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ABSTRACT

This thesis describes development and application of a 2-D low-order model, scaling
laws, and dimensionless equations of motion (DEOM) for a vehicle impact upon a soil-fixed
boulder in cohesionless soil. The vehicle is represented as a lumped-parameter Maxwell model,
the boulder is treated as a rigid body with non-negligible mass, and the soil is represented as a
system of lumped-parameter Kelvin models. The low-order model has three degrees-of-freedom
(DOFs), which are the linear translation of the vehicle and boulder and the angle of rotation of the
boulder.

The low-order model is used to simulate a vehicle impact on a soil-fixed boulder using
numerical integration techniques. The simulation is then compared and validated against past full
scale crash tests. All full scale crashes were performed according to ASTM F2656-07 at an M30
rating using a 6,800 kg (15,000 Ib.) medium-duty sized truck. The results of the full scale
simulation agree to within + 3° of the measured boulder angle of rotation from full scale tests.

Dimensional analysis is performed on the low-order model to develop the DEOM and
scaling laws. The DEOM and scaling laws are then used to simulate small scale vehicle impacts
and are first validated against full-scale simulations and full-scale crashes. Next, small scale
crash tests are then designed, preformed, and validated against full scale crash tests using the
scaling laws. The small scale crash tests are performed using a small equivalent vehicle mass of
8 kg. The small-scale simulations are in full similitude with the full-scale simulations, which
implies 100% matching between scaled simulations. The experimentally-measured angles of
rotation of the boulder for the small scale tests were found agree to within + 3° of the full-scale
past crash tests.

The results from the low-order model simulations are then used to create pass/fail

boundaries for various sized boulders. The pass/fail boundaries are chosen such that failures



iv
include boulder rotation beyond 20°; predicted boulder fracture; and excessive boulder masses.
The pass/fail boundaries are then used to design a boulder of potential minimum mass that will
rotate no more than 20°. At this time, simulations and small scale testing has been performed
which show and an agreement of + 3° of boulder rotation between the simulations and the small

scale testing. The full scale test has not taken place at this time.
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NOMENCLATURE

The following variables used throughout Chapter 3 and Chapter 9 are defined as the follows:

Variable Definition

a constant used in curve fitting for Maxwell model parameterization
Ap upper right hand matrix found within the D matrix
an depth of soil element n with respect to the soil surface
ar arbitrary angular acceleration used in creation of = groupings
Ap cross sectional area of soil element n

apeqr  Peakacceleration observed in a rigid-wall vehicular impact
Arod cross sectional area of a long slender rod

Asted linear acceleration of the impact sled used in fracture testing

a* arbitrary linear accelerations used in creation of x groupings
Apenicle  €Quivalent linear acceleration of a 6,800 kg vehicle from medium scale fracture
testing

B width of a pile
b constant used in curve fitting for Maxwell model parameterization
Bp Upper left hand matrix within the D matrix
B* arbitrary constant of horizontal subgrade reaction used in creation of = groupings
B constant of horizontal subgrade reaction
b' slope of the linear curve fit of the modulus of subgrade reaction vs. depth

CBR California Bearing Ration in percent
Cn damping constant for soil element n
Cp distance from the pivot point to the center of mass of the small scale pendulum
c* arbitrary damping constant used in creation of x groupings
Cy damping constant for the impact vehicle
Cx distance from the local origin to the center of mass of the boulder-soil subsystem in

the X direction

Cy distance from the local origin to the center of mass of the boulder-soil subsystem in
the Y direction
d embedment depth of the boulder
s small scale parameter
A full scale parameter
Axp, change in linear displacement of the contact point between the vehicle and boulder
An change in linear displacement of soil element n
d; depth at increment i of the dynamic cone penetrometer
d, depth of soil element n with respect to the center of mass of the boulder-soil

subsystem
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cn
Fdistributed

F fracture

Change in momentum of soil element n

relative dry density of the soil

eccentricity of the vehicle impact with respect to the soil surface
unity matrix

distance from the soil surface to the bottom of the vehicle bumper

distance from the soil surface to either the top of the boulder or the top of the
vehicle hood
Young's modulus of a long slender rod

arbitrary force vector acting on the boulder from soil element n

force from soil representative damper n

assumed distributed load acting on the boulder from the front of the vehicle
fracture force acting on the boulder from a vehicle impact

force from soil representative spring n

total force from soil element n

ultimate lateral load of soil element n

force acting on the boulder from the vehicle

force acting on the vehicle from the boulder

gravitational constant

unit weight of soil

angle between the center of mass of the boulder and the boulder-soil subsystem
angle between vertical and soil element n

dimensionless representation of y,,

angle between the center of mass of the boulder-soil subsystem and impact vehicle
dimensionless representation of y,,

boulder height with respect to impact direction

height of one soil element

area moment of inertia of the boulder in the XZ plane

mass moment of inertia of the boulder about the Z axis

mass moment of inertia of the boulder-soil subsystem about the Z axis

mass moment of inertia of the small scale pendulum about the pivot point, p
arbitrary linear jerk used in creation of x groupings

strain rate loading constant

modulus of subgrade reaction at increment i, from dynamic cone penetrometer test
linear spring constant of soil element n

passive earth pressure coefficient

equivalent linear spring constant of a long slender rod

arbitrary spring constant used in creation of z groupings

equivalent linear spring constant of the impact vehicle
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Merp
M fracture

length of the boulder with respect to impact direction

distance from the center of mass of the boulder-soil subsystem to the soil element n|
in the X direction
length of the small scale pendulum arm from the pivot point, p

length of a long slender rod

length of the top of the passive soil wedge

arbitrary length used in creation of = groupings

mass of the boulder

mass of the boulder-soil subsystem

bending moment acting on the from the impact vehicle
mass of soil element n

moment from soil element n about the center of mass of the boulder-soil subsystem
time rate of change of the mass of soil element n
added soil from translation of soil element n

time rate of change of the added soil, m,,’

inertial mass

restoring moment from boulder tip

maximum restoring moment of the boulder

mass of the medium scale impact sled

mass of the vehicle

moment from the vehicle impact about the center of mass of the boulder-soil
subsystem
mass of the ideal M30 vehicle

number of soil elements

number of base dimensions

factor of safety with respect to fracture

number of independent = groupings

number of governing variable in the low-order model

arbitrary angular velocity used in creation of m groupings
notation for desired parameter in either small or full scale testing
momentum of soil element n

effective angle of internal friction of the soil

penetration index from DCPT

dimensionless = grouping for the depth of soil element n with respect to the soil
surface, a,

dimensionless = grouping for the arbitrary angular acceleration used in creation of
7 groupings, a*

dimensionless © grouping for the arbitrary linear accelerations used in creation of
T groupings, a”

dimensionless w grouping for the constant of horizontal subgrade reaction,
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Myers

T+
Ty

v

U3

dimensionless © grouping for the arbitrary constant of horizontal subgrade reaction
used in creation of 7 groupings, 8*

dimensionless w grouping for the arbitrary damping constant used in creation of &
groupings, c*

dimensionless © grouping for the damping constant for the impact vehicle, c,
dimensionless w grouping for the distance from the local origin to the center of
mass of the boulder-soil subsystem in the X direction, c,

dimensionless © grouping for the distance from the local origin to the center of
mass of the boulder-soil subsystem in the Y direction, c,,

dimensionless © grouping for the embedment depth of the boulder, d

dimensionless m grouping for the depth of soil element n with respect to the center
of mass of the boulder-soil subsystem, d,,

dimensionless = grouping for the eccentricity of the vehicle impact with respect to
the soil surface, e

dimensionless = grouping for the force from soil representative damper n, £,
dimensionless = grouping for the force from soil representative spring n, F;,
dimensionless = grouping for the total force from soil element n, F,
dimensionless = grouping for the ultimate lateral load of soil element n, i, |
dimensionless = grouping for the boulder height with respect to impact direction,
H

dimensionless = grouping for the height of one soil element, h,

dimensionless = grouping for the mass moment of inertia of the boulder about the
Z axis, Jp

dimensionless m grouping for the mass moment of inertia of the boulder-soil
subsystem about the Z axis, Jf

dimensionless = grouping for the arbitrary linear jerk used in creation of ©
groupings, j*

dimensionless = grouping for the arbitrary spring constant used in creation of ©
groupings, k*

dimensionless = grouping for the equivalent linear spring constant of the impact
vehicle, k,,

dimensionless m grouping for the length of the boulder with respect to impact
direction, L

dimensionless = grouping for the distance from the center of mass of the boulder-
soil subsystem to the soil element n in the X direction, [,

dimensionless = grouping for the arbitrary length used in creation of m groupings,
L*

dimensionless = grouping for the mass of the boulder, m,,

dimensionless = grouping for the mass of the boulder-soil subsystem, m, ¢
dimensionless = grouping for the mass of soil element n, m,,

dimensionless = grouping for the moment from soil element n about the center of
mass of the boulder-soil subsystem, M,,
dimensionless x grouping for the restoring moment from boulder tip, My

dimensionless x grouping for the maximum restoring moment of the boulder,
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Pp
Psoil

psoilmax
*

P
Ry

MRmax

dimensionless x grouping for the moment from the vehicle impact about the center
of mass of the boulder-soil subsystem, M,

dimensionless = grouping for the arbitrary angular velocity used in creation of «
groupings, w*

dimensionless = grouping for the mass density of the boulder, p,

dimensionless = grouping for the mass density of the soil, ps,;

dimensionless = grouping for the arbitrary mass density used in creation of ©
groupings, p*

dimensionless = grouping for the radial distance from the center of mass of the
boulder-soil subsystem to soil element n, R,,

dimensionless x grouping for the radial distance from the center of mass of the
boulder-soil subsystem to the impact vehicle contact point, R,

dimensionless m grouping for the time, t

dimensionless m grouping for the angular acceleration of the boulder-soil
subsystem about the Z axis, éb

dimensionless = grouping for the angular velocity of the boulder-soil subsystem
about the Z axis, 6,,

dimensionless = grouping for the arbitrary time used in creation of the ©
groupings, t*

dimensionless = grouping for the arbitrary velocity used in the creation of =
groupings, v*

dimensionless m grouping for the width of the boulder with respect to the impact
direction, W

dimensionless = grouping for the linear displacement of the center of mass of the
boulder-soil subsystem, x;,

dimensionless m grouping for the linear velocity of the center of mass of the
boulder-soil subsystem , x;,

dimensionless = grouping for the linear acceleration of the center of mass of the
boulder-soil subsystem , X,

dimensionless = grouping for the linear displacement of the impact vehicle, x,,

dimensionless = grouping for the linear velocity of the vehicle, x,,
dimensionless = grouping for the linear acceleration of the vehicle, %,
dimensionless = grouping for the linear jerk of the impact vehicle, X,
ultimate lateral pressure of soil element n

dimensional change of basis vector

radial distance from the center of mass of the boulder to the center of mass of the
boulder-soil subsystem
mass density of the boulder

mass density of the soil
maximum mass density of the soil
arbitrary mass density used in creation of = groupings

radial distance from the center of mass of the boulder-soil subsystem to soil
element n
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radial distance from the center of mass of the boulder-soil subsystem to the impact
vehicle contact point
principle stresses on the XZ and YZ planes

normal stress acting on the YZ face of soil element n

bending stress on the cross section of the boulder about the Y axis
ultimate compressive strength of granite

ultimate tensile strength of granite

time

shear stress acting on the boulder cross section

angular rotation of the boulder-soil subsystem about the Z axis
angular acceleration of the boulder-soil subsystem about the Z axis
angular velocity of the boulder-soil subsystem about the Z axis
angular acceleration of the small pendulum about the Z axis
angular velocity of the small pendulum about the Z axis

angular rotation of the small pendulum about the Z axis

defining angle of the passive soil wedge measured from vertical
arbitrary time used in creation of the = groupings

initial velocity of the impact vehicle

arbitrary velocity used in the creation of = groupings

width of the boulder with respect to the impact direction

global X axis, right

distance from the centroid of the cross section to the impact face which
corresponds to maximum bending stress
linear displacement of the center of mass of the boulder-soil subsystem

linear acceleration of the center of mass of the boulder-soil subsystem
linear velocity of the center of mass of the boulder-soil subsystem
linear displacement of the center of mass of the boulder

linear displacement of soil element n

linear velocity of soil element n

linear displacement of the impact point on the small pendulum
linear acceleration of the impact point on the small pendulum
linear velocity of the impact point on the small pendulum

linear displacement of the inertial mass

linear velocity of the inertial mass

linear acceleration of the inertial mass

linear jerk of the inertial mass

linear displacement of the impact vehicle

linear jerk of the impact vehicle

linear acceleration of the vehicle

linear velocity of the vehicle
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zZ

global Y axis, down
global Z axis, into the page
depth along a pile from the soil surface
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CHAPTER 1

INTRODUCTION

This thesis presents a low-order model for a vehicle impact upon a soil-fixed boulder and
the use of dimensional analysis to perform dimensionally similar small scale versions of past
crash tests. The model is limited to cohesionless soils which are typically sands and gravels,
which allow water to permeate even when firmly compacted [1]. In addition, methodology is
presented which demonstrates how to use the results from dimensional analysis and the low-order
model as a design tool for developing full scale boulders. The low-order model presented in
Chapter 3 can be idealized as a lumped-parameter vehicle model impacting a soil-embedded
object. A brief introduction into the modeling techniques for vehicle impacts and laterally loaded
soil-fixed objects is first presented. Then, the applications of dimensional analysis will be briefly

discussed.

1.1 Vehicle models

Modeling vehicles crashes is a well-studied subject in which several models have been
created. The two simplest and most taught are the lumped-parameter Kelvin model and the
lumped-parameter Maxwell model. The lumped-parameter Kelvin model is oft used in crash tests
which exhibit little to no permanent damage to the vehicle during impact [2]. The Kelvin model
will always return to the same equilibrium position after deflections occur since the spring is in
parallel with the damper. Such cases involve low speed collisions. The lumped-parameter
Maxwell model, however, is oft used in cases which involve the crushing of the front end of the

vehicle [2]. Unlike the Kelvin model, the Maxwell model allows for permanent deflections since
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the spring is placed in series with the damper. Such cases involve high-speed crashes. The scope
of this thesis pertains to M30 rated vehicle impacts as defined by ASTM F2656-07 in which a
15,000 Ib. (6800 kg) impact vehicle is accelerated to 30 mph (13.4 m/s). As shown in Figure 1-1,
a 30 mph car crash, even for smaller vehicles, would induce a vast amount of permanent damage
and front end deformation. The use of a lumped-parameter Maxwell model for vehicle impacts is

further reviewed in Chapter 2.

ALY
» (St S
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2009 VOLVO C30
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LTI 1A99199001
CEF0906

Figure 1-1. 31 mph crash test of a 2009 Volvo C30 into a rigid wall [3]

1.2 Laterally loaded pile models

Similarly, numerous models and analytical methods have been proposed in an attempt to

predict displacements, stresses, and reaction forces of a loaded structure embedded in soil.
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Models of particular interest as related to the scope of this thesis include laterally loaded soil
models. More specifically, the idea of a vehicular impact upon a soil embedded boulder may be
conceptually idealized as an embedded object that is laterally loaded at some arbitrary point at or
above the soil surface. In civil engineering, the research that most closely resembles this line of
reasoning involves laterally loaded piles, where a pile is typically a long, slender elastic beam that
is most often embedded vertically in the soil. Figure 1-2 shows the configuration of a typical

laterally loaded pile embedded in soil. The variables in Figure 1-2 are the applied moment, M,

applied lateral load, @4, depth of pile at location z, and total length of the pile, L.

[

7

Figure 1-2. Typical configuration of laterally loaded piles [4].

1.3 Dimensional analysis

Dimensional analysis is applied to the low-order model as a means of developing

dimensionless equations of motion and scaling laws. The scaling laws would allow for the
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creation of small scale crash test from which the results can be scaled up to the full scale size.
The major selling point in small scale testing is that an expensive full scale crash test can be
duplicated on a much smaller and cheaper scale. Industry has already verified this concept with

the simple advent of wind tunnels.

1.4 Thesis organization

The organization of this thesis is presented as follows:

The salient literature pertaining to the development of a low-order model and application
of dimensional analysis is briefly reviewed in Chapter 2. Salient soil property measurement
techniques and boulder properties are also reviewed in Chapter 2. Following the review of salient
literature, the development of the low-order model and boulder fracture prediction methodology
is presented in Chapter 3. Next, Chapter 4 presents the verification of the low-order model and
fracture prediction methodology by comparing them to past full scale crash tests which include
two soil-fixed tests and two rigidly embedded tests. After the low-order model has been verified
against past crash data, the development of the dimensionless equations of motion and associated
scaling laws for the low-order model are presented in Chapter 5. Similarly, the validation of the
dimensionless equations of motion and scaling laws through the creation of dimensionally similar
small scale crash tests is presented in Chapter 6. Chapter 7 presents the development of a tool
which can be used in the selection of boulder geometries based on desired boulder motion, and
the application of the design tool is presented in Chapter 8 by proactively designing and verifying
a boulder to meet dynamic constraints. Lastly, the summarization of results presented and

proposed future work as related to this thesis topic are discussed in Chapter 9.



CHAPTER 2

LITERATURE REVIEW

The concept of a low-order dynamic model for vehicular impacts on soil-fixed boulders
is a relatively unaddressed topic in common literature; however, individual aspects of such a
model have been widely researched and are commonly used. This work combines aspects of
prior art to derive the models presented later. An in-depth look at prior work will be presented
here with the goal of developing a low-order model of a vehicle during front end collision with a
soil embedded boulder, including consideration of both static and dynamic loads. Previous works
of particular interest include low-order vehicle models for front end collisions, a model for
laterally loaded piles in cohesionless soils, boulder fracture mechanics, and scaling laws

associated with both vehicle impacts and laterally loaded piles.

2.1 Low-order vehicle modeling

Several low-order vehicle models have been developed regarding the representation of a
vehicle during a front end collision. The Maxwell model is a commonly used model in
representing vehicles during a front end collision. The Maxwell models will be briefly reviewed
in an attempt to create a low-order vehicle representation.

It is common practice in literature to represent a front end vehicle collision as a 1-D
Maxwell model [2]. Figure 2-1 shows a typical Maxwell model for vehicular impacts. The
variables in Figure 2-1 are the effective spring constant, k, damping constant, ¢, lumped vehicular

mass, m, vehicle displacement, d, and inertial mass, m', and inertial mass displacement, d'.



Figure 2-1. Maxwell model for front end vehicle collision [2]

Pawlus [2] performed a series of pole impact tests for various types of vehicles and
compared the predicted displacements to measured displacements when using a Maxwell model.
Pawlus [2] fit the spring and damper coefficients for the Maxwell model from full scale crash
tests and plotted the estimated displacement, speed, and acceleration compared to the actual

measurements from of the vehicle. The results presented in [2] can be seen in Figure 2-2.
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Figure 2-2. Maxwell model and full scale test responses of a rigid pole impact test [2]

As seen in Figure 2-2, the values obtained for the spring and damper coefficients using

the method proposed in [2] show good agreement between predicted and measured responses of
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the vehicle. The Maxwell will also be used model a vehicle impacting a soil fixed boulder in this

work and will be compared against the Kelvin model as well as full scale crash tests.

2.2 Dimensional analysis of vehicle collisions

The effects of various vehicle parameters have significant influences on the forces and
displacements during impact. These effects can be experimentally determined through full scale
tests, but full scale testing is often expensive, time consuming, and experimentally cumbersome.
Rather than performing several full scale tests, it is common practice to develop small scale
experiments in order to study the effects of various vehicle parameters during impact.

The effectiveness of small scale crash tests were confirmed by Homes and Sliter [5], who
conducted full and small scale vehicle crash tests under matching scaling parameters. They
compared the results seen in full- and small-scale experiments. A comparison between the full

scale and ¥4 scale model is shown in Figure 2-3.

Figure 2-3. Full scale vehicle test apparatus (left), ¥ scale vehicle test apparatus (right) [6]

The small scale crash test parameters, such as material properties, were derived using
scaling laws obtained from the dimensional analysis of vehicular impacts. Both the full and small

scale vehicles impacted a rigid pole during which the accelerations, velocities and positions of
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both full and small scale were measured using the appropriate sensors and high-speed video.
Both the full scale and small scale crash tests demonstrated similar deformations and material

failure as shown in Figure 2-4 and Figure 2-5.

Figure 2-4. Full scale vehicle deformations (left), ¥ scale vehicle deformations (right) [6]

Figure 2-5. Full scale material failure (left), ¥ scale material failure (right) [6]

The velocities and accelerations measured during impact are shown in Figure 2-6. Table

2-1 shows the measured distances during the impacts and comparison of observed deformations.
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Figure 2-6. Comparison of full (dashed line) and small (solid line) scale velocities and

accelerations for vehicular front end collisions [5] (units are in full scale dimensions).
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Table 2-1. Measured distance and deformation comparison between full and small scale front end
vehicular collisions

Full Scale Scale Model®
1. Total collapse of front end was 20 inches
22 inches %
2. Vehicle rebounded from pole - 20 inches
18 inches
3. The two outer hinges fractured Same response
near front bumper
4, The two inner hinges fractured Same response, but fractures
near their connection points less extensive
5. Outside frame members failed Some deflection but much
downward just aft of reinforcing less than in full-scale
plates
6. The firewall was displaced 1 inch
approximately 3 inches
7. Box support behind engine 3 inches
crushed 3 inches
8. Steering post moved aft 1 inch Not applicable
9. Peak deceleration 44 g 51 g
10. Compartment forward motion 70 ms

ceased 79 ms after impact.

*

Measurements are scaled to the prototype size for direct

comparison.

*k
This rebound is often affected by gravity and may not scale.

As seen in Figure 2-4, Figure 2-5, and Table 2-1, the results from the scaled model tests closely

agree with those measured during full scale testing. This scaling methodology is used to model a

small scale vehicle during impact.

2.3 Low-order Soil Modeling

Several models and analytical methods have been developed in the literature to predict
soil pile interaction during lateral loading. Such analytical models include methodologies
proposed by Zhang [7] and Naggar and Bentley [8]. An in-depth look will be taken into these

commonly used laterally loaded pile models.
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2.3.1 Nonlinear analysis of laterally loaded rigid piles
Zhang [7] developed a computational method for predicting the displacement of a

laterally loaded, short rigid pile in cohesionless soil due to static loading. Zhang [7] proposed
that, for small displacements, short rigid piles rotate about a single point as shown in Figure 2-7.

The variables in Figure 2-7 are the applied lateral load, H, load eccentricity, e, depth of pile at

location z, total length of the pile, L, lateral displacement, y, lateral displacement of the pile head,

Yo, and angular rotation of the pile, w.

a

-I#,..‘.
y

L]

Figure 2-7. Short rigid pile model as defined in [7]
Rather than representing the soil as a system of non-linear springs and using explicitly

measured pressure-displacement curves in the prediction of pile motion, Zhang [7] calculated the

The

soil reaction pressure as a function of embedment depth and static forces within the soil. The
lateral soil pressure is limited to the ultimate lateral load which the soil can support at a given

depth based on soil properties such as the horizontal modulus of subgrade reaction.
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horizontal modulus of subgrade reaction for cohesionless soils is assumed to vary linearly with
depth [7]. Zhang [7] classifies three cases of lateral loading based on soil yielding and respective
soil reaction pressures. Figure 2-8 shows the three cases of lateral loading with respect to soil
yielding as the lateral load and applied moment, M, is increased. The variables in Figure 2-8 are
the distance from the pile head to the fixed point of rotation moment, a, the depth from the pile
head to the ending point of nonlinear soil-pile interaction above the fixed point of rotation, b, and
the depth from the pile head to the point at which nonlinear soil-pile interaction begins below the

fixed point of rotation, c.
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Figure 2-8.Soil reactions for laterally loaded, short rigid piles in which there is no soil yielding
(left), soil yielding in the region above the point of rotation (middle), and soil yielding in the

regions both above and below the fixed point of rotation [7]

Zhang [7] compared predicted results for statically, laterally loaded, short rigid piles
against full scale tests which can be seen in Figure 2-9, where D,. is the relative density of the

soil. The full scale tests were conducted by Prasad and Chari [9].
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Figure 2-9. Predicted pile head displacement compared to measured values [7]

As seen in Figure 2-9, the predicted pile displacements agree to within reason with the
measured pile displacements resulting from static loading for short rigid piles. The methodology
presented in [7] does not, however, account for explicit pile translation or the effect of pile
inertial properties such as mass moment of inertia. Furthermore, the methodology in [7] assumes
a static load. The determination of ultimate lateral loads for cohesionless soils and the
corresponding relationship between the embedment depth and the ultimate soil lateral load are

used in this work in the modeling of the soil-boulder interaction.

2.3.2 Dynamic analysis for laterally loaded piles

Naggar and Bentley [8] developed a method for predicting the displacements of a
laterally loaded, long elastic pile under dynamic loading. The methodology proposed by Naggar

and Bentley [8] incorporates the p-y method applied to a Winkler model as well as wave
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propagation and energy dissipation to develop static p-y curves. The static p-y curves are
transformed into dynamic p-y curves through the addition of dampers as shown in Figure 2-10.
The variables in Figure 2-10 are the applied force as a function of time, F(t), linear spring and
damper constants for the far field soil, k; and c;, nonlinear spring and damper constants for the
near field soil, ky; and cy;, mass of the soil associated with the near field soil, m,, and the mass

of the soil associated with the far field, m,.

ki kv,
) 1
I _ mP.
Cr -~ CNL

far field inner field inner field far field

Figure 2-10. Dynamic soil-pile model as proposed by Naggar and Bentley Dynamic [8]

The mass of the soil within the inner field is lumped against the pile due to the assumed
massless area as demonstrated by Novak and Sheta [10]. Naggar and Bentley [8] calculate the
spring and dashpot constants for the soil element based on empirical data from cyclic pile head
loading tests for specific soils. The empirically derived spring and dashpot constants are then
used in predicting the displacement of a dynamically laterally loaded pile. Naggar and Bentley

[8] compared the predicted pile head displacements against measured pile head deflections for
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two cases of dynamically, laterally loaded, long elastic piles using a statnamic device, which
incorporates both static and dynamic loading. The two cases involved a lateral dynamic load of
350 kN and 470 kN respectively. Further soil and pile conditions of the tests can be found in
[11]. The results of the methodology used in [8] compared to measured data from full scale

experiments are shown in Figure 2-11.
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Figure 2-11. Comparison of predicted and measured results from a lateral load of 350 kN (a) and

470 kN (b) [8]
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As seen in Figure 2-11, the predicted pile displacements agree with the measured pile
displacements quite well. The methodology proposed in [8], however, determines the soil
damping explicitly through experiments and curve fitting. It is the goal of this work, rather, to
develop a theoretical model using a minimal number of empirical relations. Additionally, the
methodology in [8] was developed for long elastic piles whereas this work is limited to short rigid
boulders. The inclusion of soil damping to create a set of dynamic p-y curves as well as the
lumped soil mass against the pile will be used in this work in the modeling of boulder motion in

soil.

2.4 Dimensional analysis of laterally loaded piles

As seen in the above literature review, the effects of various soil and pile parameters have
significant influence on the on pile displacement during lateral loading. These effects can be
experimentally determined through full scale tests, but similar to full scale vehicular testing, full
scale testing of piles is often expensive, time consuming, and cumbersome. Rather than
performing several full scale tests, it is common practice to develop small scale models in order
to study the effects of soil and pile parameters on the displacement of laterally loaded piles.
There are numerous applications of scaled testing for laterally loaded piles in literature. Those of

particular interest include scaled centrifuge testing and scaled testing of short rigid piles.

2.4.1 Dimensional analysis for centrifuge testing on small scale piles

According to Ting et al. [12], the ambient stresses in the soil observed during a 1/a small
scale test do not match those observed during full scale testing, where o is a constant related to

the scaled size. The ambient stresses found in soils during lateral loading are functions of
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experimental constants such as gravity and soil mass density [12]. As demonstrated in [12],
either the mass density of the soil must be increased by a factor of a or the gravity must be
increased by a factor of a in order to obtain matching ambient stresses in a small scale
experiment. The first option of increasing soil mass density is rarely used since it is beneficial to
use the same soil in model test as that found in the full scale case. A feasible alternative to
increasing the soil mass density is to increase the gravitational acceleration by a factor of o using
a centrifuge [12].

Ting et al. [12] performed a series of centrifugal tests of laterally loaded small scale piles
to confirm the applicability of scaling the ambient soil stresses due to gravity. Table 2-2shows
the resulting scaling laws when dimensional analysis is applied to a laterally loaded soil-fixed

pile.

Table 2-2. Scaling laws associated with centrifugal tests [12]

Full-scale Centrifuge
(prototype) model
Quantity at 1 g ato g

Stress I 1
Strain I 1
Mass density 1 t
Length 1 1/
Acceleration | @
Area 1 1 /o
Volume | /o’
Force 1 /o’
Moment I /o
Mass I /e’
Energy 1 /o
Velocity ! 1
Time, dynamics l 1/
Time, diffusion i 1/a”
Frequency, dynamics ! o
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The results of the small scale tests were compared to full tests and are shown in Figure
2-12. The solid lines in Figure 2-12 represent the fit of small scale lateral displacements as a
function of applied lateral load in a centrifuge test and the dashed lines represent the full scale

deflections as a function of applied load for various relative density sands.
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Figure 2-12. Full scale and small scale test results, where dashed lines are full scale and solid

lines are small scale [12]

As seen in Figure 2-12, the small scale and full scale results agree to within moderate
reason. The use of a centrifuge for model scale results, however, is not ideal for the scope of this

work. Various input parameters used in scaling in [12] are used in this work to develop small

scale soil and boulder parameters.
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2.4.2 Dimensional analysis for cyclically loaded rigid piles

Leblanc et al. [13] developed a set of dimensionless equations of motion used in
developing design guidelines for monopoles used in wind farms and parameterizing the
displacements of the pile as a result of varying relative densities of sand. Even though the intent
of Leblanc et al. [13] was determining the effect on soil stiffness due to cyclic loading, the
methods used in reaching the conclusions are applicable and noteworthy to this work. The model
used in [13] is shown in Figure 2-13 and assumes that the pile undergoes an angular rotation
about a fixed point below the soil surface similar to that seen in [7]. The variables in Figure 2-13
are the applied moment, M, applied horizontal load, H, applied vertical load, V, friction angle
factor as defined by [14], K, pile diameter, D, effective unit weight of the soil, y’, depth of pile
below grade, z, depth to fixed point of rotation, d, length from fixed point of rotation to the

bottom of the pile, L, a dimensionless constant, c3, and the soil critical state friction angle, ¢, .

