both sides by the representative 
        %repeating parameter grouping.  pi_J = g^2*J/(mv^4) therefore, it 
        %is inverted and multiplied with the dimesnionless moments as 
        %created using pi_Mommy = M/(mv^2) , Nm / (kgm^2/s^2) is indeed 
        %dimensionless 
        m_truck*v_initial^4/(g^2*(I_b+sum(mi.*... 
        (di.^2+(L-mass_center_x)^2))))*((sum(Mi)+sum(M_truck)+M_reac)... 
        /(m_truck*v_initial^2));... EOM for pi_dot_thetadot  
        %or pi_thetadotdot 

         
        x(6);... %pi_dot_xt is pi_xtdot 

         
        x(7);... %pi_dot_vt is pi_xtdotdot 

         
        %samesies as the boulder x dirction 
        %this one is a bit more intricate since the equation was not 
        %written explicitly in terms of forces, but rather it had k_truck, 
        %c_truck, etc. etc.  Therefore each parameter was turned into the 
        %dimensionless form.         
        -kt*(v_initial^2/(m_truck*g^2))*x(6)-kt*(v_initial^2/... 
        (m_truck*g^2))/(ct*(v_initial/(m_truck*g)))*x(7)+... 
        kt*(v_initial^2/(m_truck*g^2))*(x(2)+... 
        x(4)*lt*g/v_initial^2*cos(gamma_t+x(3)))];  %DEOM for a  
    %dimensionless truck, ba ba baaaaa ghost truck. 

     
else% if the boulder goes beyond 90 degrees or starts to rock backwards, 
    %kill the sum beech 
    xprime = [0;0;0;0;0;0;0]; 
end  
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FCN_FRACTURE.M 

function [n,sigma1] = fcn_fracture(lengthCantilever,peakForce,W,L,... 
    sigmaTensileUltimate,sigmaCompressionUltimate) 

  
%Mark P. Keske, mark.keske@gmail.com 

  
%% Calculate the factor of safety for the given boulder geometries 

  
%Calculate the maximum bending moment from the impact 
peakMoment = peakForce*lengthCantilever; %N-m 

  
%Calculate area moment of inertia, assuming impact is along the length axis 
I_area = 1/12*W*L^3; %m^4 
A_area = L*W;%m^2 

  
%Normal stress as a result of bending 
sigmaX = peakMoment*L/2 / I_area; %N/m^2; 

  
%Shear force from impact 
tauXY = peakForce/A_area;  %N/m^2; 

  
%Calculate the principle stresses 
sigma1 = (sigmaX/2 + sqrt((sigmaX/2)^2+tauXY))/1e6;  %MN/m^2 
sigma2 = (sigmaX/2 - sqrt((sigmaX/2)^2+tauXY))/1e6;  %MN/m^2 

  
%Apply Brittle Coulomb Mohr failure criteria since it is more  
%conservative than Modified Mohr 

  
%negative value used for contour plotting 

  
if (sigma1>=sigma2 && sigma2>=0)  %First Quadrant of o2 vs. o1 
    n = -(sigmaTensileUltimate/sigma1-1); 
elseif (sigma1>=0 && 0>=sigma2)  %4th Quadrant of o2 vs. o1 
    n = -((sigma1/sigmaTensileUltimate-sigma2/sigmaCompressionUltimate)^-1-1); 
else 
    n = -(-sigmaCompressionUltimate/sigma2-1); 
end 

 

 