I

f z Vo
‘ cV +ED2L;J‘: Sin g,
\ /

Figure 2-13. Leblanc et at. model for dynamically, laterally loaded, short rigid piles [13]
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Table 2-3 shows the dimensionless input parameters for a laterally loaded short rigid pile

in sand as calculated by [13].

Table 2-3. Non-dimensional parameters for the soil-pile model presented in [13]

Moment loading M M
LDy’
Vertical force V _r
L2 Dy’
Horizontal force H _a
> Dy’
Rotation: degrees 6 “&
| '
Viy
Load eccentricity é M
HL
Aspect rati L
Aspect ratio =7

The non-dimensional parameters found in Table 2—-3 are used to predict the static rotation
of piles by creating and solving dimensionless equations of motion. The dimensionless results of
the dimensionless equations of motion are transformed into dimensioned results using the non-
dimensional parameters found in Table 2-3. Leblanc et al. [13] measured the lateral bearing
capacity of several model scale tests and compared the results to predicted lateral bearing
capacities using the dimensionless equations of motion. Figure 2-14 shows the results of the
small scale test results as compared to the theoretical results. The salient features in Figure 2-14
are the dashed line representing the theoretical bearing capacity and the circles representing the
measured bearing capacity. M and H are the dimensionless applied moment and dimensionless

applied horizontal lateral load. The other variables are outside the scope of this work.
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Figure 2-14. Theoretical bearing capacity as determined by the model presented in [13] compared

to measured bearing capacity [13]

As seen in Figure 2-14, the theoretical bearing capacity agrees with the measured bearing
capacity of the scaled tests. The loads used in [13], however, were static loads whereas the
loading as related to this work are dynamic loads which are generally not considered to rotate
about a stationary point below the soil surface. The usage of dimensionless equations of motion,
similar to LeBlanc’s study, is employed in this work to predict the boulder displacement during

scaled vehicle impacts.
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2.5 In-situ soil property measurement

Soil parameters can be obtained either via laboratory tests which generally involve
undisturbed soil samples or via in situ tests which often take advantage of disturbed soil
conditions. The testing methods within the scope of this work will be limited to in-situ methods
which can be used as quick guidelines. The three most prominent in-situ soil testing methods are
the pressuremeter test, flat plate bearing test, and the dynamic cone penetration test (DCPT). The
greatest advantage observed in the DCPT is handheld nature of the test equipment and the low
cost associated with purchasing the test apparatus [15]. The DCPT is a method often used by
state departments of transportation as a quick means of measuring soil properties [16]. For these
reasons, an in-depth look will be taken into the DCPT method for preforming in-situ soil
measurements with the goal of developing rapid field soil measurements which can be used in
modeling of the soil.

The dynamic cone penetration test is a testing method which incorporates methodology
from both the Standard Penetration Test (SPT) and the Cone Penetration Test (CPT) in order to
estimate soil properties [17]. Dynamic cone penetration tests are performed by hammering a
weighted cone into soil and measuring the associated penetration depth per blow [17]. The
penetration depth per blow can then be correlated to soil parameters such as relative density or the
constant of horizontal subgrade reaction [17].

Although the DCPT is not as well used as the SPT or CPT, the results obtained from the
DCPT can be correlated to SPT results as demonstrated in [18] and California Bearing Ratio
(CBR) test results as demonstrated in [19] which have been correlated to strength of soil
properties. The correlated SPT results and CBR results are used in this work to determine the

constant of horizontal subgrade reaction for cohesionless soils.
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2.6 Boulder properties

Unlike a vast majority of the soil-pile models seen in literature, a boulder acting as a soil-
fixed boulder is subject to not only translation and rotation, but also to mechanical failure in the
form of fracture. The deformation of the soil surrounding a boulder during vehicle impact
absorbs and dissipates energy from a vehicle impact. If the soil were not to deform, as if the
boulder were embedded in concrete, then the boulder itself would have to withstand the entirety
of the vehicle impact. If the boulder is not “strong enough” then it is plausible that the boulder
will fracture during impact. Theories involving the prediction of fracturing of rocks will be
investigated with the goal of developing minimum boulder dimensions and material properties
with respect to fracture prediction.

A widely used method for predicting the force which will cause a rock specimen to
fracture is the application of the Brittle Mohr Coulomb failure criteria when calculating internal
stresses as a result of an applied load [20]. The results from Mohr Coulomb failure criteria often
produce conservative estimates for a load which will cause fracture [20]. The manner the load is
applied also plays in important role in the ultimate resistive load a rock specimen can supply
before it fractures. Cho et al. [21] performed a series of experiments in which the tensile strength
of rock was compared against the loading strain rate. The loading strain rate was increased from
static values, ¢ < 0.1, into dynamic ranges of 1 < ¢ < 10. The results from [21] are shown in

Figure 2-16 and Figure 2-16.
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Figure 2-15. Tensile strength vs. loading rate for Inada granite [21]
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Figure 2-16. Tensile strength vs. loading rate for Tage tuff [21]
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As expected, the dynamic strength of rock was shown to increase with increasing loading
rate. The use of a dynamic strength in the prediction of boulder fracture, however, may err
towards fracture if the actual applied loading rate is smaller than the predicted loading rate for the
same loading magnitude. The use of Mohr Coulomb failure criteria from a static loading
standpoint predicts lower fracture loads than those associated with dynamic strength calculation
which may act as conservative guidelines for minimum boulder dimensions. For conservatism,
the static loading criteria will be used in this work to predict the minimum dimensions needed for

a boulder assuming rigid soil conditions.
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CHAPTER 3

LOW-ORDER MODEL THEORY AND METHODS

The intent of this chapter is to present the development of a low-order model for a vehicle
impact upon a soil-fixed boulder in cohesionless soil such as sand or gravel. From the low-order
model, it will be possible to not only predict vehicle and boulder motion but also boulder failure
criteria. Potential failure criteria during vehicular impact include excessive boulder motion
and/or material failure of the boulder in the form of facture.

The low-order model used throughout this thesis will be presented as a combination of
commonly used vehicle and pile models. The low-order model will capture both motion of the
vehicle as well as material failure of the boulder. A method for simulating the results of various
model parameters will be presented as well as preferred methods for in-situ and laboratory
measurement of the various model parameters.

This chapter is organized as follows:

The coordinate system pertaining to the low-order model is described in Section 3.1. The
development of the low-order model and governing equations is presented in Section 3.2, and the
derivation of the forces seen in the governing equations is presented in Section 3.2.1 through
Section 3.2.3. The prediction of boulder failure criteria in the form of fracture will be discussed
in Section 3.3. Methods for determining in-situ soil properties will be presented in Section 3.4,

and finally the preferred method of model simulation will be presented in Section 3.5.

3.1 Coordinate systems and nomenclature

The global coordinate used throughout this thesis is oriented such that the X direction is

to the right, the Y direction is down, and the Z direction is into the page. All displacements and
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corresponding time derivatives along the X axis will be noted as x, x,... etc., and all rotational
displacements about the Z axis will be noted as 6, 6,... etc. The motion of the vehicle is assumed
to be one dimensional in the positive X direction. The variable x,, is the X direction displacement
of the vehicle with respect to the global reference frame.

Similar to the motion of the vehicle, the motion of the boulder is assumed to translate
solely in the positive X direction and independently rotate about the Z axis as illustrated in Figure
3-1. The variables in Figure 3-1 are the X direction displacement of the center of mass of the
boulder-soil subsystem, x;,, and the angle of rotation of the boulder-soil subsystem about the Z
axis, 8. It should be noted that the center of mass of the boulder and soil system is not the same
as the center of mass for the boulder alone. The location of the center of mass for the boulder is

shown in Figure 3-1.
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Figure 3-1. Coordinates associated with boulder-soil subsystem (not to scale)

It will be assumed throughout this thesis that the length, L, width, W, and height, H, of

the boulder will be such that the length is always parallel to the direction of impact in the XY



28

plane, the width is perpendicular to the direction of impact in the XY plane, and the height is in
the YZ plane. Figure 3-2 illustrates a typical scenario for a vehicle impact upon a soil-fixed

barrier. The variable d in Figure 3-2 is the embedment depth of the boulder.

Direction
of impact
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N
W A4
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Figure 3-2. Layout for a typical vehicle impact

3.2 Low-order modeling of vehicle-boulder motion

The low-order model presented in this thesis is a combination of a lumped-parameter
vehicle model, a rigid body representing the boulder, and a lumped-parameter soil model
consisting of individual masses and nonlinear springs and dampers representing the affected soil
during vehicular impact. As presented in [2], the use of a lumped-parameter Maxwell model is

most aptly used for collisions in which a relatively large amount of crush is observed. Figure 3-3
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shows the low-order model as presented using a lumped-parameter Maxwell model for the
vehicle.

The variables in Figure 3-3 are the mass of the vehicle, m,,, the equivalent vehicle spring
and damper constants, k,, and c,, respectively, the mass of the boulder, m,,, the mass moment of
inertia of the boulder about the center of mass of the boulder-soil subsystem, j,, and the
equivalent mass, spring constants and damper constants for the discretized soil elements, m,,, k,,,
and c,, respectively. Additionally a inertial mass, m’, is inserted into the Maxwell model which
will be used in deriving the governing equations of motion and then set to zero, x’ is the

displacement of the inertial mass in the X direction.
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Figure 3-3. Low-order model for vehicle impacts upon soil-fixed boulders

There are three degrees-of-freedom for the low-order model: the displacement of the
vehicle, x,,, displacement of the boulder, x;, and the rotation of the boulder-soil subsystem, 6,,.

As seen in literature, the soil surrounding a laterally loaded pile can be represented as a system of
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nonlinear springs and dampers [11]. The underlying principle for the boulder-soil subsystem of
the low-order model is that a one dimensional pile within infinite-dimensional deformable soil is
replaced with a two dimensional rigid object with non-negligible mass. As presented in [22], the
general shape of affected soil surrounding the boulder during lateral loading can be found using
the effective angle of internal friction of the soil and the embedded pile or boulder geometries.
According to Kim et al. [22], the affected soil surrounding a pile during loading can take several

possible shapes depending on the associated shear plane of the soil, illustrated in Figure 3-4.

l—’x
— 5|

Figure 3-4. Definition of soil wedge during lateral loading [22]
Similar to Kim et al. [22], the overall shape of the soil wedge is found from the shear
plane of the soil as defined by 6,, in Figure 3-5. The defining soil wedge angle, 6,,, is found
using

a (3.2)

0, = +2,

IS

where ¢’ is the effective angle of internal friction for the soil [22].
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Direction

of impact
—_—

(a) (b)
Figure 3-5. 3-D representation of soil wedge which develops during lateral loading

The three-dimensional boulder-soil subsystem in Figure 3-5 (a) is reduced by considering
only the soil directly behind the boulder, marked as the dotted lines in Figure 3-5. The reduced
soil wedge is then transformed into a two-dimensional soil wedge and a two-dimensional boulder

as shown in Figure 3-6.

Direction
of impact
e
H
N
d Oy

Figure 3-6. Idealized 2-D wedge shape based on the 3-D soil wedge geometries
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The soil in Figure 3-6 is discretized into N evenly distributed elements, illustrated in
Figure 3-7 (a), and replaced by a system of springs and dampers, illustrated in Figure 3-7 (b).
Similar to Naggar and Bentley [8], the mass of the soil elements are lumped against the boulder
and attached to the springs and dampers such that the springs and dampers are in parallel. The
variable Lg,;; in Figure 3-7 is the original length of the soil wedge, and the variable h, is the
height of a single soil element.

Direction of
impact

—_—

Lsoil

(@) (b)
Figure 3-7. Transformation from discretized soil subsystem to a system of soil representative
Kelvin models
The soil elements are assumed to be trapezoidal where the mass of the nt" soil element,

m,, is found using

1 3.2
my, = psoilWhe [d tan(ew) - nhe tan(gw)] + E.Osoilm/he2 tan(@w), ( )

where pgoi 1S the mass density of the soil. It is assumed that the springs and dampers

representing the soil do not undergo rotation and act solely in the X direction.
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A free body diagram of the boulder-soil subsystem is presented in Figure 3-8 and Figure
3-9, where the force exerted on the boulder from the vehicle, noted as F,, is applied at an
eccentricity, e, above the soil line. Additionally, a restoring moment due to gravity, My, is added
to the boulder since the mass of the boulder is non-negligible. The friction acting on the boulder
from the surrounding soil is neglected, as seen in Zhang [7]. The variables in Figure 3-8 are the
center of mass in the X direction as measured from the lower left corner of the boulder, c,., the
center of mass in the —Y direction as measured from the lower left corner of the boulder, c,, the
depths of each soil layer with respect to the center of mass of boulder-soil subsystem, d, d,,
...dy, the mass of the boulder, m;, and the mass moment of inertia of the boulder about the

center of mass for the boulder-soil subsystem, J,.

E, Xp
e |ﬁ'
Soil line ! En F

M Je—Y Fp — > X

Figure 3-8. Free body diagram of the boulder-soil subsystem
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The center of mass for the boulder-soil system, as measured with respect to the local

origin in the X direction, is found using

1

O my) +my

Cx

] (3.3

N
L
<Zmn>L+mb >

n=1

and the center of mass for the boulder-soil system, as measured with respect to the local origin in

the Y direction, is found using

1 (3.4)

Cry = —
Y (Zg:]_ mn) + mb

N

—-(n—-N-1) H

Emnd—N +my el
n=1

The depth of each soil layer with respect to the boulder-soil subsystem, d,,, is the nt" element in

the range ((cy —d), ¢y, N).

As a means of rapidly calculating moments, additional coordinates are employed as
illustrated in Figure 3-9. The variables in Figure 3-9 are the radial distance from the center of
mass of the boulder-soil system to the impact point of the vehicle, R,,, the radial distances from
the center of mass of the boulder-soil subsystem to the soil elements, R,,, the angle measured
from vertical to the vehicle impact point, y,, and the angles measured from vertical to the soil

elements, y,,.
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Fy

Figure 3-9. Secondary free body diagram of the boulder-soil subsystem used to calculate the

moment about the center of mass

The radial distance from the center of mass of the boulder-soil system to the impact point of the
vehicle, R,, the radial distances from the center of mass of the boulder-soil subsystem to the soil
elements, R, the angle measured from vertical to the vehicle impact point, y,, and the angles

measured from vertical to the soil elements, y,,, are found using

e Cx (3.5)
¥, = tan™ 1 et )
R, = /(e +d;)? +c,2 (3.6)
e dn T (3.7)
=t () +5
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R, = Jdnz + (L — c)2 (38)

The eccentricity of the vehicle impact is found by first treating the force from the vehicle
as an evenly distributed load across the impact area on the face of the boulder, as shown in Figure
3-10 (a). In terms of the boulder’s reaction, the distributed load is consolidated into an equivalent
point load, as shown in Figure 3-10 (b). The variables in Figure 3-10 are the distance from the
ground to the bottom of the vehicle bumper, e,y mper, and the distance from the ground to either

the top of the boulder or to the top of the vehicle hood, e’.

Fdistribured
Vehicle
E,
e’ - 5
O Q ebumper e I
S
Soil line
Boulder Boulder
(a) (b)
Figure 3-10. Consolidation of distributed load on the boulder
The eccentricity of the vehicle load is then calculated using
e’ —e (3.9
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3.2.0.1 Boulder-soil subsystem governing equations of motion
Applying Newton’s second law to the free body diagram in Figure 3-9 yields

N (3.10)
meffjéb = Z{Fn} + F
n=1

X (3.11)
Jegsby = ) {Ma} + My + My

n=1

where m.sr and J. ¢ are the effective mass of the boulder-soil subsystem and the mass moment
of inertia of the boulder-soil subsystem about the center of mass for the boulder-soil subsystem.
The effective mass of the boulder-soil subsystem and the mass moment of inertia of the boulder-
soil subsystem about the center of mass for the boulder-soil subsystem, m.; and /.5, are found

using

(3.12)

N
Mefr = <mb + Z{mn})
n=1

N (3.13)
]eff = <]b + E{mn (dn2 + lnz)}>’
n=1

where [, is the distance in the X direction from the center of mass of the boulder-soil subsystem

to the soil elements. The mass of the boulder, m, is found using

My = Ppoutder " LW - H, (3-14)
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where ppouiger 1S the mass density of the boulder. The distance from the center of mass of the

boulder-soil subsystem to the soil elements is found using

l, =L—c,, (3.15)

And the mass moment of inertia of the boulder about the center of mass is found using

2

(G ey (R ) B

3.2.0.2 Vehicle subsystem governing equations of motion

Similar to the boulder-soil subsystem, a free body diagram can be created for the lumped-
parameter Maxwell vehicle model. It is assumed that there is no slip at the point which makes
contact between the vehicle and the boulder. Applying Newton’s second law to the lumped-

parameter Maxwell vehicle model in Figure 3-3 yields

myx, = —F,’ (3.17)

m'x' = E,' —F,. (3.18)

Sections 3.2.1 through 3.2.3 will present the methods for solving the unknown forces and
moments, F,, F,, M,,, M,,, M,,, Mg in (3.10) and (3.11) as well as the unknown inertial force, E,’,

in (3.17) and (3.18).
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3.2.1 Derivation of soil forces and resulting moments

As presented in [8], the springs and dampers representing the soil in Figure 3-7 are placed

in parallel; thus, the N soil forces are found using
Fy = —(Fi, + o), (3.19)

where Fy is the force from the nt" soil representative spring and F, is the force from the nth

soil representative damper. The N moments resulting from the soil forces are found using
M, = —F, R,, cos(y, + 0, — m). (3.20)
The soil representative spring forces, Fy , in (3.19) are found using
Fy,, = knAxy, (3.21)

where Ax,, is the linear displacement in the X direction of the nt* soil mass element, and k,, is the
effective spring constant of the nt" soil element. Since the boulder is assumed to undergo rigid
body motion, all x,, can be related geometrically to the lateral position of the boulder, x,,, and the

angle of rotation of the boulder, 6,,, using
Ax, = xp + Ry, sin(y,, + 6;,) — Ry, sin(y,). (3.22)

The spring constants for the soil elements are found by idealizing the soil elements as long,

slender rods. The equivalent spring constant of a long slender rod can be estimated using

ErodArod (3.23)

)’

krod -
Lrod
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where E,.,4 is the Young’s modulus of the rod material, A,.,4 is the cross sectional area of the
rod, and L,.,4 is the original length of the rod. Similarly, the equivalent spring constant of the soil

elements can be calculated using

_1-10°Bdw (3.24)
e Lsoil N e

where B is the constant of horizontal subgrade reaction of the soil in (MN/m3), Lg,; is an

estimation of the original soil wedge length, and «,, is the depth of the soil elements from the soil
line to the bottom of the boulder in the range (0,%,d). As defined in Figure 3-7, The length of

the soil wedge, L,,;;, would be found using
Lsoiy = d tan,, (3.25)

which would increase as the effective angle of internal friction of the soil increases. As noted in
[23], the stiffness of soil increases as the effective angle of internal friction for soil increases.
Therefore instead of using (3.25), the original length of the soil wedge, Lg,;;, is estimated from

Figure 3-11.
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Direction
of impact
—_—

Lsoi.f.

Figure 3-11. Definition of soil wedge length as used to calculated a representative spring constant

for each soil element

The length of the soil wedge, Ly,;;, is then found using

d (3.26)

Lgoir = tang"

Having derived the equivalent spring constant for laterally loaded soil, the resulting
spring force is calculated by multiplying the spring constant with the displacement of each soil
element, x,,. Thus, the force exerted on the boulder from the equivalent soil spring is found by
substituting (3.22) into (3.21), resulting in

1-10° B W tan¢g’ _ _ (3.27)
e = N ay, [xp + Ry sin(y, + 6,) — Ry, sin(yy,)].

An ultimate lateral resistance, however, exists for soil at a given depth [7]. The spring
force for each soil element, therefore, is limited such that the absolute value does not exceed the
ultimate lateral resistance of the soil at the given depth, a,. As presented in [7], the ultimate

lateral pressure per unit length of a laterally loaded pile can be estimated using
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Pu = pz Y Bz
(3.28)

where K,, is the passive earth pressure coefficient, y is the effective unit weight of soil, B is the

width of the pile, and z is the depth from the ground surface. The passive earth pressure

coefficient is found using [7]
K, = tan®0,,. (3.29)

Modifying (3.28) to match the nomenclature used in this thesis, the ultimate lateral pressure for

each soil element, g,,, is found using

sz Psoit g W an K¢ (3.30)
d )

Oon =

where g is the gravitation constant and K is a constant based on strain rate loading of the soil and
the undrained shear strength. As presented in [24], shear stress within a soil increases as the
strain rate of loading is increased. As pertaining to the research in this thesis, it is assumed that a
maximum strain rate for the soil is achieved during vehicle impact. Under such assumptions, the
value for K, for a particular soil is found using

tan 6,, (3.31)
K, = ”,
Ccos @

The ultimate lateral force of each soil element is then found using

F

Un

=0, 4,, (3.32)

where A,, is the cross sectional area of each soil element, found using
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wd (3.33)
An = T
Substituting (3.30) and (3.33) into (3.32) yields
sz Psoit 9 w2 an Ke (3'34)
E,, = N :

This expression for the ultimate force on each element is used in the simulation models that
follow.

Although the low-order model lumps the discretized soil elements against the boulder,
the damping constant for the representative soil dampers is derived analytically by applying the
conservation of momentum to the boulder-soil subsystem as the boulder plows through the soil
during a full scale crash. Since the low-order model assumes that all translations of the soil
elements are purely in the X direction, the sum of the forces acting on the boulder from the soil
elements is found using the momentum transfer formulation of Newton’s law:

dP, (3.35)

E = Z F,=(m, + mn’)xn + (m,, + mn,)xn.

where B, is the momentum of the n*" soil element, m,’ is the accumulated mass of the nt” soil
element as the boulder plows through the soil, m,, is the time derivative of the lumped soil
masses defined in Figure 3-3, and m,,’ is the time derivative of the accumulated mass of the nt"
soil element. Since it is assumed the soil masses lumped against the boulder do not change with
respect to time, the time derivative of the lumped soil masses, m,, is set to zero. The

accumulated mass can be calculated using

mn’ = Psoit An Xn, (3-36)
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and the time derivative of the accumulated mass is
mn, = Psoit An Xn. (3-37)
Substituting (3.37) into (3.35) and setting m,, to zero yields

i ) N - (3.38)
Ez ZFH = (mn+mn )xn+psoilAnle .

Recognizing that (3.38) is of similar form to fluid drag flow, (3.38) may be rewritten as

dP, . . L (3.39)
E: 2F= (m, + m, )i, + cpx,”%,

where
Cn = Psoit An- (3-40)

Thus the analysis performed for a boulder undergoing rotation uses damper elements for
soil that provide a resistive force proportional to velocity squared, and their proportionality
constants, c,,, are each equal to a discrete elemental swept area times soil density. This velocity-
squared damping represents the physics of momentum transfer between the boulder and
accumulating soil mound in front of each moving mass element.

The soil damping forces, F;, , in (3.19) are found using
F., = ¢y &n” sign(iy), (3.41)

where x,, is the linear displacement in the X direction of the n'"* soil mass element, and c,, is the

effective damping constant as defined by (3.40). Similar to the linear displacement of each soil
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element, the lateral velocity of each soil element can be related to the lateral angular velocity of

the boulder using
Xy = X + OpR,, cos(y, + 6)). (3.42)

Substituting (3.42) and (3.33) into (3.41) results in the final expression for the damping force on

each soil element used in the simulations that follow:

— psoile (3'43)

(%p + OpRy, cos(yy + Bb))z

Cn

: sign([fcb + 6, Ry, cos(y, + Hb)]).

3.2.2 Derivation of restoring moment

Since the pile geometries in [7] were slender, Zhang [7] neglected the restoring moment
which would resist tipping of a rigid object seated flatly on the ground. The restoring moment
acting on the boulder during vehicle impact is calculated such that it is equal and opposite in
direction to the sum of all of the other moments acting on the boulder until the maximum
restoring moment due to gravity is achieved. Calculating the restoring moment in the
aforementioned manner allows for zero boulder rotation in the event that the vehicle does not
enact a large enough moment to cause the boulder to tip. Since it is also assumed that the
boulder-soil subsystem center of mass does not translate in the Y direction, the maximum
restoring moment due to gravity acting on the boulder is first estimated under the following

conditions
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for 6, >0 Mg max = —Sign(sin(yy + 60,)) - mpgRy cos(yy + 65) (3.44)

for éb <0 Mg max = 0. (3.45)

The estimated restoring moment is compared to the sum of the moments on the boulder

such that

(3.46)

)

N
> )+ m,

n=1

My = —sign(sin(yy + 63)) [

N
for <M,, + Z{M,J) +0
n=1

The absolute value of the restoring moment is then limited such that it cannot exceed the absolute
value of the estimated maximum restoring moment calculated in (3.44). If the value exceeds the

maximum, it is simply set as the maximum theoretical restoring moment.

3.2.3 Derivation of vehicle force based on lumped-parameter Maxwell model

The governing equations for the lumped-parameter Maxwell model as defined by Figure

3-3 are

my¥, = —E,' = —c,(x, — x") (3.47)

m'x' = Fu’ —F = Cv(xv —x") - kv(x, - Axbv)' (3.48)
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where x' is the linear velocity of the inertial mass, m’, and Ax,, is the change in linear
displacement between the vehicle and the contact point of the vehicle on the boulder.

Differentiating (3.47) and (3.48) with respect to time yields

myX, = —c, (&, — ¥') (3.49)

m'E = ¢,y — £) — ky(X' = ), (3:50)

and setting the inertial mass, m’, to zero results in

0 =c, (&, — %) — k(X' — %py)- (3.51)

Equations (3.49) and (3.51) are then summed yielding

Mmy¥, = —ky(' — Xpp). (3.52)

Solving (3.52) in terms of the inertial velocity, x', yields

myX, 3.53
X = — vy + J.va, ( )
ky

and substituting (3.53) into (3.47) yields the governing equation of motion for the lumped-

parameter Maxwell vehicle model,

k k k .
X, +— &, + — %, = — [& + 0 R, cos(y, + 0p)]-
c my,

v v

(3.54)

The force acting on the boulder during an impact under a lumped-parameter Maxwell

model can be found by setting the inertial mass, m’, in (3.48) to zero. Doing so yields
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E,=E,/ . (3.55)

Using (3.47) and (3.55), the force acting on the boulder from the vehicle can then be calculated

using

E, = —m, X,. (3.56)

In the event of vehicular rebound and separation, the vehicle would simply separate from the
boulder rather than pulling the boulder. This discontinuity of the contact point between the
boulder and the vehicle is modeled such that the force exerted on the boulder from the vehicle is
set to zero in the case of a negative, or pulling, force.

The resulting moment from the vehicle impact is calculated using

M, = E, R, cos(y, + 6,). (3.57)

As reported in [2], the spring and damper coefficients for a Maxwell model in which vehicle
rebound is observed can be estimated by fitting an expected response to crash test data. The

expected response for a crash in which vehicle rebound is observed takes the form of

2a%v, (3.58)
2avo Vo — a2 + b2 ) av,
v T 22 + exp — sin(bt) + 12 cos bt|,

where a and b are constants, v, is the initial impact velocity of the vehicle, and t is time [2]. The
constants a and b can then be correlated to the effective vehicle spring and damper coefficients

using [2]
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_ my,(a® + b?) (3.59)
v —2a
k, = —2ac,. (3.60)

3.2.4 Governing equations of motion for the low-order model

The governing equation of motion for the boulder subsystem in the X direction is formed
by substituting (3.28) and (3.56) into (3.3). The governing equation of motion for rotation of the
boulder subsystem about the Z direction is formed by substituting (3.20), (3.46) and (3.57) into
(3.6). The governing equations of motion for the boulder-soil subsystem will be left in the form
seen in (3.3) and (3.6) due to the underlying force limitation factors such as ultimate lateral

resistance.

3.3 Predicting boulder fracture

Due to the simplistic nature of the low-order model, unrealistic geometries for boulders
which will survive a vehicle impact may be obtained from simulations when considering the
boulder as completely rigid. Namely, the model may predict that a thin but relatively wide
boulder would effectively act as a soil-fixed barrier, when in actuality it would be expected to
fracture. Additionally, circumstances may appear in which the soil is extremely rigid or a boulder
may be embedded in an engineered foundation such as reinforced concrete. Such boundary
conditions increase internal stresses within the boulder as energy is no longer able to be

dissipated through the deformation of the surrounding soil. Methods for predicting boulder
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fracture will be presented for scenarios in which the boulder is rigidly fixed at the point of
embedment as this is expected to be a worst-case scenario. These boulder geometries will then be
used as a set of minimum dimensions to be used with a boulder acting as a soil-fixed barrier.

The approach for determining boulder fracture as a result of a vehicular impact is based
on calculations of the principle stresses in the boulder. The boulder is modeled as a cantilever,
with fracture initiation based on Brittle Coulomb Mohr failure criteria, similar to [20]. The peak
forces on the boulder are assumed to arise from the peak decelerations observed in vehicle crash
tests.

The analysis may be generous because it does not include rock fracture planes and other
possible faults. Additionally, the analysis ignores moments due to the inertia of the boulder
which may cause fracture to occur below the soil line. In some respects, the approach might also
be conservative as it ignores soil motion which will greatly mitigate some of the stresses on the
boulder.

Due to the combination of assumptions, the analysis is expected to provide only
approximations of fracture behavior that can guide recommendations for suitable boulders. But
the results will not be exact predictions of pass/fail events for all boulders under all situations.
The soil damping and soil spring rate are both assumed to be infinite, resulting in a rigid
cantilever soil boundary condition. Additionally, the vehicle and corresponding crush zone is
replaced by a single maximum force as measured during previous full scale crashes. The

representation of the infinite soil damping and spring rate can be seen in Figure 3-12.
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F fracture

S SIS

Boulder

Figure 3-12: Cantilevered beam model for infinite soil damping and stiffness

The peak force Frrqccure Can be estimated from the peak deceleration of the vehicle using

Feracture = My Qpeak, (3.61)

where aqq is the estimated peak acceleration during impact.

Failure in the form of fracture is determined by analyzing the internal principles stresses
resulting from an equivalent vehicle impact. The principle stresses are functions of both bending
and shear stress. Since the boulder is composed of a brittle material and failure is due primarily
to tension along the impact face of the boulder, the shear stress induced by bending may be

neglected. The bending stress, a,, is found using,

o. = Mfracturex (3-62)
y I ’

and the transverse shear stress, 7,,,, is found using,

_ Ffracture (3-63)

by =7y
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where M is the bending moment about the base of the boulder, x is the distance from the centroid
of the cross section to the impact face which corresponds to maximum bending stress, and [ is the

area moment of inertia about the centroid. The values of Mg,.4¢tyre, X, and I are found using

Mfracture = Ffracture e (3.64)
L (3.65)
=2
1 (3.66)
— 3
I = 12WL .

Noting that the normal stress acting on the impact face of the boulder, o, is zero, the principle

stresses are found using

(3.67)

The factor of safety, ng qcrure, 1S then found using the Brittle Coulomb Mobhr failure criteria by

using

foro, =0,>0 oo = Sut (3.68)
! nfracture

for o, > 0> 0, o, 0y 1 (3.69)

Sut Suc nfracture
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for0 >0, =0, o = Suc (3.70)
2 nfracture'

where S,; is the ultimate tensile strength and S, is the ultimate compressive strength of the
boulder material. A factor of safety less than 1 implies a boulder geometry for which fracture is

anticipated for the given material properties.

3.4 In-situ measurement of soil parameters

One of the goals of this thesis is to develop an in-situ method for rapidly determining the
soil properties found in the low-order model, namely the constant of horizontal subgrade reaction,
B, the effective angle of internal friction, ¢’, and the bulk soil density, pg,;. After reviewing
literature pertaining to in-situ soil property measurement, it was determined that a majority of soil
properties pertaining to the low-order model can be determined through the use of a dynamic
cone penetrometer and various correlations. The methodology for performing a DCPT is covered
in ASTM D6951, and the results from a DCPT are given as a penetration index, PI, in mm/
blow. The goal of this section is to present a correlation between the penetration index to the
constant of horizontal subgrade reaction, effective angle of internal friction, and density of soil.
Figure 3-13 outlines the procedure for correlating the penetration index from a DCPT to the

constant of horizontal subgrade reaction.
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Figure 3-13. Flow chart for determining in-situ soil properties

The results from the penetration index at each blow increment, i, is first correlated to the

California Bearing Ratio using [16]

CBRl — 102.628 . Pli_1'27,

(3.71)

where CBR; is in percent. The penetration index, PI;, at a given increment is found using

Ply=d; —d;_4,

(3.72)
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where d; is the total penetrated depth in mm at blow increment i. The California Bearing Ratio at

each increment is then correlated to the modulus of subgrade reaction, K;, in MN/m? using [25]

log(CBR;)-14.304
K; = 10( > 1.71512 ) (3.73)

The modulus of subgrade reaction at each blow increment is then plotted against the total depth at
each increment, d; , and a linear curve is fit to the data since the modulus of subgrade reaction is
assumed to increase linearly with depth. Since the plot of the modulus of subgrade reaction

against depth is in mm, the constant of horizontal subgrade reaction, 8, in MN/m?3 is found using
B =b"-1000, (3.74)

where b’ is the slope of the linear fit curve.
Knowing the constant of horizontal subgrade reaction, it is then possible to estimate the

relative density of the soil using Figure 3-14.
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Figure 3-14. Constant of [horizontal] subgrade reaction vs. relative density [7]

Since it is expected that the soil used in testing will be compacted beyond 90% relative density
and remain above the water table, curve (a) in Figure 3-14 is fit to a quadratic polynomial of the

form
B =0.01221-D,? —0.1748 - D, + 2.86, (3.75)

where D, is the relative density of soil in percent and 8 is measured in MN/m?2. The maximum
theoretical constant of horizontal subgrade reaction using (3.75) is found by setting D, to 100

which results in 8,4, = 107.48 (MN/m3). Solving (3.75) for the relative density yields

01748 +,/0.17484% — 4 - (0.01221) - (2.86 — B) (3.76)
Lz & 2+ (0.01221) '
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The lesser of the two values obtained form (3.76) can be neglected since it would correspond to a
negative constant of horizontal subgrade reaction. Similar to Zhang [7], (3.76) can be graphically

represented for quicker interpretation, as illustrated in Figure 3-15.
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Figure 3-15. Relative density vs. constant of horizontal subgrade reaction for cohesionless soils

Knowing the relative density from Figure 3-15, the bulk density of the soil is found using

Psoil = Psoilmax Dy, (3.77)

where pgoir,.,, 1S the maximum bulk density of the soil. The maximum density can be found

using the modified proctor test as performed according to ASTM D698. The effective angle of

internal friction can also be estimated from the relative density using Figure 3-16.
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Figure 3-16. Effective angle of internal friction as correlated to relative density [23]

Similar to Figure 3-14, Figure 3-16 can be represented by a quadratic equation which takes the

form
@' =0.0015-D,% 4+ 0.02- D, + 28. (3.78)

Equation (3.84) can also be graphically represented for quicker and more accurate interpretation,

as illustrated in Figure 3-17.
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Figure 3-17. Effective angle of internal friction vs. relative density
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3.5 Simulation of Model

The governing equations of motion for the low-order model, (3.3), (3.6), and (3.54), can
be arranged into a state-space form and solved via numerical integration. The states and
corresponding time derivatives are listed in Table 3-1. It should be noted that all forces in the
governing equations of motion can be written explicitly as functions of the states. The change in
linear displacement and linear velocity of the contact point between the boulder and the vehicle,
Axy,, and x,,, are not transformed into the state space representation as a matter of general

housekeeping, but they can also be expressed explicitly as functions of the states.

Table 3-1. States for governing equations of motion of the low-order model

X, =x, (3.79) X = X, (3.80)
1 N

X, =% (3.81) %, = Z{Fn} +F, (3.82)
Mefr 524

X3 =0, (3.83) X3 =X, (3.84)

x, =6, (3.85) Xy = [Z{Mn} + M, + Mg (3.86)

Jerr
xs =x, (3.87) X5 = Xg (3.88)
Xg=x, (3.89) X = Xy (3.90)
) . ky ke ky

x; =%, (3.91) Xy = ——X; ——X¢ +—[x3 + x4 R, cos(y, + x3)]. (3.92)

CU mv mU

The set of equations (3.79) — (3.92) are coupled first-order, nonlinear, non-stiff ordinary
differential equations which can be readily solved via numerical integration. The MATLAB®
ODEA45 solver is used to solve the state-space equations. The use of ODE45 allows for quick and

easy comparison of simulated and full scale results. The ODE45 simulation is driven by the initial
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velocity of the vehicle, v,, as an initial condition. No external forcing or forcing function is

necessary.

3.6 Contributions of this chapter

The contributions of this chapter are as follows:
(1) Introduce coordinate system and model nomenclature
(2) Develop the low-order model for a vehicle impact upon a soil-fixed boulder
(3) Derive the governing equations of motion for the low-order model
(4) Present fracture prediction methodology for boulders impacted by a vehicle based on
peak deceleration force
(5) Present the methodology for in-situ soil property measurement

(6) Represent the governing equations of motion in state-space form
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CHAPTER 4

VALIDATION OF LOW-ORDER MODEL AND STATIC FRACTURE
PREDICITION METHODOLOGY

The intent of this chapter is present the validation of the low-order model and static
fracture prediction methodology presented in Chapter 3. The simulated low-order model is
compared to past full scale crash test results of vehicles impacting soil-fixed boulders. The static
fracture prediction methodology is compared to full scale vehicle impacts on rigidly-fixed
boulders. Additional small scale fracture tests were performed to verify the static fracture
prediction methodology and are presented in Chapter 6. All full scale crash tests were performed
at a M30 rating as specified in ASTM F2656-07. The methodology for in-situ measurement of
the soil properties as presented in Chapter 3 had not been developed prior to the full scale crash
tests presented in this chapter.

This chapter is organized as follows:

The test equipment and apparatus used in performing a full scale crash test are presented
in Section 4.1, and the test equipment for medium scale fracture tests is presented in Section 4.2.
A summary of past full scale crash tests is presented in Section 4.3, and a summary of medium
scale fracture tests is presented in Section 4.4. The comparison and validation of the simulated
low-order model to full scale crash tests of vehicles impacting soil-fixed boulders is presented in
Section 4.4. The validation of the fracture prediction in the full scale vehicle crash tests and
medium scale fracture tests on rigidly-fixed boulders is presented in Section 4.6 and Section 4.7,

respectively.



62

4.1 Full scale crash test equipment and test procedure

All full scale crash tests took place at the Penn State Crash Safety Research Facility
under the supervision of Larson Transportation Institute personnel. Larson Institute personnel
followed the procedures described in ASTM Standard Test Method F2656-07 to perform M30
designated vehicle impacts on boulders embedded in a compacted soil foundation. The Crash
Safety Research Facility uses a guiderail system for steering the impact vehicle, a reverse towing
system for accelerating the impact vehicle up to the desired speed, and a cable release device for
separating the tow cable from the impact vehicle just prior to the crash. An aerial view of the

Crash Safety Research Facility is shown in Figure 4-1.

Figure 4-1. Aerial view of the Larson Institute Crash Safety Research Facility at Penn State

The guiderail is approximately 320 m long, and was manufactured such that additional
rail pieces may be added to or removed from the impact end to account for various crash
geometries. A bogey catch is attached to the end of the guiderail which serves as the tow cable
release device. The bogey is attached to a medium-duty truck on the steering arms directly
underneath the front center of the vehicle. Figure 4-2 shows a general layout of the guiderail with
impact and tow vehicle, bogey catch, and impact area. Figure 4-3 shows photographs of the

bogey as installed on a typical medium-duty sized truck and the bogey catch device.
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Figure 4-2. CRSF impact setup
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Figure 4-3. Full scale guidance system: bogey assembly (left) and bogey catch (right)
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The towing system consists of a tow vehicle, tow cable, redirection pulleys, and a speed
multiplier pulley attached to the tow vehicle. The speed multiplier allows the tow vehicle to

travel at half the speed of the impact vehicle. Figure 4-4 shows the towing system configuration

and tow vehicle.

Figure 4-4. Full scale towing system: first re-directional pulley (left), speed multiplier (center),

and second re-directional pulley (right)

The soil for all full scale crash tests was 2A modified limestone gravel. The soil was
obtained from Hanson Aggregates in Boalsburg, Pennsylvania. The gravel was compacted by
Ameron Construction using a hydraulic tamper attached to the arm of a backhoe according to
ASTM F2656-07. Figure 4-5 shows the gravel in a loose state, and Figure 4-6 shows the soil in a
compacted state. When installing the boulder, they are aligned with the guiderail such that the
critical impact point on the boulder is approximately 90° to the centerline of the impact vehicle.

The critical impact point for boulders was determined to be the centerline of the boulder.
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Figure 4-6. Modified 2A limestone gravel in compacted state

The primary data acquisition system used for full scale crash tests as related to this
research was a Photron Ultima 1024 high-speed imaging system. The Ultima 1024 was located at

a 90° angle from the side of the impact vehicle, capturing the crush of the vehicle and translation
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and rotation of the boulder. For soil-fixed boulder tests, the camera was set to record 500 frames
per second for 2 seconds after receiving a trigger signal. The trigger system consists of two
reflective laser beams used to determine when the impact vehicle passes through the trigger point.
When both laser beams are broken, a TTL signal is sent to the high-speed camera which initiates
recording.

The high-speed imaging analysis software, Photron Motion Tools, was used throughout
this work to perform the image processing of the full and small scale crash tests. Photron Motion
Tools is analysis software which allows for feature recognition and feature tracking through a
series of images. The user can also enter a desired scaling factor which automatically converts
pixels to the desired units of displacement. The output from Photron Motion Tools is a Microsoft
Excel spreadsheet of the global x and y displacements of each tracked feature, where the x
direction is to the right and the y direction is up.

A Stalker Speed Sensor (S3) radar system is used to determine the impact vehicle speed
during the towing process. This unit is a stationary Doppler radar speed sensor operating at a
frequency of 34.7 GHz and communicating through an RS-232 port. The speed range is 1 mph to
200 mph (1.6 to 321 km/h) and provides an accuracy of £0.3% with speeds being rounded down
to the nearest tenth of a unit. The stationary radar unit is located at the beginning of the guiderail
and is aimed at the impact vehicle as it travels to the impact zone. One speed sensor display is
located with the stationary unit, and a second speed sensor display is located in the tow vehicle.
A FreeWave Spread Spectrum Wireless Data Transceiver system is used to communicate
between the stationary unit and the speed display in the tow vehicle. The impact vehicle speed is
displayed in the tow vehicle so that the driver can attain the proper test speed.

Some full scale tests included the use of pressure cells embedded in the soil surrounding

the boulder in order to measure the pressures within the soil during vehicle impact. The data
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from the pressure cells are not used in this work. The pressure cells should simply be noted as

part of the installation procedure and test setup.

4.2 Medium scale fracture test equipment and procedure

The medium scale fracture tests were performed using a 2,227 kg impact pendulum. The

aerial view of the medium scale test setup is shown in Figure 4-7.

Figure 4-7. Crash Safety Research Institute medium scale impact pendulum

The Crash Safety Research Institute (CSRI) impact pendulum has an approximate height
of 15 meters which allows for a maximum arc radius of 13.7 meters for the impact sled. This

configuration of the impact pendulum allows for a maximum vertical elevation change of 9.1
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meters for the impact sled thus resulting in a maximum horizontal speed of approximately 13.4
m/s upon impact when released from maximum height.

The impact sled is supported by four % steel cables attached at the top of the CRSI
pendulum frame. The %" support cables are attached to the impact sled via cable thimbles and
cable clips. The thimbles and clips can be adjusted for rough initial height change of the impact
sled. Turnbuckles are then used for fine adjustment of the impact sled starting height. Two
pulleys are located at the top of the north end of the pendulum frame, over which the impact sled

cable and quick release cable are fed. Photographs of the pendulum are provided in Figure 4-8.

Figure 4-8. CRSI pendulum frame and components

The impact pendulum is mounted on concrete slabs at the north and south ends of the

frame. The concrete slab at the north end of the pendulum has 9 protruding studs to which



69

mounting hardware for raising the impact sled can be attached. The concrete slab at the south end
of the pendulum has 15 threaded inserts of 3-1/4” x 4 TPI into which the mounting bolts for the
boulder clamping mechanisms, skewbacks, can be inserted and secured.

Skewbacks are large structural supports made from W12-136 I-beam which are used to
rigidly hold the test specimens above ground. The skewbacks consist of three independent
structures that hold the boulder during the impact and are independently bolted to the concrete

impact slab. Photographs of the skewbacks are provided in Figure 4-9.

Figure 4-9. Skewbacks used in medium scale fracture testing

The impact sled is the device used to impact the boulders. The impact sled consists of
two major components. The first component is the main body which can be loaded with
additional weights, and the second component is a detachable ram which bolts to the front of the
main body. The weight of the fully loaded impact sled is 2,227 kg. Photographs of the impact

sled are provided in Figure 4-10.



Figure 4-10. Detailed photographs of the impact sled used in medium scale crash tests

A medium scale fracture test is performed by raising the impact sled to a desired height
and using a quick release mechanism to allow the impact sled to swing into the test article. The
pendulum uses a cable, pulley, and winch system to raise the impact sled to a desired height or
potential energy.

The winch system consists of 145 feet of 7/16” 6 x 37 steel cable which goes up and over
a pulley on the top of the pendulum frame on the north end. A separate steel cable is used to
trigger the quick release mechanism, and it also goes up and over a second pulley on the top of

the pendulum frame. The impact sled is attached to a quick release mechanism which connects
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the winch cable to the impact sled. The DC winch is mounted to the concrete slab via 9 threaded
studs, W6-36 I-beam, and a mounting plate. The winch is mounted such that it draws in cable
vertically. A deep cycle lead acid battery is used to power the winch. Photographs of the winch

system are provided in Figure 4-11, and a photograph of the impact sled with the quick release

mechanism is provided in Figure 4-12.

Figure 4-12. Impact sled with quick release mechanism
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The impact sled is raised to the desired height using the winch to pull the cable attached
to the quick release mechanism. The DC winch is duty cycled while the impact sled is raised.
The impact sled is determined to be at the desired elevation level using reference points of 5
meter elevation change along the pendulum frame. The top of each cross section of the pendulum
frame is approximately 5 meters high and the sled is stopped upon reaching estimated desired
height. Photographs of initial height and relative elevation change of the impact sled are provided
in Figure 4-13. The impact sled is stopped after it reaches the desired height, and the winch locks
the impact sled in place. The quick release cable is then pulled, and the impact sled is released.
The impact sled swings down and impacts the test article. A high-speed camera is used to capture

the impact at a rate of 5000 Hz. The high-speed imaging system is the same as that presented in

Section 4.1.
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Figure 4-13. Example of the change in elevation of the impact sled; equilibrium position (left)

and desired elevation change (right)

4.3 Summary of past full scale crash tests

Two past full scale crash tests of vehicles impacting soil-fixed boulders were performed
on two boulders with different embedment depths and boulder geometries. The two soil-fixed

crashes are referred to as Boulder-Soil-Test-1 (BST-1) and Boulder-Soil-Test-2 (BST-2)
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throughout this thesis. Additionally, two full scale crash tests were performed on boulders which
were embedded in a reinforced concrete footing. The two concrete footing crash tests are referred
to as Boulder-Footing-Test-1 (BFT-1) and Boulder-Footing-Test-2 (BFT-2).

The constant of horizontal subgrade reaction is estimated for both BST-1 and BST-2
since the presented in-situ soil measurement techniques were not yet in place at the time of testing
and there were no soil measurements made. As per ASTM F2656-07, the soil must be compacted
to at least 90% maximum density which correlates to a minimum constant of horizontal subgrade
reaction of 86 MN/m°®. A modified proctor test, however, was performed on a limestone dust soil
sample used in small scale testing which was determined to be similar in makeup and content to
the 2A modified limestone gravel used in full scale testing. From the modified proctor test
results, the maximum soil density was found to be 2,010 kg/m3. The results of the modified
proctor test are provided in Appendix B. The remaining soil properties were calculated as
presented in Chapter 3. The average density of the American Black Granite and Rockville White

Granite was measured to be 3,074 kg/m® and 2,652 kg/m®, respectively.

4.3.1 Summary of full scale crash test BST-1

BST-1, in which large boulder displacements were observed, was performed on 15
November, 2010. The boulder had dimensions of 0.762 m-L x 1.016 m-W x 2.2 m-H with
respect to the impact direction. The American Black Granite boulder, referenced as ABG-01,
was embedded 1.2 meters into the soil. The pre-test condition of the boulder is shown in Figure

4-14.
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Figure 4-14. Pre-test condition of ABG-01 in BST-1

The impact vehicle for BST-1 was a 2002 Chevrolet C6500 medium-duty sized truck,
and was prepared as specified in ASTM F2656-07. Additional ballast was added to the front of
the truck bed in order to achieve a total weight of 6,795 kg (14,980 Ibs.). Additional vehicle
specifications are provided in Appendix A, and photographs of the vehicle are shown in Figure

4-15.



Figure 4-15. Pre-test conditions of the impact vehicle in BST-1

Based on the stationary radar system and confirmed by analysis of the high-speed video,
the approach speed at impact was 13.36 m/s (29.9 mph). The centerline of the test vehicle
impacted the test article on the critical impact point that was defined as along the centerline of the
attack left vertical post, and the angle of approach was 89.1°. Figure 4-16 shows the location of
the centerline of the impact vehicle relative to the critical impact point and the impact angle of the
vehicle.

The vehicle impacted ABG-01 head-on. The boulder translated and rotated on impact,
reaching a peak angle of just under 90° from vertical. The boulder and test vehicle then came to
rest in a relatively horizontal orientation. Figure 4-17 shows the side-view still images extracted

from the high-speed video in a chronological sequence of the impact.
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Figure 4-16. Location of impact vehicle centerline (left) and impact angle (right) in BST-1
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Figure 4-17. High-speed image sequence of BST-1
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Figure 4-18 shows the linear displacement of the center of mass of ABG-01 from the
point of impact, and Figure 4-19 shows the angle of rotation of ABG-01 from the point of impact.
The linear displacement of the vehicle as tracked using the forward fiducial is shown in Figure
4-20. Photographs of the post-test condition and location of the vehicle are shown in Figure 4-21,

and Figure 4-22 shows the post-test condition of ABG-01.
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Figure 4-18. Measured linear displacement of the center of mass of ABG-01 in BST-1
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Figure 4-19. Measured angle of rotation of ABG-01 in BST-1
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Figure 4-20. Measured linear displacement of the impact vehicle in BST-1
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Figure 4-22. Post-test condition of ABG-01 in BST-1



Table 4-1 summarizes the measured and estimated governing parameters for BST-1.

Table 4-1. Governing parameters for BST-1

80

Psoir = 1,859.9 kg/m3 H=22m £ =95 MN/m?
pp = 3,074 kg/m3 d=12m e =0.754m
L=0.762m m, = 6,795 kg @' = 43.2°
W =1.016 m v, = 13.36 m/s

4.3.2 Summary of full scale crash test BST-2

BST-2, in which small boulder displacements were observed, was performed on 11

November, 2011. The boulder had dimensions of 1.65 m-L x 1.68 m-W x 3.43 m-H with respect

to the direction of impact. The Rockville White Granite boulder, referenced as RWG-01, was

embedded 2.03 meters into the soil. The installation of RWG-01 is shown in Figure 4-23, and the

pretest condition of the boulder is shown in Figure 4-24. Pressure cells were installed in the

locations marked with white paint and the wooden boards.
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Figure 4-23. Installation of RWG-01 in BST-2
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The impact vehicle for BST-2 was a 1999 International 4700 medium-duty sized truck,
and was prepared as specified in ASTM F2656-07. Additional ballast was added to the front of
the truck bed in order to achieve a total weight of 6,722 kg (14,820 Ibs.). Additional vehicle
specifications are provided in Appendix A, and photographs of the vehicle are shown in Figure

4-25.
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Figure 4-25. Pre-test condition of the impact vehicle in BST-2

Based on the stationary radar system and confirmed by analysis of the high-speed video,
the approach speed at impact was 14.5 m/s (32.5 mph). The centerline of the test vehicle
impacted the test article 14 cm to the left of the critical impact point that was defined as along the
centerline of the attack left vertical post, and the angle of approach was 90°. Figure 4-26 shows
the location of the centerline of the impact vehicle relative to the critical impact point and the
impact angle of the vehicle.

The boulder translated and rotated slightly on impact, and the front end of the truck
rebounded after the impact. Figure 4-27 shows the side-view still images extracted from the

high-speed video in a chronological sequence of the impact.



Figure 4-27. High-speed image sequence of BST-2
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Figure 4-28 shows the linear displacement of the center of mass of RWG-01 from the
point of impact, and Figure 4-29 shows the angle of rotation of RWG-01from the point of impact.
The linear displacement of the vehicle as tracked using the forward fiducial is shown in Figure

4-30.
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Figure 4-28. Measured linear displacement of the center of mass of RWG-01 in BST-2
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Photographs of the post-test condition and location of the vehicle are shown in Figure

4-31, and Figure 4-32 shows the post-test condition of RWG-01.

Figure 4-31. Post-test condition and location of the impact vehicle in BST-2
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Table 4-2 summarizes the measured and estimated governing parameters for BST-2.

Table 4-2. Governing parameters for BST-2

Psoir = 1,859.9 kg/m3 H=344m f =95 MN/m?3
Pp = 2,596 kg/m?3 d=203m e=0.938m
L=1.65m m, = 6,722 kg @' =43.2°
W =1.68m v, = 14.5m/s

4.3.3 Summary of full scale fracture test BFT-1

BFT-1, in which the boulder was anchored into the reinforced concrete footing using
dowel rods, was performed on 03 June, 2011. The boulder had dimensions of 0.99 m-L x 0.74 m-

W x 2.03 m-H with respect to the direction of impact. The American Black Granite boulder,
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referenced as ABG-02, was embedded 0.914 m into a reinforced foundation. Dowels were used
to anchor the boulder into the concrete foundation. The dowels were #6 bars embedded 0.305 m
into the boulder on all sides. Once the dowels were placed and the boulder was set into the
ground, the concrete foundation (0.914 m) was poured. After the concrete cured, soil was placed

on top of the concrete foundation and tamped. The installation of ABG-02 is shown in Figure

4-33, and the pretest condition of ABG-02 is shown in Figure 4-34.
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Figure 4-33. Installation of ABG-02 in BFT-1
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Figure 4-34. Pre-test condition of ABG-02 in BFT-1

The impact vehicle for BFT-1 was a 2002 Chevy C6500, and was prepared as specified in
ASTM F2656-07. Additional ballast was added to the front of the truck bed in order to achieve a
total weight of 6,792 kg (14,975 Ibs.). Additional vehicle specifications are provided in

Appendix A, and photographs of the vehicle are shown in Figure 4-35.
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Figure 4-35. Pre-test condition of the impact vehicle in BFT-1

Based on the stationary radar system and confirmed by analysis of the high-speed video,
the approach speed at impact was 16.3 m/s (36.5 mph). The centerline of the impact vehicle
contacted the test article 0.13 cm to the right of the critical impact point that was defined as along
the centerline of the attack left vertical post, and the angle of approach was 89.4°. Figure 4-36
shows the location of the centerline of the impact vehicle relative to the critical impact point and
the impact angle of the vehicle. Upon impact, the boulder sheared at the level of the first layer of
rebar and rotated under the vehicle. Figure 4-37 shows the side-view still images extracted from
the high-speed video in a chronological sequence of the impact. The position of the vehicle from
the point of impact is show in Figure 4-38, and the calculated velocity based on the position data
is show in Figure 4-39. A 2™ order low-pass Butterworth filter with a cutoff frequency of 25 Hz

was used to filter the position.
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Figure 4-37. High-speed image sequence of BFT-1
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Figure 4-38. Linear displacement of the vehicle in BFT-1 from the time of impact
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Figure 4-39. Linear velocity of the vehicle in BFT-1 from the time of impact
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Photographs of the post-test condition and location of the vehicle are shown in Figure

4-40, and Figure 4-41 shows the post-test condition of the device being tested.

Figure 4-40. Post-test location and condition of the impact vehicle in BFT-1



9 My 3 A g < ;
-‘%?45- b - hd
O il B S

Figure 4-41. Post-test condition of ABG-02 in BFT-1

4.3.4 Summary of full scale fracture test BFT-2

BFT-2, in which the boulder was embedded in the reinforced concrete footing with no
anchoring, was performed on 22 November, 2011. The boulder had dimensions of 1.43 m-L x
0.76 m-W x 2.29 m-H with respect to the direction of impact. The American Black Granite
boulder, referenced as ABG-03, was embedded 1.24 meters in a reinforced foundation. The
installation of ABG-03 is shown in Figure 4-42, and the pretest condition of the boulder is shown

in Figure 4-43.



Figure 4-42. Installation of ABG-03 in BFT-2
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Figure 4-43. Pre-test condition of ABG-03 in BFT-2

The impact vehicle for BFT-1 was a 1994 International 4700 medium-duty sized truck,
and was prepared as specified in ASTM F2656-07. Additional ballast was added to the front of
the truck bed in order to achieve a total weight of 6,786 kg (14,960 Ibs.). Additional vehicle
specifications are provided in Appendix A, and photographs of the vehicle are shown in Figure

4-44.
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Figure 4-44. Pre-test condition of the impact vehicle in BFT-2

Based on the stationary radar system and confirmed by analysis of the high-speed video,
the approach speed at impact was 14.75 m/s (33 mph). The centerline of the test vehicle
impacted the test article 43 cm to the right of the critical impact point that was defined as along
the centerline of the attack left vertical post, and the angle of approach was 91.6°. Figure 4-45
shows the location of the centerline of the impact vehicle relative to the critical impact point and

the impact angle of the vehicle.
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Figure 4-45. Location of impact vehicle centerline (left) and impact angle (right) in BFT-2

The vehicle impacted the center boulder head-on. The two outer boulders were not
impacted. The center boulder fractured and broke completely at the top of the reinforced concrete
foundation. Figure 4-46 shows the side-view still images extracted from the high-speed video in
a chronological sequence of the impact. The position of the vehicle from the point of impact is
shown in Figure 4-47, and the calculated velocity based on the position data is shown in Figure
4-48. A 2™ order low-pass Butterworth filter with a cutoff frequency of 25 Hz was used to filter

the position data prior to taking the time derivative.
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Figure 4-46. High-speed image sequence of BFT-2
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Figure 4-47. Linear displacement of the vehicle in BFT-2 from the time of impact
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Figure 4-48. Linear velocity of the vehicle in BFT-2 from the time of impact
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Photographs of the post-test condition and location of the vehicle are shown in Figure

4-49, and Figure 4-50 shows the post-test condition of the device being tested.

Figure 4-49. Post-test location and condition of the impact vehicle in BFT-2
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Figure 4-50. Post-test condition of ABG-03 in BFT-2

4.4 Summary of medium scale fracture tests

Two medium scale fracture tests, MFT-1 and MFT-2, were performed on American
Black Granite. The tests were performed on ABG-01, which was the boulder used in BST-1.
MFT-1 and MFT-2 were performed on 08 March 2011, and the two tests were performed
consecutively since ABG-01 did not fracture during MFT-1.

ABG-01 was rigidly fixed in the skewbacks such that the length of the boulder was 0.762
m and the width was 1.016 m as related to the direction of impact. The installation of the boulder
was performed by Ameron Construction, and the impact sled was aligned with the boulder such
that the impact face of the ram was approximately 90° to the centerline of the boulder. Figure
4-51 shows ABG-01 as installed prior to MFT-2. The alignment of the boulder and impact sled is

shown in Figure 4-52 and Table 4-3.



Figure 4-51. Pre-test condition of ABG-01 in MFT-2
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Figure 4-52. Reference for impact sled orientation in MFT-1 and MFT-2
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Table 4-3. Impact sled orientation (positive indicates corner extends out past test article)

Corner A Elevation from Ground 1.918 m
Corner B Elevation from Ground 1.981m
Corner C Distance from Edge of Test Article -0.216 m
Corner D Distance from Edge of Test Article +0.127 m
Corner E Elevation from Ground 2.032m
Corner F Elevation from Ground 2.007 m

Based on the measurements in Table 4-3, the centerline of the impact sled impacted the test
article 0.172 m to the left of the center of the front vertical face of ABG-01.

The impact sled fist contacted the test article with the ram face flush against the test
article. The impact sled then rebounded from the test article, rotating and translating in the
opposite direction of initial impact. The impact sled then contacted the test article again, but at a
reduced velocity. The impact sled contacted and rebounded several times until all of the energy
from the test had been transferred. Still images extracted from the high-speed video data showing
a chronological sequence of the impact are given in Figure 4-53 and Figure 4-54 for the side

views of MFT-1 and MFT-2 respectively.




106

Figure 4-53. Sequence of high-speed images from MFT-1
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Figure 4-54. Sequence of high-speed images from MFT-2
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Photographs of the post-test condition and location of ABG-01 after MFT-1 are shown in
Figure 4-55, and Figure 4-56 shows the post-test condition of the impact sled after MFT-1.

Photographs of the post-test condition and location of ABG-01 after MFT-2 are shown in Figure

4-57, and Figure 4-58 shows the post-test condition of the impact sled after MFT-2.
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Figure 4-55. Post-test condition of ABG-01 after MFT-1
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Figure 4-57. Post-test condition of ABG-01 after MFT-2
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Figure 4-58. Post-test condition of impact sled after MFT-2

4.5 Comparison of low-order model simulation to past full scale crash data

The full scale low-order simulations are performed by first parameterizing a typical
medium-duty sized truck in terms of an equivalent spring and damper constant, and then using
those results in addition to the remaining crash parameters within the low-order model. The
equivalent spring and damper values for the low-order vehicle are found using the methodology

presented in [2]. A LS-DYNA™ finite element simulation was performed by Larson Institute



111

personnel for a medium-duty sized truck traveling at 13.4 m/s impacting a rigid wall. The results
of the LS-DNYA truck-wall impact are shown in a chronological sequence in Figure 4-59, and

the displacement of the LS-DYNA™ truck is shown in Figure 4-60.

Figure 4-59. Finite Element LS-DYNA™ simulation of an M30 impact with a rigid wall
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Figure 4-60. Longitudinal displacement of the medium-duty truck in the LS-DYNA™ simulation

The fit of (3.58) to the data in Figure 4-60 results in the equivalent spring and damper

values of the low-order vehicle to be 3,103.3 kN/m and 138.91 kN-s/m respectively. The

lumped-parameter Maxwell model simulation of an M30 impact on a rigid wall using the

aforementioned spring and damper values is shown in Figure 4-61.
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Figure 4-61. Comparison of LS-DYNAT™ simulation to lumped-parameter Maxwell model
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The measured displacement of the boulder in the full scale crash tests was made with
respect to the center of mass of the boulder whereas the simulations are with respect to the center
of mass of the boulder-soil subsystem. Since the boulder is treated as a rigid body, the

!

displacement of the center of mass of the boulder, x;,’, is related to the displacement of the

assumed center of mass of the boulder-soil subsystem, x;,, using

xp' =xp + R, cos(y,’ — 6,) (4.1)

where R, is the radial distance from the center of mass of the boulder-soil subsystem to the
center of mass of the boulder and y;" is the angle measured from the positive X direction as
defined in Section 3.2 to the center of mass of the boulder. The radial distance from the center of
mass of the boulder-soil subsystem to the center of mass of the boulder, R,’, and the angle
measured from the positive X direction as defined in Section 3.2 to the center of mass of the

boulder, y,’, are found using

(4.2)

¥p' = tan™! /M\ T (4.3)
()"

(+-®)

Since the boulder is treated as a rigid body, the measured angle of rotation of the boulder

N[ NI~

in a full scale crash test is directly comparable to the simulated angle of rotation of the boulder-
soil subsystem. The number of soil elements within the low-order model, N, was increased until

the model converged between simulations of the same parameters. All full scale crash test



114

simulations use 5,000 soil elements. Table 4-4 summarizes the remaining low-order model

parameters not shown in either Table 4-1 or Table 4-2

Table 4-4. Additional low-order model parameters for BST-1 and BST-2

k, = 3,103.3kN/m ¢, = 13891 kN -s/m N = 5,000

The simulations for BST-1 and BST-2 are performed using a constant of horizontal subgrade
reaction of 95 MN/m?® which correlates to approximately 94% maximum density of the soil. A
constant of horizontal subgrade reaction of 95 MN/m? is the approximate mean of the minimum
constant of horizontal subgrade reaction as per minimum compaction level specified by ASTM

F2656-07 and the maximum constant of horizontal subgrade reaction as calculated using (3.75).

4.5.5 Comparison of full scale low-order simulation to BST-1

Figure 4-62, Figure 4-63, and Figure 4-64 show the comparison of the measured crash
test results from BST-1 to the simulated low-order results using the parameters listed in Table 4—
1 and Table 4-4. Figure 4-62 shows the comparison of the linear displacement of the center of
mass of the boulder, Figure 4-63 shows the comparison of the angle of rotation of the boulder,

and Figure 4-64 shows the comparison of the linear displacement of the impact vehicle.
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Figure 4-62. Comparison of the measured and simulated displacement of the center of mass of

ABG-01in BST-1
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Figure 4-63. Comparison of the measured and simulated angle of rotation of ABG-01 in BST-1
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Figure 4-64. Comparison of the measured and simulated displacement of the vehicle in BST-1

As seen in Figure 4-62 — Figure 4-64 the model loses fidelity after approximately 0.1 seconds

from impact which corresponds to roughly 20° of rotation of the boulder.

4.5.6 Comparison of full scale low-order simulation to BST-2

Figure 4-65, Figure 4-66, and Figure 4-67 show the comparison of the measured crash
test results from BST-2 to the simulated low-order results using the parameters listed in Table 4—
2 and Table 4-4. Figure 4-65 shows the comparison of the linear displacement of the center of
mass of the boulder, Figure 4-66 shows the comparison of the angle of rotation of the boulder,

and Figure 4-67 shows the comparison of the linear displacement of the impact vehicle.
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Figure 4-65. Comparison of the measured and simulated displacement of the center of mass of
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Figure 4-66. Comparison of the measured and simulated angle of rotation of RWG-01 in BST-2
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Figure 4-67. Comparison of the measured and simulated displacement of the vehicle in BST-2

Similar to the simulated results from BST-1, the low-order model predicts the motion of the crash
test within reason for angular displacement of less than 20° of the bolder. As presented in
Chapter 7, the low-order can be used in selecting the dimensions for a boulder based on angular

displacement of less than 20°.

4.6 Comparison of static fracture predictions to full scale fracture tests

The full scale fracture predictions are made using the methodology presented in Section
3.3. The peak deceleration used in the fracture prediction was found to be 100 G’s from the LS-
DYNA™ finite element simulation of the M30 rigid-wall impact presented in Section 4.4. The
rock properties used in the fracture prediction are shown in Table 4-5. The material properties
for the granite were obtained by LTI personnel following procedures outlined by the International

Society of Rock Mechanics [26] [27].



Table 4-5. Material properties for select boulder types

Compressive Strength

Tensile Strength

American Black granite 182.02 MPa

31.9 MPa
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The factors of safety and corresponding pass/fail contour plots for various granite

geometries were obtained using MATLAB® iterations through various boulder geometries. The

eccentricity of the applied point load was fixed at 0.75 meters of cantilever, as this is the typical

value for the equivalent point load as determined in Chapter 3.

The factor of safety is defined in terms of maximum fracture stress in comparison to the

stress needed to fracture for the given geometry. Factors of safety less than one indicate fracture.

Figure 4-68 estimates minimum pass/fail requirements for boulders based on infinite soil

stiffness, boulder geometries, and boulder material properties of American Black granite. The

contour plots are interpreted such that areas shaded in black indicate estimated areas of fracture-

type failure and gray indicates estimated areas where fracture will not occur. As presented in

Chapter 3, it is assumed that the boulder is impacted parallel to the length dimension, or from left

to right.
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Figure 4-68. Factors of safety for an M30 impact on a rigidly-fixed American Black Granite

boulder as determined from static fracture prediction with respect to impact direction

The calculations for estimating fracture failure were compared to past crash tests in
which the boulders fractured due to rigid embedment conditions. The full scale fracture results
from BFT-1 and BFT-2 are compared to the estimated fracture geometries in Figure 4-69. The
contour plot below shows the results of the full scale fracture tests overlaid onto the predicted

regions of fracture from Figure 4-68.
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Figure 4-69. Comparison of static fracture prediction to BFT-1 and BFT-2

As shown in Figure 4-69, the static fracture prediction methodology accurately predicts
fracture for both BFT-1 and BFT-2. It should be noted that both BFT-1 and BFT-2 lie near the
pass/fail line of a factor of safety equal to 1. As shown in Figure 4-39 and Figure 4-48, the post
impact speed of the vehicle severely reduced which indicates that a slight increase in boulder
dimensions could result in no boulder fracture. It should also be noted that the approach speed in
both fracture tests was above the 13.4 m/s from which the static fracture contour plots was
derived, which further adds to the plausibility of the static fracture prediction methodology. As
presented in Chapter 7, Figure 4-68 and the static fracture prediction methodology can be used in

selecting the minimum dimensions for a boulder based on failure in the form of fracture.



122

4.7 Comparison of static fracture prediction against medium scale fracture
tests

This section presents the comparison of past medium scale fracture tests to the predicted
fracture mechanics presented in Section 3.3. The medium scale fracture tests consist of a 2227 kg
impact pendulum and rigid mounting hardware.

The force acting on the boulder is found by applying acceleration analysis to the global
displacements of the impact sled obtained using Photron Motion Tools. The position of the
impact sled was filtered using a 2™ order low-pass Butterworth filter with a cutoff frequency of
115 Hz. The pendulum is treated as a point mass that is restricted to 1-D motion since the impact
sled is supported by flexible cables and the motion in the Y direction at the time of impact is
negligible. The velocity and the acceleration of the impact sled were calculated by taking the
time derivatives of the position. The maximum accelerations for MFT-1 and MFT-2 were found
to be 163.3 G and 127.5 G, respectively.

Using Newton’s 2™ law, the force acting on the impact sled is found by multiplying the
acceleration of the impact sled by the mass of the sled. By Newton’s 3™ law, the force acting on
the sled also represents the force acting on the boulder. The measured force acting on the
boulders is then be correlated to the factor of safety using the methodology proposed in Section
3.3 where the eccentricity of the impact was measured to be 0.68 meters. Table 4-6 lists the
measured and calculated data with respect to MFT-1 and MFT-2 along with the resulting factors
of safety. Additionally, the maximum calculated force form MFT-1 and MFT-2 is correlated to
an equivalent maximum acceleration for a 6,800 kg medium-duty sized truck as used in full scale
crash tests. Again using Newton’s 2™ law, the equivalent accelerations of the 6,800 kg vehicle

are found using
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_ MgiedQsied (4.9)
QAyehicle = m ’
vehicle

where a,enicie aNd ago4 are the acceleration of the vehicle and sled and m,qpice aNd Mgy are

the mass of the vehicle and sled.

Table 4-6. Medium scale fracture test results for MFT-1 and MFT-2

MFT-1 MFT-2
Maximum impact sled acceleration 163.3G 1275G
Equivalent vehicle maximum acceleration 535G 418G
Factor of safety calculated using the vehicle maximum acceleration  1.17 15

The factors of safety confirm that the boulders should not have fractured upon impact of the sled

as predicted using the maximum static fracture force methodology presented in Section 3.3.

4.8 Contributions of this chapter

The contributions of this chapter are as follows:
(1) Present the test equipment and procedure associated with full scale crash and fracture
tests
(2) Present the test equipment and procedure associated with medium scale fracture tests
(3) Present a summary of past full scale crash tests, medium scale fracture tests, and results
(4) Compare the simulated low-order model to the full scale crash test results

(5) Compare the fracture predictions to full and medium scale fracture test results
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CHAPTER 5

DIMENSIONAL ANALYSIS THEORY AND METHODS

The intent of this chapter is to present the application of dimensional analysis to the low-
order model presented in Chapter 3 in order to develop dimensionless equations of motion and
scaling laws. Similar to [13], the DEOM allow for direct comparison of boulder and vehicle
motion in small scale experiments and simulations to the boulder and vehicle motion in full scale
experiments and simulations. The Buckingham IT Theorem states that each of the small scale
dimensionless parameters, often represented as the Greek letter 7, must be equal to the respective
full scale dimensionless = parameters in order to achieve full similitude. The dimensionless =«
parameters are used to create scaling relationships between small scale and full scale experiments
as well as dimensionless equations of motion.

This chapter is organized as follows:

The relevant variables from the low-order model are listed in Section 5.1, and the
repeating parameters are then selected from the relevant model variables in accordance with the
Buckingham IT Theorem in Section 5.2. Dimensionless = groupings are presented using the
repeating parameters and remaining non-repeating parameters in Section 5.3. The dimensionless
7T groupings are then used to create dimensionless equations of motion for the low-order model
which can be used to simulate all variations of input parameters in Section 5.4. The procedure for
simulating the dimensionless equations of motion is presented in Section 5.5. Finally, scaling
laws between full scale and small scale testing will be presented based on the dimensionless

groupings in Section 5.6.
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5.1 Governing low-order model variables

Buckingham’s IT Theorem does not require knowledge of the governing equations for a
system creating small scale tests, rather, only that the significant parameters need to be known. It
is advantageous, however, to know the governing equations, as this will simplify the
identification of significant parameters.

Using the low-order model as a guideline, Table 5-1 shows the significant parameters as
pertaining to a vehicle impact upon a soil-fixed boulder. For the purposes of analysis, terms that
are already dimensionless — angles, friction coefficients, etc. — can be ignored as the terms will
appear in identical form between experiments in full similitude. Inherently dimensionless
parameters must match between small and full scale experiments as there is no scaling parameter
associated with inherently dimensionless parameters. The base dimensions associated with the

low-order model in Chapter 3 are mass (m), length (1), and time (s).



Table 5-1. Significant parameters found in the low-order model
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Variable Symbol [ Dimension | Classification
Gravitational acceleration g l-s72 Input
Mass density of the soil Psoil m- 173 Input
Constant of horizontal subgrade reaction of the soil B m-17%.s72 Input
Mass density of the boulder Pb m- 173 Input
Length of the boulder L l Input
Width of the boulder w l Input
Height of the boulder H l Input
Embedment depth of the boulder d l Input
Linear displacement of the boulder Xp l Output
Linear velocity of the boulder Xp l-s71 Output
Linear acceleration of the boulder Xp l-s72 Output
Angular velocity of the boulder o, st Output
Angular acceleration of the boulder o, s™?2 Output
Mass of the vehicle m, m Input
Linear displacement of the vehicle Xy l Output
Initial linear velocity of the vehicle v, [-s71 Input
Linear velocity of the vehicle Xy l-s71 Output
Linear acceleration of the vehicle Xy l-s72 Output
Linear jerk of the vehicle Xy l-s73 Output
Damping constant of the vehicle Cy m-s~t Input
Spring constant of the vehicle ks, m-s~? Input
Eccentricity of vehicle applied load e l Input
Time t s Output
Height of soil element Retement l Input




127

5.2 Selection of repeating parameters

As seen in Table 5-1, there are 26 total variables and three basic unit dimensions: mass
(m), length (1), and time (s). According to the Buckingham IT Theorem, the number of

independent dimensionless variable grouping is found using

Ny = Ny, = Npq (5.1)

where N is the number of independent dimensionless groupings, N, is the total number of
variables found in Table 5-1, and N, is the number of base dimensions found in Table 5-1.
Applying (5.1) to the parameters listed in Table 5-1 yields 23 independent dimensionless variable
groupings and 3 repeating parameters.

One criterion for repeating parameter selection arises from the inherent nature of the
repeating parameters needing to span the dimensions of all the variables. As seen in Table 5-1,
however, there are a limited number of variables that include the time dimension and fewer which
are considered inputs into the low-order model. The time dependent input parameters in Table 5—
1 are the initial velocity of the vehicle, v,, the gravitational constant, g, the constant of horizontal
subgrade reaction of the soil, 8, and the equivalent damping and spring constants, ¢, and k,,.

A somewhat intuitive approach in satisfying the aforementioned time dimension criterion
is to select the gravitational constant as the first repeating parameter since it is expected to remain
constant between full scale and small scale testing. The remaining two repeating parameters are
then selected such that the rank of the dimensional matrix, shown in Table 5-2, is equal to the

number of base dimensions, N ;.
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Table 5-2. Example of a dimensional matrix for determining span of variables
my, Vo 9
length | 0 1 1
mass 1 0O O
time o -1 -2

Following the aforementioned selection criteria, the mass of the vehicle and initial
velocity of the vehicle are chosen as the remaining two parameters since the combination of

m,, V,, and g span the base dimensions found in the low-order model, and both m,, and

v, are driving factors in the model simulation.

5.3 Grouping of dimensionless T parameters

A manual approach is typically used in calculating the 7 parameters in dimensional
analysis, but the manual approach is often very tedious and time consuming. A more methodical
approach is offered through the use of matrix mathematics which can be used to rapidly
determine the m parameters [28]. Following the methodology presented in [28], the repeating
parameters, m,,, v,, and g, are placed in the Ay, submatrix of the dimensional matrix D, shown
in Figure 5-1. The remaining non-repeating parameters are then placed in the By, submatrix, and

the ET submatrix is set as unity. The dimensional set is then formed using
(—Ap™ By -E+4p~"q)", (5:2)

where q is set to a zero vector. The variable g is set to a zero vector because there is no change in

dimensional basis [28].
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Figure 5-1. Dimensional Matrix [28]

A dimensional set is presented in which the types of variables, such as linear position or
acceleration, are used in (5.2) instead of the variables found in Table 5-1. For example, linear
velocity will be presented instead of listing both the linear velocity of the boulder and the linear
velocity of the vehicle. Both the linear velocity of the boulder and vehicle will have the same
scaling factor since they both have the same dimensions. Table 5-3 shows the variations of
variables found in the low-order model. The results from applying (5.2) to the parameters listed

in Table 5-3 are shown in Table 5-4.



Table 5-3. Types of variables found in the low-order model

Variable Symbol | Dimension
Mass density p* m-173
Constant of horizontal subgrade reaction B* m-172-572
Length L’ l
Linear velocity v* [-s71
Linear acceleration a* [-s72
Linear jerk i [-s73
Angular velocity w* st
Angular acceleration ar s72
Damping constant c* m-s~t
Spring constant k* m-s2
Time t” s
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Table 5-4. Dimensionless groupings associated with (5.2) and Table 5-3

b B L v @ e oa kot im om g
length |3 2 1 1 1 1 0 0 0 0 0 0 1 1

mass |1 1 0 0 0 0 O 0 1 1 0/1 0 O

time |0 2 0 -1 2 -3 -1 -2 -1 2 1,0 -1 =2

e |1 0 0 0 0 0 0 0 0 0 0{-1 6 -3|m,
mg [0 1 0 0 0 0 0 0 0 0 0 -1 6 -4|m,
7. |0 0 1 0 0 0 0 0 0 0 0,0 -2 1|
7 |0 0 0O 1 0 0 0 0 0 0 0 0 -1 0]|m,.
7Ty |0 0O 0O 0 1 0 0 0 0 0 0.0 0 -1|m,
7~ |0 0 0 0 0 1 0 0 0 0 0,0 1 -2|m
Tye |0 0 0 0O 0 O 1 0 0 0 0,0 1 -1|m,
7y [0 0 0 0O 0 0 O 1 0 0 00 2 -2|m,
mTe |0 0 0 0 0 0 0 0 1 0 0/-1 1 -1|n.
me |0 0 0 0 0 0 0 0 0 1 0!-1 2 -=2|m
m- |0 0 0 0 0 0 0 0 0 0 1,0 -1 1|
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The resulting dimensionless groupings for each variable type shown in Table 5-4 are

given in Table 5-5.

Table 5-5. Dimensionless parameters for variable types

Ty = ’:l v ';036 (5.3)
mg = [in v ';046 (5.5)
= L;O'zg (5.7)
y :—: (5.9)
=L (5.11)
— 'Og (5.12)

(5.4)

(5.6)

(5.8)

(5.10)

(5.13)

The dimensionless parameters associated with the variables in Table 5-1 are simply

found by replacing the starred variables in Table 5-5 with the corresponding variable from Table

5-1. Returning to the velocity example described earlier in this section, the dimensionless

parameter associated with linear velocity of the boulder is found by simply replacing v* with x,,

in (5.9). Similarly the dimensionless parameter associated with the linear velocity of the vehicle

is formed by replacing v* with x,, in (5.9). Thus, the dimensionless & groupings associated with

the salient parameters in the low-order model are found by performing the aforementioned

substitution method for the remaining variables in Table 5-1. The results of the substitutions are

shown in Table 5-6.



Table 5-6 Dimensionless rr groupings for the low-order model
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Psoil — m, g3
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B~ 4
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Pb m, g3
L-g
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L voz
W-g
T[ =
w voz
H-g
T[ =
H voz
d-g
T[ =
d voz

(5.14)

(5.17)

(5.20)

(5.23)

(5.26)

(5.29)

(5.32)

_Xp g
My = voz
Xp
T[J'Cb = ‘U_O
Xp
Ty, = —
b
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Op " Vo
Tl'gb = g
Bb Vo
T[éb - gZ
_ X g
T[xv - vOZ
Xy
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(5.15)

(5.18)

(5.21)

(5.24)

(5.27)

(5.30)

(5.33)

Xy
Mg, = —
X, " v,
T[fv - 92
Cy Vo
"o T, g
ky - Voz
T[kv m, 92
e g
Te = ‘UOZ
t-g
Ty =
Vo
_herg
The = UOZ

(5.16)

(5.19)

(5.22)

(5.25)

(5.28)

(5.31)

(5.34)

Solving (5.14) - (5.40) for the parameters listed in Table 5-1 results in Table 5-7.
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Table 5-7. Low-order model parameters as a function of the 7 groupings in Table 5-6

3 Ty, Vp? X, =Tg g (5.37)
Ty uMw g _ TV . v ¥y
pron = 22— (539) Hp=—— (30
4 xb =Ty, Vo (5-39) Ty gz
TTpMm g b == 540
p="t 63 fy==r— (640
m 3 jéb =T g (542) — T[Cvmv 9
pp = T[va—zg (5.41) b Cy o (5.43)
(o]
2 . _ 9,9 T, my, g2
L = LY (5.44) 0, = o (5.45) k, = "vv ’ (5.46)
g o
T U 2 . T[é gz nevoz
w =42 (5.47) g, = —2 (5.48) e=—" (549
g Vo 9
T+ D,
V2 2 t=—2 5,52
H= Hg" (5.50) x, = Txy%o_ (5.51) 9 (552
g
X, = Ty 5.54 2
d _ 7Td1702 (553) xl] T[xvvo ( ) he — nh;vo (555)
g

5.4 Creation of dimensionless equations of motion

The main goal of this thesis is to develop dimensionless equations of motion which can
be used to simulate and predict the motion of various parameters associated with vehicle impacts
upon a soil-fixed boulder in cohesionless soil. The dimensionless equations of motion are
presented following the methodology in [28]. The governing dimensionless equations of motion

are formed by representing (3.10), (3.11), and (3.54) in terms of the dimensionless « parameters,
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the repeating parameters, and the non-repeating parameters found in Table 5-1 and then
simplifying.

It is beneficial at this point to dissect the governing equations of motion into individual
components which will be reassembled into the dimensionless equations of motion. The
dimensionless equation of motion for the wvehicle is presented in Section 5.4.1. The
dimensionless equation of motion for the boulder-soil subsystem in the X direction is presented in
Section 5.4.2. Lastly, the dimensionless equation of motion for the rotation of the boulder-soil

subsystem about the Z axis is presented Section 5.4.3.

5.4.1 Dimensionless equation of motion for the vehicle

The governing dimensionless equation of motion for the vehicle is formed by expressing
(3.54) in terms of dimensionless  groupings and repeating parameters found in Table 5-7. It is
advantageous to represent the various variables found in (3.54) through the use of intermediate
dimensionless = groupings as a means of general housekeeping. The mass of the boulder is
expressed in terms of the dimensionless 7 groupings and repeating parameters by substituting

(5.41), (5.44), (5.47), and (5.50) into (3.14), which results in

3 2 2 2
T[pbmy g ] TV, ) VATIAZ . TV, (556)

m, =
b Vo6 g g g

Combining like terms in (5.56) and simplifying yields

my = MMy, = MyT,, T Ty Ty, (5.57)
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where 7, is the resulting intermediate dimensionless  grouping as pertaining to the mass of the

boulder. Similarly, the mass of the lumped soil against the boulder is formed by substituting

(5.35), (5.47), (5.53), and (5.55) directly into (3.2) and simplifying, which results in

1 5.58
My = My, = My, Ty Ty, tan(8,,) ([nd — nnhe] + Enhe)' (5.58)
where 7., is the resulting intermediate dimensionless 7 grouping as pertaining to the lumped
soil masses against the boulder. The center of mass for the boulder-soil system, as measured with
respect to the local origin in the X direction, is expressed in terms of the dimensionless
groupings and repeating parameters by substituting (5.44), (5.57), and (5.58) into (3.3) and

simplifying, which yields

(5.59)

1
M Vot mv,” [Zg:l{nmn} + tmy 7]

" 9 SN )+ oy

where 7 is the intermediate dimensionless 7 grouping for the center of mass for the boulder-soil

subsystem. Substituting (5.59) and (5.53) into the definition of d,, results in

Mg, Vo® T Vo?  TL0,° T, Vo® (5.60)
d, = =range | |[——— , , N
g g g g

where mry is an intermediate dimensionless 7 grouping associated with the depth of each soil
element relative to the center of mass for the soil-boulder subsystem.

In order to rewrite the displacement of the contact point between the vehicle and the
boulder, R, and y, are expressed in terms of the dimensionless m groupings and repeating
parameters by substituting (5.49), (5.59), and (5.60) with n =1 into (3.5) and (3.6) and

simplifying, which yields
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T
Yo =7p" = tan~l —% (5.61)
(nL + ”dl)
2 2
T[va D, 2 (562)
R, = Ta = %\/(ne +7m,)% + (”dl) ,

where y,," is the dimensionless 7 grouping for y,,, and 7y, | is the dimensionless 7 grouping for the
radial distance from the center of mass of the boulder-soil subsystem to the vehicle impact point.
It should be noted that y,,* requires no scaling parameters since it is already dimensionless and a
function of dimensionless variables.
Finally, (3.54) is expressed in dimensionless  groupings, repeating parameters, and the
non-repeating variables in Table 5-1 by substituting (5.61) and (5.62) into (3.54), which yields
k, k,

RPN ky | . .
X —X — X, = —|X
v c v m v m, b b

v v

2
TR, Vo

(5.63)

} cos(y,” + Gb)].

The dimensionless equation of motion for the vehicle is created by substituting (5.37), (5.39),

(5.40), (5.43), (5.45), (5.46), and (5.54) into (5.63) for all of the remaining non-repeating

parameters forming

2 2
, Ty, My g Ty, My g (5.64)
T[.X'v«g voz T g + vOZ Tw U
U, T[Cvmv g v m, Xy~ 0
vO
2
T, My g 5
2 Ty g (mr vV,
D, (%] Ry, Y0
= —2—|my, Vv + —— {——¢ cos(y," + 6)) .
mU vO g

Combining like terms in (5.64) and simplifying yields
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2 ’n 2 (5.65)
g—njg +g— k”n,g +g—7rk o
v, v v, T[Cv v v, v Xy

2

9 x
="k, [”xb + 1y, TR, COS(y," + 0,)]-
o

Dividing both sides of (5.65) by i—z yields

(5.66)

Tk
v _ ) "
Ty, + — T, + Ty T, = T, [”xb + Ty, TR, cos(y,” + Gb)].
Cy

Thus, the governing equation of motion for the vehicle is now expressed solely in dimensionless

7 groupings. Equation (5.66) is the governing dimensionless equation of motion for the vehicle.

5.4.2 Dimensionless equation of motion for the boulder-soil subsystem in the X direction

The governing dimensionless equation of motion for the boulder-soil subsystem in the X
direction is presented in manner similar as the dimensionless equation of motion for the vehicle.
The left hand side of (3.10) is expressed in dimensionless 7 groupings and repeating parameters
through the use of an intermediate dimensionless m grouping for the effective mass of the
boulder-soil subsystem. The m grouping is created for the effective mass of the boulder-soil
subsystem by substituting (5.57) and (5.58) into (3.12) and simplifying, which yields

N (5.67)
Merr =My, T[meff =my (T[mb + Z{nmn})

n=1

where Mgy is the resulting intermediate dimensionless  grouping as pertaining to the effective

mass for the boulder-soil subsystem.
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Similarly, the right hand side of (3.10) must be expressed in dimensionless  groupings
and repeating parameters. The vehicle force, F,, acting on the boulder during impact is expressed
in dimensionless T groupings and repeating parameters by substituting (5.37) into (3.56), which

results in
E,=-my, gmy, (5.68)

The soil forces are expressed in the dimensionless  groupings and repeating parameters
in a similar manner to the derivation of the soil forces presented in Chapter 3. First the soil
representative spring forces are expressed in the repeating parameters and dimensionless m
groupings, and then the soil representative dampers are expressed in the repeating parameters and
dimensionless 7 groupings.

The three variables in the lateral soil force from the springs which are not dimensionless
7T groupings or repeating parameters are the locations of the soil masses with respect to center of
mass of the boulder-soil, R,,, the angles for each soil element as measured from vertical, y,,, and
the depth of the soil elements from the soil line to the bottom of the boulder, a,,. The locations of
the soil masses with respect to center of mass of the boulder-soil, R,,, the angles for each soil
element as measured from vertical, y,,, are expressed in terms of the repeating parameters and
dimensionless m groupings by substituting (5.44), (5.59), and (5.60) into (3.7) and (3.8),

respectively, and simplifying, which yields

Yn=Vn" =tan”! (—") + L
(T[L - n-cx) 2

TR Vo2 1,2 5.70
Rn=M=L T[d2+(nL2_7tcz)2: (5.70)
g g n X
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where y,,* are the dimensionless m groupings for the angles of each soil element as measured
from vertical, and mrp  are the dimensionless m groupings for the radial distances from the center
of mass of the boulder-soil subsystem to the soil elements. Similar to y,,*, it should be noted that
¥, requires no scaling parameters since it is already dimensionless. the depth of the soil
elements from the soil line to the bottom of the boulder, a,,, is expressed in terms of the repeating

parameters and dimensionless m groupings by substituting (5.53) into the range (0,%,d) and

simplifying, which yields

, TTaVy” , (5.71)
_ Mo, Vo _ g TgVo
an—T—range ,T,T

where 7, are the dimensionless 7= groupings for the depth of the soil elements from the soil line
to the bottom of the boulder.

The force acting on the boulder-soil subsystem from the soil representative springs is
expressed in terms of dimensionless 7 groupings and repeating parameters by substituting (5.69),

(5.70), and (5.71) into (3.27) and simplifying, which yields

F, =myg g, (5.72)

10° g my, tan @’
N

=myg T, [nxb + TR, sin(y," + 6p)

— TR, Sil’l()/n*)],

where ey, is the intermediate dimensionless 7 grouping for the soil representative spring force.
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The ultimate lateral resistance is expressed in terms of the repeating parameters and
dimensionless r groupings by substituting (5.35), (5.47), and (5.71) into (3.32) and simplifying,

which results in

szﬂpbﬂwzﬂan K. (5.73)
N )

Fun = mMygTg,, = Mg

where TF, is the intermediate dimensionless rr grouping for the ultimate lateral resistance of the

soil. It should also be noted that K, and K, are not scaled since they are inherently dimensionless
and based solely on dimensionless parameters.

The lateral soil force from the soil representative dampers are expressed in terms of the
repeating parameters and dimensionless 7 groupings by substituting (5.35), (5.39), (5.45), (5.69),

and (5.70) into (3.43) and simplifying, which yields

Tpsou™wa (574)

) 2
N ("xb + Ty, TR, cos(y," + Bb))

., = mygmg,, = Myg

+ sign([my, + 1y, g, cos(vn® + 6,)]),

where TR, is the intermediate dimensionless = grouping for the lateral soil force from the soil

representative dampers. The total force from the soil representative springs and dampers is
represented in terms of the repeating parameters and dimensionless  groupings by substituting

(5.72) and (5.74) into (3.19) and simplifying, which yields

Fy = —mygng, = —myg (T[Fkn + T[FCn): (5.75)

where mp is the intermediate dimensionless 7 grouping for the total soil force from the soil

representative springs and dampers.
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Having expressed all of the forces on the right hand side of (3.10) in terms of
dimensionless  groupings and repeating parameters, the governing dimensionless equation of
motion for the boulder-soil subsystem in the X direction is found by substituting (5.67), (5.68),
and (5.75) into (3.10) and simplifying, which yields

N (5.76)
T[meffnjéb = Z{npn} + TR,
n=1

5.4.3 Dimensionless equation of motion for rotation of the boulder-soil subsystem about the
Z axis

The governing dimensionless equation of motion for the rotation of boulder-soil
subsystem about the Z axis is presented in the similar manner as the dimensionless equation of
motion for the vehicle. Equation (3.11) must be expressed in terms of dimensionless  groupings
and repeating parameters. As demonstrated with the dimensionless equations of motion for the
vehicle and translational displacement of the boulder-soil subsystem, it is advantageous to
develop intermediate dimensionless m groupings as a means of general housekeeping when
expressing (3.11) in the dimensionless  groupings and repeating parameters.

The distance from the center of mass of the boulder-soil subsystem to the soil elements is
expressed in terms of the dimensionless  groupings and repeating parameters by substituting

(5.44) and (5.59) into (3.15) and simplifying, which yields

_mant_wt 6.77)
g g~ borer

by

where m; is the intermediate dimensionless 7 grouping for the distance from the center of mass

of the boulder-soil subsystem to the soil elements. The center of mass for the boulder-soil



143

system, as measured with respect to the local origin in the Y direction, is expressed in terms of the
dimensionless  groupings and repeating parameters by substituting (5.50), (5.53), (5.57), and

(5.58), into (3.4) and simplifying, which yields

—(n-N-1 m 5.78
Cyy =—=—rm——m—mmm—m= — —/ ’
g g g N Aftm, )+ T,

where T, is the intermediate dimensionless 7 grouping for the distance from the center of mass
for the boulder-soil system, as measured with respect to the local origin in the Y direction.

The mass moment of inertia of the boulder about the center of mass of the boulder-soil
subsystem is expressed in terms of dimensionless m groupings and repeating parameters by
substituting (5.44), (5.50), (5.53), (5.57), (5.59), and (5.78) into (3.16) and simplifying, which
yields

Ip = %n]b = m;_lf[%nmb ((’LH)Z 4 (ﬂ)z) (5.79)

1, (e, = )+ (e, = 2) )]

where m;, is the intermediate dimensionless 7 grouping for the mass moment of inertia of the
boulder about the center of mass of the boulder-soil subsystem. The effective mass moment of
inertia of the boulder-soil subsystem about the center of mass of the boulder-soil subsystem is
expressed in terms of dimensionless  groupings and repeating parameters by substituting (5.58),

(5.60), (5.77), and (5.79) into (3.13) and simplifying, which yields
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m,v,* myv,* J X , (5.80)
Jerr = PE Werr = PE Ty, + z{nmn (ndn + 1, )} -
n=1

where Mot is the intermediate dimensionless m grouping for the effective mass moment of

inertia of the boulder-soil subsystem about the center of mass of the boulder-soil subsystem.

The left hand side of (3.11) can now be expressed in terms of the dimensionless «
groupings and repeating parameters by substituting (5.48) and (5.80) into (3.11) and simplifying,
which yields

N (5.81)

JerrOp = myv,°my, Ty, = Z{Mn} + M, + Mg.

n=1

Similarly, the right hand side of (3.11) must be expressed in terms of dimensionless
groupings and repeating parameters. The resulting moments from the lateral soil forces, M, are
expressed in terms of the dimensionless m groupings and repeating parameters by substituting

(5.69), (5.70), and (5.75) into (3.20) and simplifying, which yields
M, = —myvy*my, = —myv,? [ mg cos(y,* + 6, — )], (5.82)

where 7, is the intermediate dimensionless 7 grouping for the resulting moments from the
lateral soil forces. The resulting moment from the force of the vehicle acting on the boulder is
expressed in terms of dimensionless 7 groupings and repeating parameters by substituting (5.61),

(5.62), and (5.68) into (3.57) and simplifying, which yields

M, = mvvoanv = Tg, TR, cos(y,” + 6p), (5.83)
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where m, is the intermediate dimensionless 7 grouping for the resulting moment from the force
of the vehicle acting on the boulder.

Lastly, the maximum restoring moment due to gravity is expressed in terms of
dimensionless m groupings and repeating parameters by substituting (5.57), (5.69), and (5.70)

with n = N into (3.44) and simplifying, which yields

Mg max = —sign(sin(yy” + gb))mvvoanR max (5.84)

= —sign(Sin(y" + 0,))My V6 T, Ty, COS(r” + ),

where 1y, is the intermediate dimensionless 7 grouping for the maximum restoring moment
acting on the boulder due to gravity. As previously stated in Section 3.2.2, the restoring moment
is then calculated by comparing it to the sum of the remaining moments and the maximum
restoring moment. The restoring moment, as aforementioned calculated, is expressed in terms of
dimensionless 7 groupings and repeating parameters by substituting (5.82), (5.83), and (5.84) into

(3.46) and simplifying, which yields

Mg = —sign(sin(yy* + 0p))m,v,°my,, (5.85)

N
= —sign(sin(yy” + 6,))m,v,” [Z{T[Mn} t T,
n=1

N
fOT' nMRmax + T[Mv + z{nMn} * O'

n=1

where my,, is the intermediate dimensionless = grouping for the maximum restoring moment

acting on the boulder due to gravity.
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Having expressed all of the moments on the right hand side of (3.11) in terms of
dimensionless  groupings and repeating parameters, the governing dimensionless equation of
motion for the rotation of the boulder-soil subsystem about the Z axis found by substituting
(5.82), (5.83), (5.84), and (5.85) into (5.81) and simplifying, which yields

N (5.86)
n]eff”éb = Z{”Mn} + T[MV + T[MR'

n=1

5.5 Simulating of dimensionless equations of motion

The dimensionless governing equations of motion can be arranged into state-space form
and solved via numerical integration, similar to the dimensioned governing equations of motion
for the low-order model. The states and corresponding time derivatives for the dimensionless

equations of motion are listed in Table 5-8.
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Table 5-8. States for dimensionless governing equations of motion

x1 = T[xb (587) J.Cl = xZ (588)
1 N
Tmers | =t
X3 = Hb (591) 5(3 = X4 (592)
Xy =15, (5.93) Z{nM b+ + (5.94)
”Jeff
X5 =Ty, (5.95) X5 = Xg (5.96)
x6 == T[xv (597) 5(6 = X7 (598)
x7; =1y, (5.99) X7 =Ty, [ﬂxb + Ty, TR, cos(yy” (5.100)
Cy

It should be noted that all forces in the dimensionless governing equations of motion can be
written explicitly as functions of the states (5.87), (5.89), (5.91), (5.93), (5.95), (5.97), and
(5.99). The set of equations (5.87) — (5.100) are also coupled first-order, nonlinear, non-stiff
ordinary differential equations which can be readily solved via numerical integration in the same

manner as the dimensioned state-space equations.

5.6 Scaling laws for full scale and small scale experiments

As per the Buckingham IT Theorem, each of the small scale dimensionless parameters
must be equal to the respective full scale dimensionless = parameters in order to achieve full
similitude. The small scale experiment and simulation parameters are most readily determined
from the dimensionless groupings which involve the fixed or input = parameters. Referring to

Table 5-1, the input dimensionless = groupings for either an experiment or simulation are—
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Ty T8y Tpys ToL, Wy Ty T, Wiy Mgy and m,. The small scale parameters, denoted by the
subscript §, are found by equating the small scale m groupings to the full scale = groupings,
denoted by the subscript A, and solving for the unknown small scale parameters. The equations
used in determining the small scale input parameters are listed in Table 5-9. Similarly, the

outputs of the simulations and experiments are scaled using the equations listed in Table 5-10.

Table 5-9. Equations used for determining governing small scale parameters

S 6 v 6 v, 6 D, 6
T, =psml5 og =pSA oA (5.101) mp = Ps 054 = Ba 0A4 (5.102)
soil mys9s My A 9A mys9s Myp9a
v. 6 v 6 L L
n,, = 28tos _ Phafos (5.103) m, =290 _TaTh 5 g0
mys9s My p9da Vos Voa
Ty = =208 = 8%k (105)  my=H=-S% (5106)
Vos Voa Yos Voa
2
= dsds _ daga (5.107) T = kv517052 _ Ky pVop (5.108)
Vog?  Vop® o My595"  Mupd*s
2
@ mys9s Myprda Vos Vop
hesgs h
m, = 920 = eAgZA (5.111)
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Table 5-10. Scaling laws associated with the outputs form the low-order model

Xpsds Xppda Xy s g X
= = sYé UAgA
DT D Upy? (5.112) Mo = G T w2 (5.113)
My, = 2 =24 (5.114) my, = 28 = VA (5.115)
Vos  Vop Vos  Vop
My, = —2 = —4 (5.116) my =2 =""A (5.117)
9s 9a gs ga
0 0 L) X, a0
ny = bsVos _ baVop (5.118) Ty, = ) 206 _va ZOA (5.119)
b 9s 9a 9s 9a
. = Pesvos” _ Ona¥or” (519 7, = 298 _ adn (5.121)
Op Js2 ga? Vog Vop

Even though certain parameters in Table 5-9 and Table 5-10 are presented as variable, it
is desirable to establish a set of constants between small scale and full scale experiments and
simulations. The practice most often presented in literature involves using the same soil between
small and full scale testing as this will eliminate any variations in soil properties [12]. It is also
desirable to perform both the small and full scale experiments in the same gravitational field. As
seen in [12], it may not be feasible to obtain full similitude when considering both gravity and
soil properties as constant.

The feasibility of full similitude while assuming gravity and soil properties as constants
between full and small scale testing is investigated though the use of an arbitrary set of full scale

parameters, listed in Table 5-11.
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Table 5-11. Test case full scale input parameters

m,, = 2000 kg Vop =20m/s
ga = 9.81m/s? fBa =50 MN/m3
ps, = 1500 kg/m? Ly=15m
pp, = 2500 kg/m? Hy=4m
Wy=2m k, =1MN/m
dp=2m ea=05m
Cyp = 100kN -s/m he, = 0.0004 m

It should be noted that a height of the full scale soil element, h, ,, of 0.0004 m corresponds to

eA
5000 soil elements. It is assumed that both the gravitational constant and constant of horizontal

subgrade reaction of the soil are constant between full and small scale tests, which results in

95 = ga (5.122)

Bs = Ba- (5.123)

Substituting (5.122), (5.123), m,,, = 2000 kg, and v,, = 20 m/s into (5.102) and simplifying

yields
6 (5.124)

D,
%8 =32,000.
mv(g

Equation (5.124) is a single equation with two unknowns, m,, ; and v, s, thus one of the
two unknowns must be explicitly specified. Arbitrarily setting m,,; = 200 kg and solving

(5.124) for the initial velocity of the small scale vehicle results in v,s = 13.626 m/s. The
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remaining governing small scale parameters are then determined by substituting m, ; = 200 kg

and v, = 13.626 m/s into the scaling laws listed in Table 5-9. Doing so leads to the small

scale parameters listed in Table 5-12.

Table 5-12. Test case small scale input parameters

my,s = 200 kg

gs = 9.81 m/s?
pss = 1500 kg/m?>
pps = 2500 kg/m?

Ws = 0.9283 m

ds = 0.9283 m

Cys = 14.7KN-s/m

Vos = 13.626 m/s

Bs = 50 MN/m?3
Ls = 0.696 m
Hs = 1.856m

kys =215kN/m
es = 0.232m

hes = 0.000185 m

Similar to [5], certain parameters changed in value, such as the equivalent vehicle spring

and damper constants and boulder dimensions. Unlike [12], however, it should be noted that the

small scale mass densities of the boulder and the soil are the exact same as that seen in the full

scale scenario. Therefore, it is possible to achieve full similitude between full and small scale

experiments and simulations not only under constant gravity and constant soil properties, but also

constant boulder material properties. It should be further noted that the number of elements did

not change between small and full scale.

5.7 Contributions of this chapter

The contributions of this chapter are as follows:

(1) Present the governing parameters in the low-order model
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(2) Select the repeating parameters for dimensionless 7 groupings
(3) Create the dimensionless = groupings
(4) Develop the governing dimensionless equations of motion

(5) Represent the governing dimensionless equations of motion in state-space form
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CHAPTER 6

VALIDATION OF DIMENSIONAL ANALYSIS AND STATIC FRACTURE
PREDICTION

The intent of this chapter is to show the comparison of simulated and experimental results
in dimensionless form across many different scales. This will be conducted in stages. First, the
dimensionless equations of motion are simulated and compared to the equivalent forms of full
scale and small scale simulation results. Then the small scale simulations are compared to
equivalent forms of small scale crash results. Next, dimensionally scaled versions of the small
scale crash results are compared to the full scale crash results recorded to date.

This chapter is organized as follows:

The equipment and methods for conducting a small scale crash test is outlined in Sections
6.2 and 6.3. A summary of the small scale crash tests is presented in Section 6.4, and the small
scale crash test results are compared to the equivalent small scale simulations in Section 6.5. The
small scale crash test results are then compared to the full scale crash test results through the use

of scaling laws in Section 6.6.

6.1 Validation of dimensional analysis through simulation of dimensionless
equations of motion

The state-space, dimensionless equations of motion are simulated by substituting the
values for the dimensionless parameters into (5.87) — (5.100) and solving via numerical
integration techniques. The governing dimensionless m groupings for BST-1 and BST-2 are

shown in Table 6-1 and Table 6-2, respectively.
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Table 6-1. Dimensionless governing parameters for BST-1

M.,y = 1,680.5 my = 0.1209 mp = 8.5841-10°
Ty, = 2,724.9 my; = 0.066 m, = 0.0414
7, = 0.0419 my, = 847.05 @' =43.2°
my = 0.0558 T, = 27.84 Ty, = 1.3191 - 107°
Table 6-2. Dimensionless governing parameters for BST-2
Mpoon = 2776.6 my = 0.16 mp = 1.4183- 107
m,, = 3,802 g = 0.0947 m, = 0.0438
m, = 0.077 m, = 1,008.6 @' =435°
my = 0.0784 m., = 30.54 Ty, = 1.8943 - 107°

It should be noted that the number of soil elements for the simulations, N, is found from

Ty, Using

N=la (6.1)
Tl'he

The results of the simulations are shown in Figure 6-1 — Figure 6-6.

6.1.1 Dimensionless simulation of BST-1

Figure 6-1, Figure 6-2, and Figure 6-3 show the simulated, dimensionless displacement
of the center of mass of ABG-01 versus dimensionless time, the simulated angle of rotation of
ABG-01 versus dimensionless time, and the simulated, dimensionless displacement of the vehicle

versus dimensionless time when using the parameters in Table 6-1.
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Figure 6-1. Simulated dimensionless displacement of the center of mass of ABG-01 in BST-1

using the DEOM
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Figure 6-2. Simulated angle of rotation of ABG-01 in BST-1 using the DEOM
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Figure 6-3. Simulated dimensionless displacement of the vehicle from BST-1 using the DEOM

6.1.2 Dimensionless simulation of BST-2

Figure 6-5,Figure 6-6Figure 6-7 show the simulated, dimensionless displacement of the
center of mass of RWG-01 versus dimensionless time, the simulated angle or rotation of RWG-01
versus dimensionless time, and the simulated, dimensionless displacement of the vehicle versus

dimensionless time when using the 7 groupings from Table 6-2.
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Figure 6-4. Simulated dimensionless displacement of the center of mass of RWG-01 in BST-2

using the DEOM
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Figure 6-5. Simulated angle of rotation of RWG-01 in BST-2 using the DEOM
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Figure 6-6. Simulated dimensionless displacement of the vehicle from BST-2 using the DEOM

6.1.3 Interpretation of dimensionless simulations

The dimensionless results in Figure 6-1 — Figure 6-6 are easily transformed into any
scaled similar size simulation through the use of (5.112) — (5.121). The most straightforward
example, perhaps, is transforming the angle of rotation versus dimensionless time into the angle
of rotation versus full scale time for BST-2. Since the angle of rotation is inherently
dimensionless and does not scale, the time variable is the only scaled parameter. The full scale
time is found simply by substituting the dimensionless time vector into (5.121) and solving for
the full scale time. Figure 6-7 shows the comparison of the full scale simulation to the scaled

results from the dimensionless equations of motion for BST-2.
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Figure 6-7. Comparison of the boulder angle from the dimensioned EOM to the scaled results

from the DEOM

As seen in Figure 6-7, the results are exactly the same, as was expected. The
dimensionless 7 groupings also allow for inverse transformations since the dimensionless
groupings are ratios. The full scale simulation results of the angle of rotation of RWG-01 versus
time are transformed back into the dimensionless results by substituting the full scale time vector
into (5.121) and solving for ;.

As a precursor to the comparison of small scale experiments to full scale experiments, the
dimensionless r groupings and scaling laws allow for the comparison of small scale simulations
to full scale simulations. As presented in Section 6.3, the small scale experiments are performed
using an equivalent 8 kg impact vehicle. The resulting desired small scale parameters are found
by applying the scaling laws to BST-1 and BST-2 for an 8 kg vehicle and are shown in Table 6-3
and Table 6-4. To avoid confusion with measured small scale parameters, the desired parameters

are denoted using an over bar.



Table 6-3. Desired small scale parameters based on the full scale parameters in BST-1

m,; = 8kg
Js = 9.81 m/s?
Ps, = 1,895.9 kg/m?
Pbs = 3,074 kg/m?
Ws = 0.1073 m

ds =0.1267 m

Cys = 0.503 kN -s/m

Vps = 4.34m/s
Bs = 95 MN/m3
Ls = 0.0805m
Hs = 0.2323 m

kys = 34.6 kN/m

g5 = 0.0796 m

Table 6-4. Desired small scale parameters based on the full scale parameters in BST-2

m,s = 8Kkg
Js = 9.81 m/s?
Ps, = 1,895.9 kg/m?
Pbs = 2,596 kg/m?
Ws =0.178 m
ds =0.2151m

Cys = 0.507 kN -s/m

Ty = 4.72m/s
Bs = 95 MN/m3
Ls =0.1749m
Hs = 0.3635m

kys = 34.8kN/m

g5 = 0.0994m
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Similar to the full scale simulations, the small scale parameters can also be substituted

into the dimensioned state-space equations of motion, (3.79) — (3.92), and numerically integrated.

Even though the parameters shown in Table 6-3 and Table 6-4 are scaled similar to the full scale

simulations of BST-1 and BST-2, the two sets of simulations cannot be directly compared since

they are of two different scaled sizes. Either the results from both simulations must be

transformed into the dimensionless results and compared as previously presented, or the results
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from one of the simulations must be transformed completely into the other scale size. For
example, the small scale angular displacement of the boulder can be scaled up into the full scale
size by substituting the small scale time into (5.121) and solving for the corresponding full scale
time. As shown in Figure 6-8, this procedure once again confirms that the two simulations are

dynamically similar.

Angular displacement(degrees)

[ o O Full scale simulation J
& Scaled up small scale simulation
_1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)

Figure 6-8. Comparison of the scaled-up, simulated, small scale angular displacement of RWG-

01 to the simulated full scale angular displacement of RWG-01 in full scale time

6.2 Small scale crash test equipment and procedure

This section will briefly describe the test equipment used in performing a small scale
crash test and the procedure for determining the lumped-parameter values found in the low-order
model. One of the goals for the equipment which was to be used in small scale testing was not
only ensuring repeatability in the lumped-parameter values, but also ease of varying scaled sizes

of the crash tests. Rather than using an actual small scale medium-duty sized truck, it was
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determined that a rigid-arm pendulum would provide both repeatability in test parameters and
ease of varying scaled sizes. Thus, in small scale testing, the vehicle is represented by a rigid-arm
pendulum constructed from 3030 sized aluminum 8020® to which various weights and crushable
material may be attached. The small scale pendulum will be referred to as the Small Scale Crash

Research (SSCR) pendulum and is shown in Figure 6-9.

Figure 6-9. SSCR pendulum used in small scale testing of soil-fixed boulders

The SSCR pendulum is approximately 2.43 m tall and the impact beam is 1.83 m long.
This configuration allow for a maximum elevation change of 1.72 m for the impact beam. The
maximum horizontal speed of the tip of the impact beam is approximately 6.5 m/s when released
from the maximum height. Table 6-5 lists the additional salient measured and calculated

parameters of the SSCR pendulum and impact beam.
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Table 6-5. Properties of SSCR pendulum

Mass of impact beam 10.9 kg

Mass of mounting hardware 5.4 kg

Radial distance from pivot to mounting hardware 1.65m
Radial distance form pivot to typical impact point 1.83m

Calculated mass moment of inertia of impact beam about
26.87 kg-m*
the pivot point of the pendulum

The small scale crash tests are performed by raising the impact beam to a desired initial
angular displacement and then using a quick release mechanism to allow the impact beam to
swing into the small scale boulder. A crushable material is attached to the impact beam which
acts as the observed crush of the full scale vehicles. The material used to model the crush of a
vehicle is two empty 12 oz. aluminum drinking cans which are wrapped in Nashua® 300 Series
heavy duty duct tape. The aluminum cans were chosen based on the equivalent spring and
damper values which are presented in Section 6.3. A more detailed description of the preparation
of the crush material is also presented in Section 6.3.

The primary means of data collection for the small scale crash tests the high-speed
imaging system used in full scale testing. All small scale tests are recorded using the high-speed
camera. Additional data collection devices were used during small scale crash tests when
available. Such devices include a US Digital® HD25 incremental industrial rotary encoder which

is attached to the rotational shaft at the top of the pendulum, shown in Figure 6-10.
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Figure 6-10. US Digital® HD25 incremental industrial rotary encoder as mounted on the SSCR

pendulum

The rotary encoder is used to measure the displacement of the impact beam from which
the impact velocity of the crash can be estimated. A MATLAB® xPC Target™ data logger and
host are used to read and collect the position output from the rotary encoder as well as act as a
backup trigger system for the high-speed imaging system. An automatic trigger device was
created in conjunction with the use of the high-speed camera and xPC Target™ data logger.
Similar to the full scale trigger, the small scale trigger system was designed to send a TTL +5V
signal to the data collection devices when the impact beam passes through the proximity sensors
mounted to the pendulum frame.

The soil in small scale crash tests was selected such that the base consistency was the
same as the soil used in full scale crash tests. The small scale soil is limestone dust obtained from
the same quarry which the full scale soil was obtained. The soil is compacted in 2.5 — 7.5 cm

layers using an 11 Ib. 8” x 8” hand tamper. The soil layer thickness depends on the desired
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constant of horizontal subgrade reaction. A higher desired constant of horizontal subgrade

reaction requires thinner layers of compacted soil. Figure 6-11 shows the soil in the loose state,

and Figure 6-12 shows the compacted soil as prepared for a small scale crash test.

Figure 6-12. Limestone dust as compacted prior to a small scale crash test

As presented in Chapter 4, the maximum density of the limestone dust was found to be 2,010

kg/m® by performing a modified proctor test on the limestone dust.
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When installing the boulder, a hole is excavated in the center of the soil bin such that
enough room is available for the soil wedge to form. The hole is excavated below the desired
embedment depth, and soil is then backfilled and tamped until the depth of the hole is equal to the
desired boulder embedment depth. The boulder is then inserted into the hole, and the boulder is
aligned with the impact beam and crush material such that the boulder is approximately 90° to the
centerline of the impact beam. The boulder is also made level using an analog bubble level. The
soil is then backfilled and tamped approximately every 5 cm until the soil had reached the top of
the hole. A dynamic cone penetrometer is then used to perform the in-situ measurement of the

soil properties as presented in Chapter 3.

6.3 Measurement and estimation of commonly used lumped-parameters
within small scale crash tests

This section presents the methodology for determining the lumped-parameter values of
the variables which do not typically change between small scale tests, such as the equivalent
mass, spring constant, and damping constant of the small scale vehicle. First, the equivalent
mass of the impacting vehicle is estimated based on the SSCR pendulum properties. The
corresponding impact velocity of the vehicle is then found using (5.102) where the gravitational
constant and constant of horizontal subgrade reaction are assumed equal between the small and
full scale experiments. The remainder of the small scale parameters are calculated as presented in
Section 5.6. The crushable material is then parameterized by impacting a rigid structure and
fitting (3.58) to the measured the displacement. The small scale boulders are then either cast
from concrete or cut from existing granite boulder to the dimensions found through the

application of the scaling laws. They are also weighed to determine the mass density of the
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boulder. Lastly, the in-situ soil properties are measured after the boulder has been installed and
the soil compacted.

The equivalent mass of the impacting small scale vehicle is found by comparing the
equations of motion of the vehicle in Chapter 3 to the equation of motion for a rigid-arm
pendulum with a spring and damper attached to the end, as shown in Figure 6-13. The variables
in Figure 6-13 are the mass moment of inertia of the impact beam and mounting hardware about

the pivot point, J,, the radial distance from the center of mass of the impact beam and mounting
hardware to the pivot, c,, the angle of the impact beam measured from equilibrium, 8, the
inertial mass, m’, and the length of the impact beam, l,. For illustrative and simplification

purposes it is assumed that the spring and damper constants for both the vehicle and pendulum

are the same.

Figure 6-13. Rigid-arm pendulum with equivalent Maxwell model attached to the impact point

The governing equation of motion for the pendulum is
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Jp0, = —F,'l, —m,gc, sin6,, (6.2)

where ép is the angular acceleration of the pendulum. Since the pendulum only has one degree-

of-freedom, the linear acceleration of the impact point, X,, , of the pendulum is found using
X%, = 0,1, cos(6,) — 621, sin(6,), (6.3)

where @ is the angular velocity of the pendulum. Applying the small angle theorem to (6.3)

results in
%, = 0,L, — 61,0, (6.4)

As observed in the parameterization of the crush material, the angular acceleration during
impact can easily reach values as high as 90 rad/s?, whereas the maximum angular velocity of the
impact beam is 3 rad/s. The angular velocity component of (6.4) may be neglected since the
squared maximum angular velocity of the pendulum is an order of magnitude less than the
angular acceleration of the pendulum and 6,, goes to zero at equilibrium. Thus, for small angle

changes about the equilibrium position, the linear acceleration of the impact point is expressed as
Xp = Oyl (6.5)

Additionally, the moment as a result of gravity acting on the pendulum in (6.2) is also neglected
near equilibrium since it is expected to be orders of magnitudes less than the moment due to
impact and 6, approaches zero. Solving (6.5) in terms of the angular acceleration of the

pendulum, substituting the results into (6.2), and dividing through by [, yields
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b4 , (6.6)
]p _pz = —F,
b
Equating (3.17) and (6.6) and solving for the mass of the vehicle results in
T
my =22 (6.7)
b

Equation (6.7), therefore, represents the equivalent mass of the small scale impact vehicle
about the equilibrium position when using a rigid-arm pendulum. The equivalent mass of the
small scale impact vehicle was calculated to be 8 kg when using the parameters listed in Table 6—
5. The remaining small scale parameters are found following the methodology presented in
Section 5.6 when using an 8 kg vehicle. Table 6-6 presents the small scale parameters which are
typically not varied between small scale crash tests as related to a full scale M30 rated impact.
The small scale parameters such as the boulder dimensions and embedment properties are found

based on test specific full scale parameters.

Table 6-6. Constant small scale parameters associated with a M30 rated full scale crash test

my s = 8kg Vos = 4.35 /s
gs =981 m/s? kys = 34.6 kN/m

cys = 0.503kN-s/m

The two small scale parameters which are not as easily determined or measured are the
equivalent spring and damping constants for the vehicle. A series of dynamic crush tests were
performed on several materials, and it was determined that two empty aluminum drinking cans
wrapped in Nashua® 300 Series heavy duty duct tape most appropriately represent the equivalent

spring and damper values in Table 6-6. Figure 6-14 illustrates the typical method for preparing
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the cans. The top of can-A is removed and a slit is made from the base of can-A to the open end.
Can-B, which remains unaltered, is slid into can-A until it is seated snuggly at the bottom of can-
A. The two cans are then wrapped in duct tape starting from the base of the cans such that there
is approximately 1.5 cm of exposed tapes between wraps. The cans are only wrapped once, from

bottom to top. Figure 6-15 shows the typical 1.5 cm spacing of the tape wrappings.

Figure 6-14. Procedure for preparing crush material in 8kg small scale crash tests
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Figure 6-15. Typical spacing for duct tape wrappings

The amount of tape was determined by varying the number of wrappings in the rigid-
wall, dynamic crush tests. It was determined that a spacing of 1.5 cm, referred to as “lightly
taped,” most closely resembles the desired spring and damper values. The dynamic crush tests
are performed by attaching the crush material the end of the impact beam, raising the impact
beam to an initial angular displacement, and allowing the impact beam to swing into a rigid wall
or immovable object. When performing a small scale crash test, the cans are attached such that
the open end was placed up against the impact beam. The equivalent spring and damper values
are then calculated as presented in [2]. A typical high-speed image sequence of the dynamic

crush test is shown in Figure 6-16.
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Figure 6-16. High-speed image sequence of dynamic crush test

The equivalent spring and damper values for the average of the dynamic crush tests of the
small scale material was calculated to be 35.9 kN/m and 0.538 kN-s/m, respectively. The

detailed results and test specific photographs of the crush tests are provided in Appendix C.

6.4 Summary of small scale boulder tests

Two small scale crash tests were performed on dimensionally similar boulders to those
found in BST-1 and BST-2. Small-Scale-Boulder-Soil-Test-1 (SSBST-1) was created to be in
full similitude with BST-1 in which the boulder was completely flipped out of the soil by the
impact vehicle. Small-Scale-Boulder-Soil-Test-2, 3, 4, and 5 (SSBST-2, 3, 4, 5) were created to
be in full similitude with BST-2 in there were small boulder displacements. The in-situ soil

measurement properties are provided in Appendix B.
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The small scale parameters in SSBST-1 which provide a dimensionally similar crash test

as BST-1 were calculated as presented in Section 5.6 when using the full scale parameters listed

in Table 4-1. Table 6-7 shows the desired small scale parameters and the measured small scale

parameters for SSBST-1.

Table 6-7. Desired and measured governing parameters for SSBST-1

Parameter Desired Measured

mys 8 kg 8 kg

Vog 434 m/s 431m/s
gs 9.81 m/s? 9.81 m/s?
Bs 95 MN/m3 98.6 MN/m3

Psoil 5 1,895.9 kg/m?3 1,929.5 kg/m?3
Pbs 3,074 kg/m3 3,074 kg/m3
Ls 0.0805m 0.0794 m
Ws 0.1073 m 0.1079 m
Hg 0.2323 m 0.2413m
ds 0.1267 m 0.127 m
es 0.0796 m 0.079 m
kys 34.6 kN/m 35.9 kN/m
Cug 0.503 kN -s/m 0.538 kN s/m

The small scale American Black Granite boulder, SSABG-01, was cut from ABG-01.

The pre-test condition of the boulder is shown in Figure 6-17.




Figure 6-17. Pre-test condition of SSABG-01 in SSBST-1

The orientation of the installed crush material, the centerline of the impact beam relative
to the critical impact point, and the eccentricity of the crush material with respect to the boulder

are shown in Figure 6-18.

Figure 6-18. Pre-test conditions of the impact beam and crush material in SSBST-1
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Figure 6-19 shows the side-view still images extracted from the high-speed video in a

chronological sequence of the impact.
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Figure 6-19. High-speed image sequence of SSBST-1

It should be noted that unlike in full scale testing, the pendulum was not able to swing
over the boulder due to the base of the rigid arm wedging against the small scale boulder. Figure

6-20 shows the linear displacement of the center of mass of SSABG-01 from the point of impact,
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and Figure 6-21 shows the angle of rotation of SSABG-01 from the point of impact. The linear

displacement of the impact beam as tracked using the forward fiducial is shown in Figure 6-22.
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Figure 6-20. Measured linear displacement of the center of mass of SSABG-01 in SSBST-1
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Figure 6-21. Measured angle of rotation of SSABG-01 in SSBST-1
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Figure 6-22. Measured linear displacement of the impact beam in SSBST-1
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Photographs of the post-test condition of the impact beam are shown in Figure 6-23, and

Figure 6-24 shows the post-test condition of SSABG-01 in SSBST-1.

£

Figure 6-24. Post-test condition of SSABG-01 in SSBST-1
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6.4.2 Summary of small scale crash test SSBST-2, 3, 4, and 5

The small scale parameters in SSBST-2, 3, 4, and 5 which provide a dimensionally
similar crash test as BST-2 were calculated as presented in Section 5.6 when using the full scale
parameters listed in Table 4-2. Table 6-8 shows the desired small scale parameters and the
measured governing and corresponding dimensionless parameters for SSBST-2, 3, 4, and 5,

respectively.

Table 6-8. Desired and measured governing parameters for SSBST-2, 3, 4, and5

Desired SSBST-2 SSBST-3 SSBST-4 SSBST-5
my s 8 kg 8kg 8kg 8 kg 8 kg
Vos 4.72m/s 4.81m/s 4.8 m/s 499 m/s 494 m/s
Js 9.81 m/s? 9.81 m/s? 9.81 m/s? 9.81 m/s? 9.81 m/s?
Bs 95 MN/m3 90.83 MN/m3 | 93.73 MN/m3 | 96.87 MN/m? | 91.43 MN/m3
Psoitg | 1,895.9kg/m3 | 1,856kg/m® | 1,884 kg/m* | 1,907 kg/m* | 1,862 kg/m?
Prs | 2,596kg/m* | 2,379kg/m® | 2,379kg/m? | 2,379kg/m* | 2,379 kg/m?
L 0.1749 m 0.1746 m 0.1746 m 0.1746 m 0.1746 m
Ws 0.178 m 0.1778 m 0.1778 m 0.1778 m 0.1778 m
Hg 0.3635m 0.3556m 0.3556m 0.3556m 0.3556m
ds 0.2151m 0.215m 0.22m 0.21m 0.225m
es 0.0994 m 0.099 m 0.098 m 0.094 m 0.096 m
kygs 34.6 KN/m 35.9 kN/m 35.9 kN/m 35.9 kN/m 35.9 kN/m
Cys | 0.507kN-s/m | 0.538kNs/m | 0.538kNs/m | 0.538kNs/m | 0.538 kNs/m
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Concrete was used to create the small scale Rockville White Granite boulder since the
measured density of the granite was similar to typical mass densities for concrete. The small
scale Rockville White boulder is referenced as SSRWC-01 since it was cast from concrete.
SSRWC-01was cast from high strength Quikrete® and #4 rebar such that the overall dimensions
were measured to be 0.1746 m-L x 0.1778 m-W x 0.3556 m-H with respect to the impact
direction. The concrete was mixed as directed and allowed to cure for one week in an

environmental chamber before performing any crash tests. Figure 6-25 shows the creation

process of SSRWC-01.

n h* a0

Figure 6-25. Creation of SSRWC-01 (largest center boulder)

After curing, the mass of SSRWC-01 was measured to be 26.25 kg which corresponds to
a density of 2,379 kg/m®. The installation of SSRWC-01 in SSBST-2 is shown in Figure 6-26,
and the pre-test condition of the boulder is shown in Figure 6-27. The installation process for

SSBST-3, 4, and 5 was carried out in the manner as SSBST-2.
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Figure 6-26. Installation of RWG-01 in SSBST-2

\

Figure 6-27. Pre-test condition of SSRWC-01 in SSBST-2 (letter sized paper for size reference)

The orientation of the installed crush material, the centerline of the impact beam relative
to the critical impact point, and the eccentricity of the crush material with respect to the boulder
for SSBST-2 is shown in Figure 6-28. The crush material and orientation for SSBST-3, 4, and 5

were prepared in the manner as SSBST-2.



Figure 6-28. Pre-test conditions of the impact beam and crush material in SSBST-2

Figure 6-29 shows the side-view still images extracted from the high-speed video in a

chronological sequence of the impact from SSBST-2.

Figure 6-29. High-speed image sequence of SSBST-2
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Figure 6-30 shows the linear displacement of the center of mass of SSRWC-01 from the
point of impact, and Figure 6-31 shows the angle of rotation of SSRWC-01 from the point of
impact. The linear displacement of the impact beam as tracked using the forward fiducial is

shown in Figure 6-32.
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Figure 6-30. Linear displacement of the center of mass of SSRWC-01in SSBST-2, 3, 4, and 5
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Figure 6-31. Angle of rotation of SSRWC-01 in SSBST-2, 3, 4, and 5
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Figure 6-32. Linear displacement of the impact beam in SSBST-2, 3, 4, and 5
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Photographs of the post-test condition of the impact beam from SSBST-2 are shown in
Figure 6-33, and Figure 6-34 shows the post-test condition of SSRWC-01 from SSBST-2. The

post-test conditions for SSBST-3, 4, and 5 were typical of SSBST-2. The post-test conditions for

SSBST-3, 4, and 5 were typical as those seen in SSBST-2.

Figure 6-34. Post-test condition of SSRWC-01 in SSBST-2
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6.5 Comparison of small scale simulations to small scale crash test results

Similar to the full scale simulations, the results from the small scale crash tests can be
directly compared to the simulated results by either using the dimensionless state-space equations

of motion presented in Chapter 5 or the low-order model presented in Chapter 3.

6.5.1 Comparison of small scale simulation of SSBST-1 to small scale crash test results

Figure 6-35, Figure 6-36, and Figure 6-37 show the comparison of the measured crash
test results from SSBST-1 to the simulated low-order results using the measured parameters listed
in Table 6-7. Figure 6-35 shows the comparison of the measured and simulated small scale
linear displacement of the center of mass of the boulder, Figure 6-36 shows the comparison of the
measured and simulated small scale angle of rotation of the boulder, and Figure 6-37 shows the

comparison of the measured and simulated small scale linear displacement of the impact vehicle.
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Figure 6-35. Comparison of the measured displacement of the center of mass of SSABG-01 in

SSBST-1 to the simulated displacement from the low-order model
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Figure 6-36. Comparison of the measured angle of rotation of SSABG-01 in SSBST-1 to the

simulated angle of rotation from the low-order model
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Figure 6-37. Comparison of the measured displacement of the vehicle in SSBST-1 to the

simulated displacement from the low-order model

As seen in the comparison of full scale simulations and experiments, the model loses accuracy
after approximately 20° of boulder rotation. This is expected because of the small-angle

assumptions used to create the model.

6.5.2 Comparison of small scale simulation of SSBST-2, 3, 4, and 5 to small scale crash test
results

Figure 6-38, Figure 6-39, and Figure 6-40 show the comparison of the measured crash
test results from SSBST-2, 3, 4, and 5 to the simulated, small scale low-order results using the
measured parameters listed in Table 6-8. Figure 6-38 shows the comparison of the linear
displacement of the center of mass of the boulder, Figure 6-39 shows the comparison of the angle
of rotation of the boulder, and Figure 6-40 shows the comparison of the linear displacement of the

impact vehicle.
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Figure 6-38. Comparison of the small scale measured and simulated displacement of the center of
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Figure 6-40. Comparison of the small scale measured and simulated displacement of the vehicle

in SSBST-2, 3,4, and 5

6.6 Comparison of dynamically similar small scale crash test results to full
scale crash test results

This section shows the comparison of the small scale crash test results to the
corresponding dimensionally similar, full scale crash test results presented in Chapter 4. The
small scale tests will match the full scale tests better when the two experiments are in full
similitude or are scaled similar. Table 6-9 shows the comparison of the governing dimensionless
m parameters between BST-1 and SSBST-1, and Table 6-10 shows the comparison of the

governing dimensionless = parameters between BST-2 and SSBST-2, 3, 4, and 5.
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Table 6-9. Comparison of governing dimensionless parameters of SSBST-1to BST-1

Governing dimensionless r parameter BST-1 SSBST-1
g 8.5841-10° | 8.5305 - 10°
Mo 1,680.5 1,637.6
T, 2,724.9 2,609
Ty, 0.0419 0.0419
Ty 0.0558 0.057
Ty 0.1209 0.1274
g 0.066 0.0671
T, 0.0414 0.0417
T, 847.05 866.2
T, 27.84 29.54
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Table 6-10. Comparison of governing dimensionless parameters of SSBST-2, 3, 4, 5 to BST-2

Governing Dimensionless 7
BST-2 SSBST-2 | SSBST-3 | SSBST-4 | SSBST-5
parameter
1.4183 1.5182 1.5472 2.0185 1.7935
g
107 107 107 107 =107
LA 2,776.6 | 3,043.3 3,051 3,898 3,583
Ty, 3,802 3,901 3853 4,863 4,577
1197 0.077 0.074 0.074 0.068 0.0702
Tw 0.0784 0.0754 0.076 0.07 0.072
Ty 0.16 0.1508 0.1514 0.1401 0.143
T4 0.0947 0.091 0.0937 0.0827 0.09
T, 0.0438 0.042 0.0417 0.037 0.039
Tk, 1,008.6 1,078.8 1,074.4 1,161 1,138
T, 30.54 32.97 3291 34.2 33.87

It is expected that the small scale tests results will show good agreement with the full scale results
since all of the dimensionless 7 groupings are similar.

Similar to the comparison between dynamically similar simulations, the small scale crash
tests can be compared to various sized crash tests either by scaling the results up to match the full
scale parameters, scaling the full scale results down to the match the small scale parameters, or

transforming both small and full scale results into the dimensionless form.
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6.6.1 Comparisons of scaled up SSBST-1 to BST-1 in full scale time

Figure 6-41 shows the comparison of the impact sequence from the high-speed videos for
SSBST-1 and BST-1. It should be noted that the time dimension of the small scale test was

scaled up to the full scale size when comparing the high-speed image sequence.
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Figure 6-41. Comparison of high-speed image sequences from SSBST-1 and BST-1

Figure 6-42, Figure 6-43, and Figure 6-44 show the comparison of the scaled-up crash

test results from SSBST-1 to the measured crash test results from BST-1. Figure 6-42 shows the



194

comparison of the linear displacement of the center of mass of the boulder, Figure 6-43 shows the
comparison of the angle of rotation of the boulder, and Figure 6-44 shows the comparison of the

linear displacement of the impact vehicle.
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Figure 6-42. Comparison of the small and full scale measured displacement of the center of mass

of SSABG-01 in SSBST-1 to ABG-01 in BST-1
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Figure 6-43. Comparison of the small and full scale measured angle of rotation of SSABG-01 in

SSBST-1 to ABG-01 in BST-1
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Figure 6-44. Comparison of the small and full scale measured displacement of the vehicle in

SSBST-1 and BST-1



196

It should be noted that the variation in dynamics of the small scale pendulum are more
pronounced after 20° of boulder rotation has occurred. The velocity of a full scale vehicle will
remain mostly in the horizontal direction even after the boulder has begun to rotate out of the soil,
whereas the pendulum will rotate higher as more energy is being converted back into potential

form.

6.6.2 Comparisons of scaled up SSBST-2, 3, 4, and 5 to BST-2 in full scale time

Figure 6-45 shows the comparison of the impact sequence from the high-speed videos for
SSBST-2 and BST-2. The high-speed comparison for SSBST-3, 4, and 5 were typical of the
results seen in Figure 6-45. Again, it should be noted that the time dimension of the small scale

test was scaled up to the full scale size when comparing the high-speed image sequence.
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Figure 6-45. Comparison of high-speed image sequences from SSBST-2 and BST-2

Figure 6-46, Figure 6-47, and Figure 6-48 show the comparison of the small and full
scale measured crash test results from SSBST-2, 3, 4, and 5 and BST-2. Figure 6-46 shows the
comparison of the linear displacement of the center of mass of the boulder, Figure 6-47 shows the
comparison of the angle of rotation of the boulder, and Figure 6-48 shows the comparison of the

linear displacement of the impact vehicle.
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Figure 6-46. Comparison of the small and full scale measured displacement of the center of mass

of SSRWC-01 in SSBST-2, 3, 4, and 5 to RWG-01 in BST-2
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Figure 6-47. Comparison of the small and full scale measured angle of rotation of SSRWC-01 in

SSBST-2, 3, 4, and 5 to RWG-01 in BST-2
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Figure 6-48. Comparison of the small and full scale measured displacement of the vehicle in

SSBST-2, 3, 4, and 5 and BST-2

6.7 Contributions of this chapter

The contributions of this chapter are as follows:
(1) Validate dimensionless equations of motion and scaling laws using scaled similar
simulations
(2) Present the test equipment and procedure associated with small scale crash tests
(3) Present the methodology for measuring and parameterizing the small scale test setup
(4) Present a summary of the small scale crash tests and crash test results
(5) Compare the small scale crash test results to the low-order model results

(6) Compare the small scale crash test results to the full scale crash test results
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CHAPTER 7

INTERPRETATION OF MODEL RESULTS AS PASS/FAIL
BOUNDARIES IN THE DESIGN SPACE

Previous chapters showed that both the simulations and scale experiments are able to
predict motion of an impacted boulder quite well. The intent of this chapter is to present the
results from the low-order model simulations as pass/fail boundaries which can be quickly read
and interpreted. The pass/fail boundaries are based solely on variations in boulder geometries
and not the soil conditions. The boundaries are represented as 2-D contour plots which span
various boulder lengths, widths for a given height. As stated in Chapter 4, the low-order model
begins to lose fidelity when the boulder rotates beyond 20° measured from vertical. Therefore, a
pass/fail boundary is imposed on the model results at a boulder rotation of 20°. Additionally, a
pass/fail boundary is enforced on boulders that are expected to fracture as predicted using the
methodology presented in Chapter 3. Lastly, the mass of the boulder is limited to a maximum
value.

This chapter is organized as follows:

The methods for creating and interpreting the pass/fail boundaries are presented in
Section 7.1. The pass/fail boundaries for a maximum boulder mass and omnidirectional predicted
fracture are presented in Section 7.2 and Section 7.3, respectively. The pass/fail boundaries
associated with an angular rotation beyond 20° is presented in Section 7.4. The pass/fail contours
for a single impact direction are presented in Section 7.5 as a combination of the aforementioned
pass/fail boundaries. Lastly, the pass/fail contour plots are presented for omnidirectional impacts

in Section 7.6.
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7.1 Creation of 2-D contour plots for typical, full scale, governing crash test
parameters

The 2-D contour plots are created by iterating the low-order model simulation for various
boulder geometries and recording the simulated output. Table 7-1 shows the nominal set of
governing parameters which are not varied between simulation iterations. The effect of variations

in other model parameters is beyond the scope of this work.

Table 7-1. Nominal parameters used in generating pass/fail contour plots

Psoir = 1895.9 kg/m3 k, = 3,103 kN/m f =95 MN/m3
pp = 3,074 kg/m?3 ¢, = 138 kN s/m e=0.75m
m, = 6800 kg v, = 13.4m/s @' =43.2°

The boulder geometries were varied from 0.5 m to 2 m with respect to length and width.
The lengths and widths were divided into 100 evenly spaced elements, and the heights of the
boulders were varied from 1.5 m to 4 m in increments of 0.5 m. The embedment depth for each
boulder was such that 1 m of the boulder protruded above the surface of the soil. For example, a
3 m-H boulder is assumed to have a 2 m embedment depth. The results of the simulations are
stored in a matrix format which is then easily represented on 2-D contour plots using
MATLAB®. The pass/fail contour plots are presented simply as a black fail zone and a gray pass

zone, similar to the fracture contour plot presented in Section 4.6.

7.2 Application of pass/fail boundaries associated with the mass of various
sized boulders

The most straightforward pass/fail boundary is imposing a limiting maximum mass of a

boulder. It should be obvious that extremely large boulders will not rotate beyond the 20° limit.
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It becomes unreasonable, however, to analyze boulders of excessive size from both a
computational and experimental standpoint. Experimental limitations are partially due to full
scale test setups and apparatus. Particularly, the mass of a boulder should be constrained to
adhere to viable installation processes and associated installation equipment.

Assuming the desired test boulder is not at the same location as where it will be installed,
the largest allowable mass is assumed to be related to the maximum gross vehicular weight
allowed on a road as this will limit the boulder mass according to shipping restrictions.  The
maximum gross vehicular weight on a United States highway is limited to 80,000 Ibs. [29].
Gross vehicular weights may be permitted above 80,000 Ibs., but overweight fees must be
applied. The 80,000 Ibs. (36,287 kg) GVWR is used to determine upper bounds for boulder sizes.
It is assumed that towing vehicle and trailer weight approximately 34,000 Ibs. (15,422 kg) [30],
which imposes a maximum boulder mass of approximately 46,000 Ibs. (20,865 kg). Figure 7-1 —

Figure 7-6 shows the pass/fail contour plots with respect to a maximum boulder mass.
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7.3 Application of pass/fail boundaries associated with static fracture
predictions for boulders

The application of fracture pass/fail conditions simply cuts off all boulder geometries
below the pass/fail contours plots presented in Section 4.6. The pass/fail contour is applied for
impact conditions with respect to both the length and the width of the boulder. Doing so better
ensures that the selected boulder will not fracture regardless of impact direction. Figure 7-7
shows the pass/fail contour plot for an omnidirectional impact. It should be noted that there is
only one fracture contour plot since the simulation always assumes that 1 m of the boulder is

protruding above the surface of the soil.

05 1 15 2 25 3
Length (m)

. Omnidirectional factor of safety = 1

Figure 7-7. Predicted fracture contour plot for omnidirectional impact of rigidly fixed boulders

It should be noted that Figure 7-7 is similar in appearance to Figure 4-68, since it is a transposed
overlay of Figure 4-68. It should also be noted that the factors of safety are not shown because of

the omnidirectional loading.
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7.4 Application of pass/fail boundaries associated with maximum angular
rotation of the boulder in a full scale crash test
The maximum angular rotation contour plots formed by imposing a maximum angular

rotation of 20° is, which results in Figure 7-8 — Figure 7-13.
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7.5 Combined Pass/fail contour plots with respect to design criteria in a single
direction

The 2-D design contour plots for boulders impacted in a single direction with respect to a

typical M30 rated impact are created by overlaying the individual contour plots in Sections 7.2 —

7.4 such that a single fail zone will cause that geometry to be a failure on all of the contour plots.

Another way to envision this process is to send all of the pass/fail contour plots through a logical

AND gate. The only remaining pass zones are those that demonstrate pass criteria across all

contour plots. Figure 7-14 — Figure 7-19 show the final pass/fail design contour plots for various

sized boulders.

Angular displacement of boulder {degrees)

Length (m) Length {m)
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- Fracture constraint - Fracture constraint

Figure 7-14. Final pass/fail design contour plot for boulders of 1.5 m - H
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Figure 7-15. Final pass/fail design contour plot for boulders of 2 m - H
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Figure 7-16. Final pass/fail design contour plot for boulders of 2.5 m - H
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Figure 7-17. Final pass/fail design contour plot for boulders of 3 m - H
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Figure 7-18. Final pass/fail design contour plot for boulders of 3.5 m - H



Angular displacement of boulder (degrees)

Length {m)

209

Length {m)

«E=E» Maximum anglular displacement constraint
«E=» Maximum mass constraint

@S Fracture constraint

«E=B>» Maximum anglular displacement constraint
&> Maximum mass constraint

@8 Fracture constraint

Figure 7-19. Final pass/fail design contour plot for boulders of 4 m - H

7.6 Combined pass/fail contour plots for design criteria for omnidirectional

impacts

Figure 7-20 — Figure 7-25 show the pass/fail design contour plots for various sized

boulders for omnidirectional impact. Similar to the fracture contour plot, the pass/fail contour for

the angular rotation is applied for impact conditions with respect to both the length and the width

of the boulder. Doing so better ensures that the selected boulder will not exceed the maximum

angular rotation regardless of impact direction. It should be noted that the angular displacements

are not shown on the contour plot since the correlation is not one to one.
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Figure 7-24. Omnidirectional
pass/fail design contour plot

for boulders of 3.5 m-H

7.7 Contributions of this chapter

The contributions of this chapter are as follows:
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(1) Create 2-D contour plots for representing simulation results of various sized boulders
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(2) Create pass/fail contours for maximum boulder mass constraints

(3) Create pass/fail contours fracture constraints

(4) Create pass/fail contours boulder motion constraints

(5) Combine the pass/fail contours into a single design tool for selecting boulder geometries

(6) Present omnidirectional impact pass/fail contours
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CHAPTER 8

APPLICATION OF THE LOW-ORDER MODEL AND DIMENSIONAL
ANALYSIS

Until this point, the low-order model and small scale crash tests were performed with the
goal of model and scaling verification. The intent of this chapter is to present the use of the low-
order model and small scale crash tests as a tool used in the design a boulder based on specific
dynamic requirements. The design of a potential minimized-mass boulder which exhibits 20° or
less of rotation in a M30 rated omnidirectional impact is presented. The design methodology and
verification process is presented in chronological stages. First, boulder geometry is selected from
the 2-D design contour plots in Chapter 7, and a small scale version of the boulder is created and
tested as presented in Chapter 6. Following small scale testing, medium scale testing is
performed along with other higher-order simulation models such as LS-DYNAT™, Lastly, a full
scale experiment is performed to verify the design concept.

At this time, only pass/fail boundaries, small scale testing, and higher-order simulations
have been created or performed with respect to the potential minimum-mass boulder. Medium
scale testing and the full scale experiment are currently in process.

This chapter is organized as follows:

The selection process of the boulder geometries for a potential minimum-mass boulder is
presented in Section 8.1, and the small scale testing of the potential minimum-mass boulder is
presented in Section 8.2. The comparison of the low-order model, LS-DYNA™ finite element

simulation, and small scale testing is presented in Section 8.3.
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8.1 Selection of geometries for a potential minimum-mass boulder

The dimensions of the potential minimum-mass boulder are chosen from the 2-D design
contours, Figure 7-20 — Figure 7-25, such that the selected boulder is within the pass zone while
potentially achieving a minimum mass. Upon inspection of the 2-D design contours, it can
quickly be concluded that no boulder of 1.5, 2, and 2 m— H will meet the design requirements.
Similarly the 4 m — H boulders do not meet the minimum mass requirements. For conceptual
purposes, the 3 m — H contour plot is chosen for boulder selection. After closer inspection using
the low-order model, the corresponding dimensions for the minimum-mass boulder from Figure
7-23 are 1.1 m-L x 1.1 m-W x 3 m-H, and the calculated mass is 11,100 kg when using the
density of American Black Granite. The corresponding location of the minimum mass boulder in

Figure 7-23 is shown in Figure 8-1.

Length (m)

@ Minimum-mass-boulder

Figure 8-1. Potential minimum-mass boulder for height of 3 m

Table 8-1 shows the corresponding full scale properties for the potential minimum-mass boulder.
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Table 8-1. Desired parameters for the full scale minimum-mass boulder

Psoir = 1,859.9 kg/m3 H=3m f =95 MN/m3
pp = 3,074 kg/m?3 d=2m e=0.75m
L=11m m, = 6,800 kg @' =43.2°
W=11m v, =13.4m/s

8.2 Small scale testing and results

The small scale parameters in SSMMBST-1 were calculated as presented in Section 5.6
when using the full scale parameter listed in Table 8-1. Table 8-2 shows the desired small scale
parameters and the measured small scale parameters for SSBST-1. The small scale dimensionally
similar boulder was created from American Black granite, and was impacted using the small scale

Crash Safety Research pendulum presented in Chapter 5.
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Table 8-2. Desired and measured governing parameters for SSMMBST-1

Parameter Desired Measured

my s 8kg 8 kg

Vo s 434 m/s 4.38 m/s
Js 9.81 m/s? 9.81 m/s?
Bs 95 MN/m3 95.55 MN/m3

Psoil 5 1,895.9 kg/m3 1901 kg/m3
Pbg 3,074 kg/m?3 3,074 kg/m?3
Ls 0.1161m 0.1143 m
Ws 0.1161m 0.1143 m
Hs 0.3167 m 0.311m
ds 0.211m 0.21m
es 0.0792 m 0.079 m
ky s 34.6 kN/m 35.9 kN/m
Cug 0.503 kN -s/m 0.538 kN s/m

The small scale minimum-mass boulder test is referred to as SSMMBST-1. The small

scale, minimum-mass American Black Granite boulder, SSMMABG-01, was cut from ABG-01

The installation of SSMMABG -01 is shown in Figure 8-2, and the pre-test condition of the

boulder is shown in Figure 8-3.
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Figure 8-2. Installation of SSMMABG-01 in SSMMBST-1



Figure 8-3. Pre-test condition of SSMMABG-01 in SSMMBST-1

The orientation of the installed crush material, the centerline of the impact beam relative
to the critical impact point, and the eccentricity of the crush material with respect to the boulder

are shown in Figure 8-4.

Figure 8-4. Pre-test conditions of the impact beam and crush material in SSMMBST-1

Figure 8-5 shows the side-view still images extracted from the high-speed video in a

chronological sequence of the impact.
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Figure 8-5. High-speed image sequence of SSMMBST-1

Figure 8-6 shows the linear displacement of the center of mass of SSMMABG-01 from

the point of impact, and Figure 8-7 shows the angle of rotation of SSMMABG-01 from the point
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of impact. The linear displacement of the impact beam as tracked using the forward fiducial is

shown in Figure 8-8.
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Figure 8-6. Measured displacement of the center of mass of SSMMABG-01 in SSMMBST-1
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Figure 8-7. Measured angle of rotation of SSMMABG-01 in SSMMBST-1
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Figure 8-8. Measured linear displacement of the impact beam in SSMMBST-1
Photographs of the post-test condition of the impact beam are shown in Figure 8-9, and

Figure 8-10 shows the post-test condition of SSMMABG-01 in SSMMBST-1.
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Figure 8-9. Post-test impact beam condition in SSMMBST-1



Figure 8-10. Post-test condition of SSMMABG-01 in SSMMBST-1

8.3 Comparison of scaled up small scale crash test results to full scale low-
order and full scale LS-DYNA™ simulations for potential minimum-mass
boulder

A LS-DYNA™ finite element simulation was performed by LTI personnel after the low-
order model and small scale testing confirmed the dynamics of the potential minimum-mass

boulder.  Figure 8-11 shows the impact sequence and subsequent boulder and vehicle

displacements of the LS-DYNA™ finite element simulation.
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Figure 8-11. Finite Element LS-DYNA™ simulation of an M30 impact upon the full scale

minimum-mass boulder
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As presented in Chapter 6, the results from the small scale testing can be scaled up to the
full scale dimensions though the use of the scaling laws presented in Chapter 5. Figure 8-12
shows the comparison of the impact sequence from the high-speed videos for SSMMBST-1 and

the full scale LS-DYNAT simulation. It should be noted that the time dimension of the small

scale test was scaled up to the full scale size when comparing the high-speed image sequence.

Figure 8-12. Comparison of high-speed image sequences from SSMMBST-1 and LS-DYNA™
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Figure 8-13, Figure 8-14, and Figure 8-15 show the comparison of the scaled up crash
test results from SSMMBST-1 to the equivalent full scale simulated low-order and LS-DYNA™
results using the parameters listed in Table 8-1. Figure 8-13 shows the comparison of the linear
displacement of the center of mass of the boulder, Figure 8-14 shows the comparison of the angle
of rotation of the boulder, and Figure 8-15 shows the comparison of the linear displacement of

the impact vehicle.
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Figure 8-13. Comparison of the scaled up linear displacement of the center of mass of
SSMMABG-01 in SSMMBST-1 to the full scale, low-order simulation and LS-DYNA™

simulation
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Figure 8-14. Comparison of the scaled up angular displacement of SSMMABG-01 in

SSMMBST-1 to the full scale, low-order simulation and LS-DYNAT™ simulation
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Figure 8-15. Comparison of the scaled up vehicle displacement in SSMMBST-1 to the full scale,

low-order simulation and LS-DYNAT simulation
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Figure 8-16, Figure 8-17, and Figure 8-18 show the comparison of the crash test results
from SSMMBST-1 to the small scale simulated low-order model results using the measured
parameters listed in Table 8-2. Figure 8-16 shows the comparison of the linear displacement of
the center of mass of the boulder, Figure 8-17 shows the comparison of the angle of rotation of
the boulder, and Figure 8-18 shows the comparison of the linear displacement of the impact

vehicle.
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Figure 8-16. Comparison of the linear displacement of the center of mass of SSMMABG-01 in

SSMMBST-1 to the small scale, low-order simulation using Table 8-2 measured parameters
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Figure 8-17. Comparison of the angular displacement of SSMMABG-01 in SSMMBST-1 to the

small scale, low-order simulation using Table 8-2 measured parameters
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Figure 8-18. Comparison of the vehicle displacement in SSMMBST-1 to the small scale, low-

order simulation using Table 8-2 measured parameters
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Further tests and simulations have not been performed at this time, but based on the small
scale results, it is expected that a medium scale and full scale crash test will confirm the boulder
geometries for a 20° rotation. Preparations are currently underway for conducting medium scale
crash testing, and full scale crash test preparations are being made to acquire the full scale

minimum-mass boulder.

8.4 Contributions of this chapter

The contributions of this chapter are as follows:
(1) Select the geometries for a minimum-mass boulder which is predicted to rotate 20°
(2) Perform small scale crash tests to confirm boulder dynamics
(3) Compare small scale crash test results to low-order simulations and LS-DYNA™
simulations

(4) Propose the methodology for final verification of the minimum-mass boulder
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The intent of this chapter is to discuss the validation of the low-order model and small
scale testing presented in this thesis. Additionally, future work related to the scope of this thesis
is proposed which can be used to improve not only the analysis and modeling, but also the
methodology for performing small scale crash tests. The conclusions of this thesis are presented

in Section 9.1, and the proposed future work is presented in Section 9.2.

9.1 Conclusions

The literature relevant to the topics presented in this thesis was reviewed in Chapter 2.
Existing higher and lower-order models for laterally loaded piles were reviewed, and it was
determined that use of such existing models did not accurately account for the dynamics observed
in a full scale crash test. It was further determined that the existing soil modeling techniques
could be combined with the dynamics of a vehicle impacts to create a low-order model for
vehicle impacts upon soil-fixed boulders.

A low-order model for vehicle impact upon soil-fixed boulders was presented in Chapter
3. The low-order model is based on three degrees of freedom, the linear translation of the boulder
and vehicle and the angular rotation of the boulder. Unlike the models reviewed in literature, the
low-order model does not couple the linear translation of the boulder with the angular
displacement of the boulder. The soil was modeled using a system of lumped-parameter Kelvin
models of which the equivalent soil mass was attached to the boulder. The vehicle was modeled
as a lumped-parameter Maxwell model. The governing equations of motion were derived based

on the force-moment analysis of the free body diagrams for the vehicle and boulder-soil
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subsystem. Fracture prediction methods for the boulders were presented based on the assumed
peak force in a M30 rated impact. Additionally, in-situ and experimental methods were presented
for determining the lumped-parameter values of the soil and vehicle.

In Chapter 4, the low-order model was simulated using MATLAB® ODEA45 and the
results were compared to past full scale crash tests. The comparison of the full scale simulations
to the full scale crash test results showed good agreement between the low-order model and the
crash tests. The low-order model accurately predicts boulder motion until approximately 20° of
rotation has occurred. After 20° of rotation, the model loses fidelity and becomes less accurate.
The overall results of the simulations however, still predict the overall observed motion of the
crash test such as the boulder flipping out of the soil. The presented fracture prediction
methodology was compared to two full scale crash tests in which the boulder was rigidly
embedded in concrete footings. The fracture prediction methodology accurately predicted that
both boulders would indeed break. The fracture model indicated that the boulders were close to
the pass/fail line, yet within the failure zone. The deceleration of the vehicle after impact
indicates that the boulders absorbed a vast amount of the energy of the vehicle. Thus, it can be
inferred and that a slight increase in boulder dimensions would resist fracture. This coincides
with the boulders lying near the pass/fail curve in the fracture contour plot.

Dimensional analysis was applied to the low-order model in Chapter 5, from which
dimensionless equations of motion and scaling factors were derived. Unlike most scaling laws
associated with laterally loaded piles, the salient feature of the scaling factors presented in
Chapter 5 is the ability to perform small scale crash tests in a 1G environment with equivalent
bulk soil and boulder properties between small and full scale experiments. The dimensionless
equations of motion were arranged in a state-space form similar to the governing equations of

motion for the low-order model as a precursor to simulating the dimensionless models.
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In Chapter 6, the verification of the dimensionless equations of motion and the scaling
laws was first made through the simulations of dimensionless models and comparison of small
scale and full scale simulations. Small scale experiments were then created to be dimensionally
similar to the past full scale crash tests of vehicle impacts on soil-fixed boulders. The small scale
low-order model results were directly compared to the small scale crash test results, and the small
scale crash test results were scaled up and compared to the full scale crash test results. As
anticipated from full scale simulations, the small scale low-order simulations show good
agreement with the small scale tests. The scaled results from small scale crash testing also show
excellent agreement with the full scale crash results through approximately 20° of boulder
rotation.

A set of boulder design parameters for typical M30 impact conditions was presented in
Chapter 7. The design parameters were based solely on the variations in boulder geometries and
were represented on 2-D design contour plots. Additional constraints were imposed on the
contour plots which account for predicted fracture and a limiting maximum boulder mass. The
design contour plots allows for extremely quick analysis of boulder dynamics based on the
variation in boulder sizes.

Chapter 8 briefly presented the methodology for using the low-order model, small scale
crash tests, and 2-D design contour plots as a boulder design tool. The overall boulder
dimensions were selected using the 2-D design contour plot presented in Chapter 7, and then
small scale tests were created and performed following the methodology presented in Chapter 6.
The low-order model results, small scale results, and full scale LS-DYNA™ finite element
simulation results were compared and showed good agreement between all three. Medium scale

tests are currently being performed, and preparations are being made for full scale testing.
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9.2 Future work

The breadth of topics which were presented in this thesis allows for several future works
as related to this thesis. The more obvious next immediate step in this research is to complete the
verification process of the minimum-mass boulder through the conduction of medium scale crash
tests followed by a full scale crash test.

Following the verification of the minimum-mass boulder, the next step logical step would
be to perform a parametric study of the variations in dimensionless = groupings and low-order
variables. The 2-D design contours presented in Chapter 7 were created by varying only 3 of the
11 governing dimensionless m groupings. It is anticipated that changing the soil and/or soil
properties would result in the greatest change in output of the low-order model and small scale
testing. A parametric study in the variation of soil properties would allow for extremely quick in-
situ evaluations of pre-existing boulders or desired boulder geometries based on on-site
conditions.

Additionally, an investigation into cohesive soils would prove to be beneficial to low-
order modeling. As seen in literature [31], the modulus of subgrade reaction for cohesive soil
does not increase linearly with depth, but rather remains constant. The units for the constant of
horizontal subgrade reaction for cohesive soils take the form N/m?. It is anticipated that even this
slight variation in units may result in drastic changes of the dimensionless 7 groupings.

A similar topic of interest includes a sensitivity study of the effects of partial similitude
between crash tests and simulations. The research performed as related to this thesis was done so
to be as close as possible to full similitude or perfectly matching = groupings. Obviously
perfectly matching m groupings is not feasible, but it would be beneficial to know which

groupings are “hard” variables which cannot be varied without large changes in output and which
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1 groupings could be considered “soft” variables which can be varied to a certain degree without
drastic changes in output.

Additionally, the presently-used low-order model neglects motion in the Y direction. The
next step in modeling may be to return to the equations of motion and include the Y component.
This is much easier said than done because, unlike the lateral displacement of the boulder, the Y
component of the boulder motion is more so coupled with the angular rotation of the boulder. In
order to better predict the motion in the Y direction, the time-varying pivot point of rotation for
the boulder must be known. As observed in full scale testing, the location of the pivot does not
remain constant throughout a crash test; for small angular displacements, the pivot point is near
the base of the boulder, whereas for large angular deflection, the pivot point moves towards the
surface of the soil. This concept is easily seen in the analysis of ABGO1 in BST-1 since the
boulder ended up on top of the soil surface. It is this non-trivial aspect of rotation that has driven
other models to using a repetitive non-linear approach to solving the equations of motion. It is
desirable, however, to be able to calculate the displacement of the boulder in a single calculation,

as demonstrated in this thesis.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

234
REFERENCES

C. Gresser, “Soil compaction and stability,” [Online], Available:

http://www.gilesengr.com/Literature/soil_compaction_and_stability long.pdf

W. Pawlus et al., "Development of lumped-parameter mathematical models for a vehicle

localized impact," J. Mech. Sci. and Tech.., vol. 25, no. 7, pp. 1737-1747, Mar. 2011.

Automotive News, “IIHS Crash Tests Five Budget Coupes: Ford, Volvo Ear Top Safety
Picks [Crash Tests],” [Online]. Available:

http://v8tvshow.com/component/option,com_smf/Itemid,108/topic,9154.0/

B. Das, "Laterally Loaded Piles," in Principles of Foundation Engineering, Pacific
Grove, CA, Brooks/Cole, 2004, p. 530.

B. Holmes and G. Sliter, "Scale Modeling of Vehicle Crashes - Techniques,

Applicability, and Accuracy; Cost Effectiveness," SAE Technical Paper 740586, 1974,

doi:10.4271/740586.

S. Kirkpatrick et al., “Evaluation of Passenger Rail Vehicle Crashworthiness,”

International Journal of Crashworthiness, vol. 6, no. 1, pp. 95-106, 2001.

L. Zhang, "Nonlinear analysis of laterally loaded rigid piles in cohesionless soil,"

Computers and Geotechnics, vol. 36, pp. 718-724, 2009.

M. H. E. Naggar and K. Bentley, "Dynamic analysis for laterally loaded piles and
dynamic p-y curves,” Canadian Geotechnical Journal, vol. 37, pp. 1166-1183, 2000.
C. Prasad YVSN, “Lateral capacity of model rigid piles in cohesionless soils,” J.

Geotech. Geoenviron. Eng., ASCE, vol. 131, no. 1, pp. 78-83, 2005 .

M. Novak and M. Sheta, “Approximate approach to contact effects of piles,”

Proceedings of a Speciality Conference on Dynamic Response of Pile Foundations:



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

235
Analytical Aspects, ASCE, Hollywood, FL. Pp. 53-79.
M. H. E. Naggar, “Interpretation of lateral statnamic load test results,” Geotechnical

Testing Journal, vol. 23, no. 3, pp. 169-179, 1998.

J. Ting et al., “Centrifuge static and dyanmic lateral pile behaviour,” Canadian

Geotechnical Journal, vol. 24, pp. 198-207, 1987.

C. LeBlanc et al., “Response of stiff piles in sand to long-term cyclic lateral loading,”

Géotechnieque, vol. 60, no. 2, pp. 79-90, 2010.

B. Broms, “Lateral Resistance of Piles in Cohesive Soils,” J. Soil Mech. Found. Div.,

ASCE, vol. 90, pp. 27-63, 1964

G. Gautreau, “The Dynamic Cone Penetrometer ‘The DCP’,” [Online],

http://www.ltrc.Isu.edu

“Dynamic Cone Penetrometer,” STP 240-20, Seskatchewan Highways and

Transportation, 1994.

R. Salgado and S. Yoon, "Dynamic Cone Penetration Test (DCPT) for Subgrade
Assessment," Joint Transportation Research Program, Indiana Department of
Transportation and Purdue University, West Lafayette, Indiana, 2003. doi:

10.5703/1288284313196

G. Sowers and C. Hedges, “Dynamic Cone for Shallow In-Situ Penetration Testing,”
Vane Shear and Cone Penetration Resistance Testing of In-Situ Soils, ASTM STP 399,

Am. Soc. Testing Mats., 1966, p. 29.

S. Webster et al., “Force Projection Site Evaluation Using the Electric Cone
Penetrometer (ECP) and the Dyanmic Cone Penetrometer (DCP),” Technical Report

GL-94-17, US Army Corps of Engineering, Waterways Experiment Station, AD-A282



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

236
411, Apr. 1994,
J. Zhao, “Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the
dynamic strength of brittle rock,” Int. J. of Rock Mech. & Min. Sci., vol. 37, pp. 1115-

1121, 2000.

S. Cho et al., "Strain-rate dependency of the dynamic tensile strength of rock," Int. J. of

Rock Mech. & Min. Sci, vol. 40, pp. 763-777, 2003.

Y. Kim et al., "Wedge Failure Analysis of Soil Resistance on Laterally Loaded Piles in

Clay," J. Geotech. and Geoenviorn. Eng., ASCE, pp. 678-694, Jul. 2011

J. Meyer, “Analysis and design of pile foundations: proceedings of a symposium
sponsored by the ASCE Geotechnical Engineering Division and a session sponsored by
the ASCE Technical Council on Codes and Standards in conjunction with the ASCE
National Convention, San Francisco, California, October 1-5, 1984,” ASCE, pp. 176-

177, 1984.

J. Diaz-Rodriguez et al., "Strain-Rate Effects in Mexico City Soil," J. Geotech.and

Geoenviron. Eng.g, ASCE, pp. 300-305, Feb. 2009.

D. Croney, “Determination of Equivalent Californian Bearing Ratio by Plate Bearing

Test,” SalierGeotechnical Limited, Lab Test Refernce 610

Suggested methods for determining the uniaxial compressive strength and deformability
of rock materials, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., VVol. 16, No.2, pp.

135-140, 1979.

Suggested Methods for Determining Tensile Strength of Rock Materials, Int. J. Rock

Mech. Min Sci. & Geomech. Abstr., vol. 15, pp. 99-103, 1978.

S. Brennan, “On size and control: the use of dimensional analysis in controller design,”



[29]

[30]

[31]

237

Ph.D. disseration, Dept. Mech. Sc. and Eng., University of Illinois at Urbana-

Champaign, Urbana, IL, 2002.

“Freight,” U.S. Deparment of Transporation Federal Highway Administration, [Online],

Available: http://ops.fhwa.dot.gov/freight/sw/overview/index.htm.
International® Trucks, [Online], Available: http://www.internationaltrucks.com/

L. Zhang and S. Ahmari, "Nonlinear analysis of laterally loaded rigid piles in cohesive

soil," Int. J. Numer. Anal. Meth. Geomech., 2011. DOI: 10.1002/nag.1094



238
APPENDIX A

DATA SHEETS FOR VEHICLES USED IN FULL SCALE CRASH TESTS
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IN-SITU SOIL MEASUREMENTS AND MODIFIED PROCTOR TEST

RESULTS

MODIFIED PROCTOR TEST RESULTS

Test number 1 2 3
Mass of mold + base plate, M1 4132.8 4132.8 4132.8
Mass of mold + base plate + moist soil,

M2 6047 6222 6311
Mass of moist soil, M2-M1 1914.2 2089.2 2178.2
Moist density 1.94514 2.122968 2.213407
Moisture can 1 2 3
mass of moisture can, M3 33.8 35.47 34.77
mass of can + moist soil, M4 112.1 199.4 110.3
Mass of can + dry soil, M5 106.5 184.5 1034

Moisture content

7.702889 9.997987 10.05391

dry density of compaction 1.806024 1.930006 2.011202

mold volume in”3

m~3
60.05309481 984.0939

4
4132.8

6333
2200.2
2.235762
4

21.45
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Figure B-1.

Compaction level of the limestone dust vs. moisture content
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APPENDIX C

SMALL SCALE RIGID WALL CRUSH TEST RESULTS

The results from the parameterization of the small scale crush material are presented in
increasing tape spacing. The tape spacing was varied roughly between three amounts, heavily
taped (1 cm spacing), medium taped (1.25 cm spacing), and lightly taped (1.5 cm spacing). As
expected, the amount of tape is directly correlated to the equivalent spring and damping values
such that heavily taped cans generally exhibited the highest equivalent spring and damper values.
An additional method for loosely determining the spring and damper values, or more so the
applicability of the specific crush material, one can simply scale the measured crush test results
and compare them to the full scale LS-DYNA™ and low-order model simulation results. This
method provides for an instant knowledge basis on the parameters of the material since scaled
similar parameters will more or less match. The traversed distance was measured using the rotary
encoder described in 6.2.

This appendix is organized as follows:

The heavily taped crush test results are first presented, followed by the medium taped
results, and then the lightly taped results. The comparison of all three is then shown at the end of

this appendix.
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RESULTS OF HEAVILY TAPED (1 CM SPACING) CRUSH TESTS

Six heavily taped crush tests were performed using the small scale crash safety research
pendulum. Figure C-1 — Figure C-6 show the pre-test and post-test condition of the heavily taped
cans (HTC). Figure C-7 and Figure C-8 show the linear displacement of the individual tests with
the resulting average displacement and the scaled up comparison to the LS-DYNA and low-order

simulations.

Figure C-1.

Figure C-2. HTC-2
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Figure C-3. HTC-3

Figure C-5. HTC-5
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Figure C-6. HTC-6

01p

== Ayerage
Tests

R

L] -
h'h.

Distance traversed (m)

1 1 1 1 1 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time (s)
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RESULTS OF MEDIUM TAPED (1.25CM SPACING) CRUSH TESTS

13 medium taped crush tests were performed using the small scale crash safety research
pendulum. Figure C-9 — Figure C-21 show the pre-test and post-test condition of the heavily
taped cans (MTC). Figure C-22 and Figure C-23 show the linear displacement of the individual

tests with the resulting average displacement and the scaled up comparison to the LS-DYNA and

low-order simulations.

Figure C-9. MTC-1

Figure C-10. MTC-2



252

Figure C-11. MTC-3

Figure C-12. MTC-4

Figure C-13. MTC-5



Figure C-14. MTC-6

Figure C-15. MTC-7

Figure C-16. MTC-8
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Figure C-19. MTC-11
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Figure C-21. MTC-13
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RESULTS OF LIGHTLY TAPED (1.5 CM SPACING) CRUSH TESTS

8 lightly taped crush tests were performed using the small scale crash safety research
pendulum. Figure C-24 — Figure C-31 show the pre-test and post-test condition of the lightly
taped cans (LTC). Figure C-32 and Figure C-33 show the linear displacement of the individual
tests with the resulting average displacement and the scaled up comparison to the LS-DYNA and

low-order simulations.

Figure C-25. LTC-2
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Figure C-27. LTC-4
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Figure C-28. LTC-5
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Figure C-29. LTC-6

Figure C-31. LTC-8
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COMPARISON OF CRUSH TEST RESULTS

Figure C-34 shows the comparison and resulting fits for the crush tests.

0.12 T T T T T T
.—I'_'.
0.1} o ""'*...,__ i
s’ e ) B ¥ .
,’* ":-.-._h h.hhh- .h.h"
— ,;,/’ T
E__ 0.08 F é*‘ ‘.h'h Y ]
3 e e
&
B 006 .ff .
" . )
o ’*. == s == Heavily Taped
Z .,f === [edium Taped
o 004r d === |ightly Taped T
4
¥
0.02 'y .
L
[
L]
u r | | 1 | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (s)

Figure C-34. Comparison of the three levels of taping for the small scale crush material

The average initial velocity of the heavily taped can tests was approximately 5.1, and the
resulting spring and damping coefficients were then calculated to be 48.8 kN/m and 0.556 kN-
s/m. The average initial velocity of the medium taped can tests was approximately 4.9 m/s, and
the resulting spring and damping coefficients were then calculated to be 58.9 kN/m and 0.503
kN-s/m. The average initial velocity of the lightly taped can tests was approximately 5.25 m/s,
and the resulting spring and damping coefficients were then calculated to be 35.9 kN/m and 0.538

kN-s/m.



262
APPENDIX D

EXAMPLE LOW-ORDER MODEL MATLAB® CODE

The example MATLAB® code is presented using the parameters associated with BST-2.
Various other geometries and conditions can be simulated by simply changing the desired
parameters Pi_Parameters.m. The script defaults to simulating the theoretical small scale
parameters and not the measured small scale parameters. If the as-measured small scale
parameters are to be simulated, they must be entered manually. The order for running the codes
is as follows:

(1) Prepare the variables for simulation
a. The full scale crash test parameters are entered in Pi_Parameters.m
b. The corresponding small scale test size is entered as m_truck_model
c. The as measured small scale test parameters are entered, if desired
d. Pi_Parameters.m is saved after modifications have been made.

(2) Either script_Simulation.m, script_Simulation_small.m, or

script_Simulation_dimensionless.m is opened and ran
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PI_PARAMETERS.M

$this script will calculate the groupings of the scaling factors

$Mark P. Keske; mark.keske@gmail.com
close all

clear all

clc

%% perform D.A.

% A = [mt vt g], the set of repeating parameters in
% [Length
% Mass
% Time]
A= [0 1 1;
1 0 O0;.
0 -1 -2];

%$lets figure out some sizes so we can make matrix inversion and allocation
%$real nice and quick

[rows A cols A] = size(Ad);

% B = rho soil

% rho rock

% c_truck

% k truck

% es

% W

% L

g H

% d

% d truck

% time
% velocity

oo

acceleration
angular vel
angular vel
Moment

o0 oo

oo

B=[-3-3 0 0-2-1 1 1 1 1 1 0 .
$1 11 1 1 1 0 O O OO O O O O O 1;...
0o 0-1-2-2-2 0 0 O 0O 0 1

% determine the size of B for future allocations
[rows B cols B] = size(B);

$create I vector for computation and allocations
E = eye(cols B);

sPerform the matrix inversion and transpose for finding the pi parameters
S = -inv (A) *B*E;

s =25';

$Fill out Complete Matrix, Totes will have the entire dimensional set
$filled, so all you have to do is copy Totes into a spreadsheet that has
$variables orangized
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Totes = zeros(cols A+cols B);
Totes(l:rows B,l:cols B) = B;
Totes(l:rows A,end-cols A+l:end) = A;
Totes (rows B+l:end,l:cols B) = E;

Totes (rows_ B+l:end,end-cols A+l:end) = S;

%% Apply D.A. to obtain small scale parameters
%$give the prototype parameters to be scaled

%estimated modulus value for a full scale test using modified 2A limestone
%$gravel, ASTM F2656-07 states that the soil should be no less than 90%
$compacted, where 95 MN/m”3 modulus correlates to a 94% compaction state
Modulus=95; %MN/m"3

% calcuate the relative density of the soil based on the modulus
Dr=1/(2%.01221)*(0.1748+sqrt (0.174872-4*0.01221* (2.86-Modulus))); %...%,
%$its in percent

%constants from curve fit of the relation between relative density and
%angle of internal friction

pl = 0.0015;

p2 = 0.02;

p3 28;

%$calcuate the effective angle of internal friction for the density
phi = pl*D r"2+p2*D r+p3; S%degrees
phi = phi*pi/180; %radians

%give the reamining measured prototype parameters to be scaled, prototype
tmeans full scale

$rock mass density
rho _rock proto = 2596; %kg/m"3

%$soil mass density
rho soil proto = 2010*D r/100; %kg/m"3

%$so0oil modulus of subgrade reaction
E soil proto = Modulus*1076; %N/m"3

%graviational constant
g _proto =9.81;%m/s/s

%mass of the truck from BST-1
m_truck proto = 6722;%kg

%$initial velocity of the truck from BST-1
v_truck proto = 14.5;%m/s

%$Length, Width, and Height

L proto = 1.65; sm
W proto = 1.68; sm
H proto = 3.44; sm

sembedment depth
d proto = 2.03; Fm



$distance from the soil surface to the equivalent point load of the truck,

$dimensions are taken from the vehicle data sheets

d truck proto = (1.4-18.75*%.0254)/2+18.75*%.0254;%.0254 means meters

$equivalent damping and spring of a M30 truck
c_truck proto = 1.3891e5; %N-s/m
k_truck proto = 3.1033e6; %N/m

$time at which to end the simulation and time step size

t _end proto = .3;%s
t step proto = .002;%s

%$just for curiosity's sake how big is this boulder?
m rock proto = L proto*W proto*H proto*rho rock proto;%kg

Snumber of elements in the soil model
nelements proto = 5000; %#

$height of soil elements based on equal spacing
delta proto = d proto/nelements proto; %m

o

% Group the parameters and calculate the pieye parameters
determine the pi parameter values

all of the variables use the same nomenclature as above,
%is always on the left

pi rho rock = rho rock proto*v_truck proto”6/(m truck prot

oo

o

and the parameter

o*g proto”3);

pi rho soil = rho_soil proto*v_truck proto”6/(m_ truck proto*g proto”3);

pi_c truck = c truck proto*v truck proto/(m truck proto*g

pi_k truck = k truck proto*v truck proto”2/(m_truck proto*

proto);

g _proto”2);

pi Es = E soil proto*v_truck proto”6/(m_ truck proto*g proto”4);

pi L = L proto*g proto/v_truck proto”2;
pi d truck = d_truck proto*g proto/v_truck proto”2;

pi W = W _proto*g proto/v_truck proto”2;

pi H H proto*g proto/v_truck proto”2;

pi d = d proto*g proto/v_truck proto”2;

pi t = t_end proto*g proto/v_truck proto;

pi t step = t step proto*g proto/v_truck proto;
pi _delta = delta_proto*g proto/v_truck proto”2;

pi nelements = pi d/pi delta;

1;
1;

pi m truck
pi v _truck

265
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pi_g = 1;

o\

% Find model parameters based on scaling laws

model means small scale

give the model constants, you can alter E soil, which will then give you a
different set of pi parameters

E soil model = E soil proto;

g model = g proto;

o oP

o

$reverse the direction of the pigh parameters to solve for the small scale
%parameters.

%it all starts with one
m truck model = 8; %kg

%and the rest just fall out like an uneasy jinga tower balancing on a
%$single block...that's not in the middle.
v_truck model = (pi Es*m_truck model*g model”4/E soil model)” (1/6);

rho rock model = pi rho rock*m truck model*g model”3/v truck model”6;
rho soil model = pi rho soil*m truck model*g model”3/v truck model”6;

k_truck model = pi k truck*m truck model*g model”2/v_truck model”"2;

c_truck model = pi c truck*m truck model*g model/v_ truck model;
W _model = pi W*v_truck model”2/g model;

L model = pi L*v_ truck model”2/g model;

H model = pi H*v_ truck model”2/g model;

d model = pi d*v_truck model”2/g model;

d truck model = pi d truck*v_truck model”2/g model;

t_end model = pi t*v_truck model/g model;

t step model = pi t step*v_truck model/g model;

delta model = (pi_delta)*(v_truck_modelAZ/(g_model));

nelements model = d model/delta model;

% now, lets save all these numbas so we can use them in the script

save ('Model Parameters','L model','W model','H model','d model', ...
'd truck model','m truck model', ...
'v_truck model', 'k truck model','c truck model','E soil model’, ...
'g model', 'rho soil model', 'rho rock model', 'rho soil proto',...
't end model', 't step model', ...
'delta model', 'nelements model', 'phi');

save ('Proto Parameters','L proto','W proto','H proto','d proto',...
'd truck proto','m truck proto',...
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'v_truck proto', 'k truck proto','c truck proto','E soil proto',...
'g proto','rho soil proto','rho rock proto',...

't end proto','t step proto',...

'delta proto', 'nelements proto','phi');

save ('Dimensionless Parameters','pi m truck',6 'pi v truck','pi g',...
'pi rho rock','pi rho soil', ...
'pi ¢ truck','pi k truck','pi Es','pi L','pi d truck','pi W',...
'pi H','pi d','pi t','pi t step','pi delta','phi','pi nelements')
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SCRIPT_SIMULATION.M

o

% Rotation Model based on FEA of soil parameters
Mark P. Keske, mark.keske@gmail.com

Alex Brown, aab5009@psu.edu

Sean Brennan, sbrennan@psu.edu,

o° o°

oo

clc
clear
close all

$Just in case there were other parameters that had been loaded, we're going
%to run the code here at the beginning
Pi Parameters

%this code is created such that Pi Parameters Appendix is all that needs to
%be changed, it will load all of the parameters defined in the above .m

%$define the number of soil elements
nelements = nelements proto;

%% Define constants

%$soil and rock density

rho _soil = rho_soil proto; % kg/m"3
rho rock = rho rock proto; % kg/m"3

$vehicle mass and initial velocity
m truck = m truck proto; S%kg
v_truck = v_truck proto; %m/s

%graviational constant
g = g _proto; %m/s"2

% equivalent distance for the point load above the soil surface
d truck = -d truck proto; %m

%equivalent damper and spring values for the truck
c_truck = c_truck proto; 3%N-s/m

k_truck = k_truck proto; SN/m

%angle of the soil wedge as measured from vertical down
theta = pi/4+phi/2;

$Modulus of subgrade reaction
E soil = E soil proto; SN/m"3

$Strain rate scaling factor for laterally loaded soil
Kg = tan(theta) /cos(phi);

%length of the assumed cantilever for fracture calcuations
lengthCantilever = 0.75;%m

$peak force from a rigid wall impact
peakForce = m truck*g*100; %N

%$Conversion from ksi to MPa



ksi2Mpa = 6.89475728;

Smaterial properties for American Black Granite, tensile and compressive

$strengths
sigmaTensileUltimate = 4.63*ksi2Mpa; $MPa
sigmaCompressionUltimate = 26.4*ksi2Mpa; $MPa

%% Define boulder geometry

% Inputs are arranged as Height, Embedment depth, Length, all measured in
Lengths = L proto;

Widths = W proto;

Heights = H proto;

o\

Initialize arrays for multiple Lengths, Widths and Heights for contour
plots, not demonstrated in this code

oo

tmatrix for the maximum distance traversed by the boulder
distanceMoved = zeros (length(Widths), length (Lengths),length (Heights));

tmatrix for the maximum angle traversed by the boulder
angleTraversed = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the mass of the various sized boulders
massBoulder = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the peak stress for a given boulder geometry wrt fracture
peakStress = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the factor of safety wrt fracture
factorSafety = zeros(length (Widths), length (Lengths), length (Heights));

$matrix for the maximum mass for the boulders
max massBoulder = zeros(length (Widths),length(Lengths), length (Heights));

tmatrix for saving the maximum distance traversed by the vehicle
distanceTruckMoved = zeros (length (Widths), length (Lengths),length (Heights));

%% Permutate through the different rock geometries
for H=Heights
for W=Widths
for L=Lengths

%set the indices for the above variables which will be saved

i width = find(Widths == W); %row
j _length = find(Lengths == L);%column
k height = find(Heights == H);%depth

%boulder embedment depth,
d = d proto;sm

o\

Calculate initial fixed mass of the boulder and the mass
moment of inertia about the boulder C.G., note this will
later be translated over to the boulder-soil subsystem C.G.
_boulder =rho rock*H*L*W; %kg
b = m boulder* (H"2+L"2)/12; %kg-m"2

o oo

H 3
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%check to see if the boulder is embedded, if not then skip
$straight to the function
if d>0
$total spring stiffness of the soil elemetns, as idealized
$from a long slender rod, cross section area divided by the
$intial undeformed length of the soil element
k soil total = E_soil*d*W/(d/tan(phi)*nelements); %N/m"2

$total soil damping constant, density times swept area,
$will be mulitplied by the velocity squared of each element
c_soil total = rho soil*d*W; S%N-s"2/m"2

$total mass of the soil wedge, treated as a triangle
m soil total = rho_soil*d*W*(d*tan(theta))/2;%kg

$distribute the spring and damping constants, the spring
$constant increases linearly with depth, the soil damping
$value is assumed to remain constant with depth and is even

$distributed
ki = k soil total*linspace(0,abs(d),nelements); 3N/m
ci = c_soil total/nelements; %N -s"2/m"2

%$set the height of the soil elements
delta = delta proto;%m

%calculate the mass of each trapezoidal soil element
$treated as a rectangle with a triangle attached to the end

%$length of the base of the soil wedge
L wedge = d*tan(theta); =m

%$length of each soil element along the top
L delta = (l:nelements)*delta*tan(theta); %m

%$length of each soil element along the bottom, short side
L flat = L wedge-L delta;*m

$mass of the end triangle of each soil element
m tip = 1/2*delta*W*L _delta(l)*rho_soil;%kg

%$cross sectional area of each soil element
Af = W*delta;%m"2

$mass vector of the soil elements from soil surface to
$bottom of boulder
mi = Af*L flat*rho soil+m tip;%kg

%calcuate the center of mass of the boulder-soil subsystem

$divide the embedment depth of the boulder into nelements
%along the boulder
spaces = d*linspace(l,0,nelements); %m

scalculate the center of mass wrt x from the impact side of

%the boulder

mass_center x = l/(sum(mi)+m_boulder)*...
(sum(mi) *L+m boulder*L/2);%m



%calcuate the center of mass wrt y from the bottom of the
%boulder
mass_center y = l/(sum(mi)+m_boulder)*...

(sum (mi.*spaces)+m boulder*H/2);%m

sdistribute the soil elements wrt the center of mass of the
$boulder-soil subsystem such that elements above the C.M.
%have negative distances and elements below are positive

%$x positive right, y positive down from the C.M.

Spretty self explanitory
cg from bottom = mass center y;%m

sdetermine where the surface of the soil is wrt the C.M.
% if this is a negative number, soil line is ABOVE CG.
soil line y = (cg_ from bottom-d);%m

$redistribute the soil elements wrt the C.M.
di = linspace(soil line y,cg from bottom,nelements);%m

else %if the boulder aint burried, then don't burry it
k soil total = 0;
c soil total = 0;

m soil total = 0;
ki = 0;
ci = 0;
mi = 0;

%$the distance to the bottome
di = H/2;
end

%$calculate the radial distance from the C.M. to the soil
%elements
1i = sgrt(di.”2+(L-mass_center x)"2); 5m

%$calcuate the angle from vertical for the soil elements
gamma = atan(di/(L-mass_center x))+pi/2; %radians

%$calcuate the distance from the boulder C.G. to the
$boulder-soil subsystem C.M. to be used in the // axis theorem
r center = (H/Z—mass_center_y)A2+(L/2—mass_center_x)A2;%m

%apply the parallel axis theorem
I b=1IDb+ m boulder*r center; 5Skg-m"2

$time to create a time vector for ODE45
tspan = 0:t step proto:t end proto;

oe

initial velocity of the truck drives the simulation

% states = [xb, xbdot, thetab, thetabdot, xt, xtdot, xtddot],
% the maxwell model uses jerk, so acceleratoin is a state
x0 = [0 0 0 0 0 v_truck 0];%states

$truck-boulder model
%$run numerical integration
options = [];



end
end
end

%Send the function all of the goodies so we get the time and

%states back from ODE45

[t r,x r] = oded45(@fcn Low Order EOM, tspan,x0,options,mi, ...
ki,ci,m boulder,I b,di,c truck,k truck,m truck,d truck,...
L,H,1i,gamma,mew,d, phi, rho soil,W,g,mass_center x,...
mass_center y,v truck,Kg);

$send the fracture function its goodies so it will tell us the

$resulting factor of safety, n, and the principle stress

[n,sigmal] = fcn fracture (lengthCantilever, peakForce,W,L, ...
sigmaTensileUltimate, sigmaCompressionUltimate) ;

%Pass/Fail Criteria used with contour plots

$based on experiments and the simulation, a failure criterion
$for angle.
AngleCriteria = 20; %degrees,

%$save the distance the boulder translates
distanceMoved (i _width,j length,k height) = max(x r(:,1));

%save the angle traversed wrt the pass/fail criteria. A

$positive value indicates a failure since it would go + degrees

$past 20

angleTraversed (i width,j length,k height) = max(x r(:,3)*...
180/pi) -AngleCriteria; %degrees

%$save the principle stress
peakStress (i_width,j length,k height) = sigmal; % Units are MPa

%save the factor of safety, the factors of safety are
$represented as negative number for contour plotting, abs(n)>1
%$indicated expected pass
factorSafety (i width,j length,k height) = n;

%$save the masses of the boulders
massBoulder (i_width,j length,k height) = m boulder/1000; %Mg
max massBoulder (i_width,j length,k height) =

massBoulder (1 _width,j length,k height)-27.215; % Mg

%$save the distance the truck moved
distanceTruckMoved (i _width,j length,k height) = max(x r(:,5));
gm

%$since things are pretty well commented, lets take a peek at
show far the boulder rotated
disp(angleTraversed) ;

%$save the data as a .mat file for later usage

save ('BST-2

Results', 'Lengths', 'Widths', 'Heights', 'distanceMoved', ...

'angleTraversed', 'massBoulder', 'max massBoulder', 'distanceTruckMoved') ;

%% Plotting

time

272



figure;

plot(t r,x r(:,3)*180/pi, 'sr")

xlabel ('Time (s)')

ylabel ('Angular displacement (degrees)')

legend ('Full scale crash test', 'Full scale simulation','location', 'best')
saveas (gcf, 'fig Full Scale BAB30 Angle and Simulation.fig')

%calculate the linear displacement of the center of the boulder since the
$video tracking is done wrt the boulder C.G. and not the boulder-soil
$subsystem

%calculate radial distance form the center of mass of the boulder to the
$boulder-soil subsystem
Rbp = sqgrt((mass_center x-L/2) "2+ (mass_center y-H/2)"2);%n

$calculate the angle from center of mass of the boulder-soil subsystem to
%the boulder C.G.
gamma_bp = atan((mass_center x-L/2)/(mass center y-H/2));%radians

$fix the corridinate locations such that the angle is measure from the
$positive x direction
if gamma bp<0
gamma_bp = abs (gamma bp)+pi/2;
xb = x r(:,1)+Rbp*cos (gamma bp-x r(:,3))-Rbp*cos (gamma bp) ;
elseif gamma bp>0
gamma_bp = (gamma_bp) +pi/2;
xb = x r(:,1)+Rbp*cos (gamma bp+x r(:,3))-Rbp*cos (gamma bp) ;
end

figure;

plot(t r,xb,'sr'")

legend('Full scale crash test', 'Full scale simulation', 'location', 'best')
xlabel ('Time (s) ')

ylabel (Linear displacement (m)"')

saveas (gcf, 'fig Full Scale BAB30 CG Disp and Simulation.fig')

figure;

plot(t r,x r(:,5),"'sr")

legend('Full scale crash test', 'Full scale simulation', 'location', 'best')
xlabel ('Time (s) ')

ylabel ('Linear displacement (m)"'")

saveas (gcf, 'fig Full Scale BAB30 Truck and Simulation.fig')
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SCRIPT_SIMULATION_SMALL.M

o\

% Rotation Model based on FEA of soil parameters
Mark P. Keske, mark.keske@gmail.com

Alex Brown, aab5009@psu.edu

Sean Brennan, sbrennan@psu.edu,

o oP

oo

clc
clear
close all

$Just in case there were other parameters that had been loaded, we're going
%$to run the code here at the beginning
Pi Parameters

%this code is created such that Pi Parameters Appendix is all that needs to
%be changed, it will load all of the parameters defined in the above .m

%$define the number of soil elements
nelements = nelements model;

%% Define constants

%$soil and rock density

rho _soil = rho _soil model; % kg/m"3
rho rock = rho rock model; % kg/m"3

$vehicle mass and initial velocity
m truck = m truck model; S%kg
v_truck = v_truck model; %m/s

%graviational constant
g = g model; %m/s"2

% equivalent distance for the point load above the soil surface
d truck = -d truck model; %m

%equivalent damper and spring values for the truck
c_truck = c_truck model; 3%N-s/m

k_truck = k truck model; %N/m

%angle of the soil wedge as measured from vertical down
theta = pi/4+phi/2;

$Modulus of subgrade reaction
E soil = E soil model; 3%N/m"3

$Strain rate scaling factor for laterally loaded soil
Kg = tan(theta) /cos(phi);

%$length of the assumed cantilever for fracture calcuations
lengthCantilever = 0.75;%m

$peak force from a rigid wall impact
peakForce = m truck*g*100; %N

%$Conversion from ksi to MPa
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ksi2Mpa = 6.89475728;

Smaterial properties for American Black Granite, tensile and compressive

$strengths
sigmaTensileUltimate = 4.63*ksi2Mpa; $MPa
sigmaCompressionUltimate = 26.4*ksi2Mpa; $MPa

%% Define boulder geometry

% Inputs are arranged as Height, Embedment depth, Length, all measured in
Lengths = L model;

Widths = W model;

Heights = H model;

o\

Initialize arrays for multiple Lengths, Widths and Heights for contour
plots, not demonstrated in this code

oo

tmatrix for the maximum distance traversed by the boulder
distanceMoved = zeros (length(Widths), length (Lengths),length (Heights));

tmatrix for the maximum angle traversed by the boulder
angleTraversed = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the mass of the various sized boulders
massBoulder = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the peak stress for a given boulder geometry wrt fracture
peakStress = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the factor of safety wrt fracture
factorSafety = zeros(length (Widths), length (Lengths), length (Heights));

$matrix for the maximum mass for the boulders
max massBoulder = zeros(length (Widths),length(Lengths), length (Heights));

tmatrix for saving the maximum distance traversed by the vehicle
distanceTruckMoved = zeros (length (Widths), length (Lengths),length (Heights));

%% Permutate through the different rock geometries
for H=Heights
for W=Widths
for L=Lengths

%$set the indecies for the above variables which will be saved

i width = find(Widths == W); %row
j _length = find(Lengths == L);%column
k height = find(Heights == H);%depth

%boulder embedment depth,
d = d model;sm

o\

Calculate initial fixed mass of the boulder and the mass
moment of inertia about the boulder C.G., note this will
later be translated over to the boulder-soil subsystem C.G.
_boulder =rho rock*H*L*W; %kg
b = m boulder* (H"2+L"2)/12; %kg-m"2

o oo

H 3
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%check to see if the boulder is embedded, if not then skip
$straight to the function
if d>0
$total spring stiffness of the soil elemetns, as idealized
$from a long slender rod, cross section area divided by the
$intial undeformed length of the soil element
k soil total = E_soil*d*W/(d/tan(phi)*nelements); %N/m"2

$total soil damping constant, density times swept area,
$will be mulitplied by the velocity squared of each element
c_soil total = rho soil*d*W; S%N-s"2/m"2

$total mass of the soil wedge, treated as a triangle
m soil total = rho_soil*d*W*(d*tan(theta))/2;%kg

$distribute the spring and damping constants, the spring
$constant increases linearly with depth, the soil damping
$value is assumed to remain constant with depth and is even

$distributed
ki = k soil total*linspace(0,abs(d),nelements); 3N/m
ci = c_soil total/nelements; %N -s"2/m"2

%$set the height of the soil elements
delta = delta model;%m

%calculate the mass of each trapezoidal soil element
$treated as a rectangle with a triangle attached to the end

%$length of the base of the soil wedge
L wedge = d*tan(theta); =m

%$length of each soil element along the top
L delta = (l:nelements)*delta*tan(theta); %m

%$length of each soil element along the bottom, short side
L flat = L wedge-L delta;*m

$mass of the end triangle of each soil element
m tip = 1/2*delta*W*L _delta(l)*rho soil;%kg

%$cross sectional area of each soil element
Af = W*delta;%m"2

$mass vector of the soil elements from soil surface to
$bottom of boulder
mi = Af*L flat*rho soil+m tip;%kg

%calcuate the center of mass of the boulder-soil subsystem

$divide the embedment depth of the boulder into nelements
%along the boulder
spaces = d*linspace(l,0,nelements); %m

scalculate the center of mass wrt x from the impact side of

%the boulder

mass_center x = l/(sum(mi)+m_boulder)*...
(sum(mi) *L+m boulder*L/2);%m



%calcuate the center of mass wrt y from the bottom of the
%boulder
mass_center y = l/(sum(mi)+m_boulder)*...

(sum (mi.*spaces)+m boulder*H/2);%m

sdistribute the soil elements wrt the center of mass of the
$boulder-soil subsystem such that elements above the C.M.
%have negative distances and elements below are positive

$x positive right, y positive down from the C.M.

Spretty self explanitory
cg from bottom = mass center y;%m

sdetermine where the surface of the soil is wrt the C.M.
% if this is a negative number, soil line is ABOVE CG.
soil line y = (cg_ from bottom-d);%m

$redistribute the soil elements wrt the C.M.
di = linspace(soil line y,cg from bottom,nelements);%m

else %if the boulder aint burried, then don't burry it
k soil total = 0;
c soil total = 0;

m soil total = 0;
ki = 0;
ci = 0;
mi = 0;

%$the distance to the bottome
di = H/2;
end

%$calculate the radial distance from the C.M. to the soil
%elements
1i = sgrt(di.”2+(L-mass_center x)"2); 5m

%$calcuate the angle from vertical for the soil elements
gamma = atan(di/(L-mass_center x))+pi/2; %radians

%$calcuate the distance from the boulder C.G. to the
$boulder-soil subsystem C.M. to be used in the // axis theorem
r center = (H/Z—mass_center_y)A2+(L/2—mass_center_x)A2;%m

%apply the parallel axis theorem
I b=1IDb+ m boulder*r center; 5Skg-m"2

$time to create a time vector for ODE45
tspan = 0:t step model:t end model;

oe

initial velocity of the truck drives the simulation

% states = [xb, xbdot, thetab, thetabdot, xt, xtdot, xtddot],
% the maxwell model uses jerk, so acceleratoin is a state
x0 = [0 0 0 0 0 v_truck 0];%states

$truck-boulder model
%$run numerical integration
options = [];



end
end
end

%Send the function all of the goodies so we get the time and

%states back from ODE45

[t r,x r] = oded45(@fcn Low Order EOM, tspan,x0,options,mi, ...
ki,ci,m boulder,I b,di,c truck,k truck,m truck,d truck,...
L,H,1i,gamma,mew,d, phi, rho soil,W,g,mass_center x,...
mass_center y,v truck,Kg);

$send the fracture function its goodies so it will tell us the

$resulting factor of safety, n, and the principle stress

[n,sigmal] = fcn fracture (lengthCantilever,peakForce,W,L, ...
sigmaTensileUltimate, sigmaCompressionUltimate) ;

%Pass/Fail Criteria used with contour plots

$based on experiments and the simulation, a failure criterion
$for angle.
AngleCriteria = 20; %degrees,

%$save the distance the boulder translates
distanceMoved (i _width,j length,k height) = max(x r(:,1));

%save the angle traversed wrt the pass/fail criteria. A

$positive value indicates a failure since it would go + degrees

$past 20

angleTraversed (i width,j length,k height) = max(x r(:,3)*...
180/pi) -AngleCriteria; %degrees

%$save the principle stress
peakStress (i_width,j length,k height) = sigmal; % Units are MPa

%save the factor of safety, the factors of safety are
$represented as negative number for contour plotting, abs(n)>1
%$indicated expected pass
factorSafety (i width,j length,k height) = n;

%$save the masses of the boulders
massBoulder (i_width,j length,k height) = m boulder/1000; %Mg
max massBoulder (i_width,j length,k height) =

massBoulder (1 _width,j length,k height)-27.215; % Mg

%$save the distance the truck moved
distanceTruckMoved (i _width,j length,k height) = max(x r(:,5));
gm

%$since things are pretty well commented, lets take a peek at
show far the boulder rotated
disp(angleTraversed) ;

%$save the data as a .mat file for later usage

save ('BST-2

Results', 'Lengths', 'Widths', 'Heights', 'distanceMoved', ...

'angleTraversed', 'massBoulder', 'max massBoulder', 'distanceTruckMoved') ;

%% Plotting

time

278
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figure;

plot(t r,x r(:,3)*180/pi, 'sr")

xlabel ('Time (s)')

ylabel ('Angular displacement (degrees)')

saveas (gcf, 'fig Small Scale BAB30 Angle and Simulation.fig')

%calculate the linear displacement of the center of the boulder since the
$video tracking is done wrt the boulder C.G. and not the boulder-soil
%subsystem

%calculate radial distance form the center of mass of the boulder to the
$boulder-soil subsystem
Rbp = sqgrt((mass_center x-L/2)"2+(mass_center y-H/2)"2);%m

%calcuate the angle from center of mass of the boulder-soil subsystem to
sthe boulder C.G.
gamma_bp = atan((mass_center x-L/2)/(mass_center y-H/2));%radians

%3fix the corridinate locations such that the angle is measure from the
$positive x direction
if gamma bp<O0
gamma_bp = abs (gamma bp)+pi/2;
xb = x r(:,1)+Rbp*cos (gamma bp-x r(:,3))-Rbp*cos (gamma bp) ;
elseif gamma bp>0
gamma_bp = (gamma bp) +pi/2;
xb = x r(:,1)+Rbp*cos (gamma bp+x r(:,3))-Rbp*cos (gamma_ bp) ;
end

figure;

plot(t r,xb, "'sr'")

xlabel ('Time (s) ")

ylabel ('Linear displacement (m)"'")

saveas (gcf, 'fig Small Scale BAB30 CG Disp and Simulation.fig')

figure;

plot(t r,x r(:,5),"'sr")

xlabel ('Time (s) ')

ylabel ('Linear displacement (m) ")

saveas (gcf,'fig Small Scale BAB30 Truck and Simulation.fig')
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SCRIPT_SIMULATION_DIMENSIONLESS.M

o\

% Rotation model based on FEA of soil parameters
Mark P. Keske, mark.keske@gmail.com

Alex Brown, aab5009@psu.edu

Sean Brennan, sbrennan@psu.edu,

o oP

oo

clc
clear
close all

$Just in case there were other parameters that had been loaded, we're going
%$to run the code here at the beginning
Pi Parameters

%this code is created such that Pi Parameters Appendix is all that needs to
%be changed, it will load all of the parameters defined in the above .m

%$define the number of soil elements
nelements = nelements model;

%% Define constants

%$soil and rock density

rho _soil = rho _soil model; % kg/m"3
rho rock = rho rock model; % kg/m"3

$vehicle mass and initial velocity
m truck = m truck model; S%kg
v_truck = v_truck model; %m/s

%graviational constant
g = g model; %m/s"2

% equivalent distance for the point load above the soil surface
d truck = -d truck model; %m

%equivalent damper and spring values for the truck
c_truck = c_truck model; 3%N-s/m

k_truck = k truck model; %N/m

%angle of the soil wedge as measured from vertical down
theta = pi/4+phi/2;

$Modulus of subgrade reaction
E soil = E soil model; 3%N/m"3

$Strain rate scaling factor for laterally loaded soil
Kg = tan(theta) /cos(phi);

%$length of the assumed cantilever for fracture calcuations
lengthCantilever = 0.75;%m

$peak force from a rigid wall impact
peakForce = m truck*g*100; %N

%$Conversion from ksi to MPa
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ksi2Mpa = 6.89475728;

Smaterial properties for American Black Granite, tensile and compressive

$strengths
sigmaTensileUltimate = 4.63*ksi2Mpa; $MPa
sigmaCompressionUltimate = 26.4*ksi2Mpa; $MPa

%% Define boulder geometry

% Inputs are arranged as Height, Embedment depth, Length, all measured in
Lengths = L model;

Widths = W model;

Heights = H model;

o\

Initialize arrays for multiple Lengths, Widths and Heights for contour
plots, not demonstrated in this code

oo

tmatrix for the maximum distance traversed by the boulder
distanceMoved = zeros (length(Widths), length (Lengths),length (Heights));

tmatrix for the maximum angle traversed by the boulder
angleTraversed = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the mass of the various sized boulders
massBoulder = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the peak stress for a given boulder geometry wrt fracture
peakStress = zeros (length (Widths), length (Lengths), length (Heights)) ;

$matrix for the factor of safety wrt fracture
factorSafety = zeros(length (Widths), length (Lengths), length (Heights));

$matrix for the maximum mass for the boulders
max massBoulder = zeros(length (Widths),length(Lengths), length (Heights));

tmatrix for saving the maximum distance traversed by the vehicle
distanceTruckMoved = zeros (length (Widths), length (Lengths),length (Heights));

%% Permutate through the different rock geometries
for H=Heights
for W=Widths
for L=Lengths

%$set the indecies for the above variables which will be saved

i width = find(Widths == W); %row
j _length = find(Lengths == L);%column
k height = find(Heights == H);%depth

%boulder embedment depth,
d = d model;sm

o\

Calculate initial fixed mass of the boulder and the mass
moment of inertia about the boulder C.G., note this will
later be translated over to the boulder-soil subsystem C.G.
_boulder =rho rock*H*L*W; %kg
b = m boulder* (H"2+L"2)/12; %kg-m"2

o oo

H 3
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%check to see if the boulder is embedded, if not then skip
$straight to the function
if d>0
$total spring stiffness of the soil elemetns, as idealized
$from a long slender rod, cross section area divided by the
$intial undeformed length of the soil element
k soil total = E_soil*d*W/(d/tan(phi)*nelements); %N/m"2

$total soil damping constant, density times swept area,
$will be mulitplied by the velocity squared of each element
c_soil total = rho soil*d*W; S%N-s"2/m"2

$total mass of the soil wedge, treated as a triangle
m soil total = rho_soil*d*W*(d*tan(theta))/2;%kg

%distribute the spring and damping constants, the spring
$constant increases linearly with depth, the soil damping
$value is assumed to remain constant with depth and is even

$distributed
ki = k soil total*linspace(0,abs(d),nelements); 3N/m
ci = c_soil total/nelements; %N -s"2/m"2

%$set the height of the soil elements
delta = delta model;%m

%calculate the mass of each trapezoidal soil element
$treated as a rectangle with a triangle attached to the end

%$length of the base of the soil wedge
L wedge = d*tan(theta); =m

%$length of each soil element along the top
L delta = (l:nelements)*delta*tan(theta); %m

%$length of each soil element along the bottom, short side
L flat = L wedge-L delta;*m

$mass of the end triangle of each soil element
m tip = 1/2*delta*W*L _delta(l)*rho soil;%kg

%$cross sectional area of each soil element
Af = W*delta;%m"2

$mass vector of the soil elements from soil surface to
$bottom of boulder
mi = Af*L flat*rho soil+m tip;%kg

%calcuate the center of mass of the boulder-soil subsystem

$divide the embedment depth of the boulder into nelements
%along the boulder
spaces = d*linspace(l,0,nelements); %m

scalculate the center of mass wrt x from the impact side of

%the boulder

mass_center x = l/(sum(mi)+m_boulder)*...
(sum(mi) *L+m boulder*L/2);%m



%calcuate the center of mass wrt y from the bottom of the
%boulder
mass_center y = l/(sum(mi)+m_boulder)*...

(sum (mi.*spaces)+m boulder*H/2);%m

sdistribute the soil elements wrt the center of mass of the
$boulder-soil subsystem such that elements above the C.M.
%have negative distances and elements below are positive

%$x positive right, y positive down from the C.M.

Spretty self explanitory
cg from bottom = mass center y;%m

sdetermine where the surface of the soil is wrt the C.M.
% if this is a negative number, soil line is ABOVE CG.
soil line y = (cg_ from bottom-d);%m

$redistribute the soil elements wrt the C.M.
di = linspace(soil line y,cg from bottom,nelements);%m

else %if the boulder aint burried, then don't burry it
k soil total = 0;
c soil total = 0;

m soil total = 0;
ki = 0;
ci = 0;
mi = 0;

%$the distance to the bottome
di = H/2;
end

%$calculate the radial distance from the C.M. to the soil
%elements
1i = sgrt(di.”2+(L-mass_center x)"2); 5m

%$calcuate the angle from vertical for the soil elements
gamma = atan(di/(L-mass_center x))+pi/2; %radians

%$calcuate the distance from the boulder C.G. to the
$boulder-soil subsystem C.M. to be used in the // axis theorem
r center = (H/Z—mass_center_y)A2+(L/2—mass_center_x)A2;%m

%apply the parallel axis theorem
I b=1IDb+ m boulder*r center; 5Skg-m"2

$time to create a time vector for ODE45
tspan = 0:pi t step:pi t;

oe

initial velocity of the truck drives the simulation

states = [xb, xbdot, thetab, thetabdot, xt, xtdot, xtddot],
the maxwell model uses jerk, so acceleratoin is a state

x0 = [0 0 0001 0];%states

o\

oe

$truck-boulder model
%$run numerical integration
options = [];



end
end
end

%Send the function all of the goodies so we get the time and

%states back from ODE45

[pi t r,x r] = oded45(@fcn DEOM, tspan,x0,options, mi, ...
ki,ci,m boulder,I b,di,c truck,k truck,m truck,d truck,...
L,H,1i,gamma,mew,d, phi, rho soil,W,g,mass_center x,...
mass_center y,v truck,Kg);

$send the fracture function its goodies so it will tell us the

$resulting factor of safety, n, and the principle stress

[n,sigmal] = fcn fracture (lengthCantilever, peakForce,W,L, ...
sigmaTensileUltimate, sigmaCompressionUltimate) ;

%Pass/Fail Criteria used with contour plots

$based on experiments and the simulation, a failure criterion
$for angle.
AngleCriteria = 20; %degrees,

%$save the distance the boulder translates
distanceMoved (i _width,j length,k height) = max(x r(:,1));

%save the angle traversed wrt the pass/fail criteria. A

$positive value indicates a failure since it would go + degrees

$past 20

angleTraversed (i width,j length,k height) = max(x r(:,3)*...
180/pi) -AngleCriteria; %degrees

%$save the principle stress
peakStress (i_width,j length,k height) = sigmal; % Units are MPa

%save the factor of safety, the factors of safety are
$represented as negative number for contour plotting, abs(n)>1
%$indicated expected pass
factorSafety (i width,j length,k height) = n;

%$save the masses of the boulders
massBoulder (i_width,j length,k height) = m boulder/1000; %Mg
max massBoulder (i_width,j length,k height) =

massBoulder (1 _width,j length,k height)-27.215; % Mg

%$save the distance the truck moved
distanceTruckMoved (i _width,j length,k height) = max(x r(:,5));
gm

%$since things are pretty well commented, lets take a peek at
show far the boulder rotated
disp(angleTraversed) ;

%$save the data as a .mat file for later usage

save ('BST-2

Results', 'Lengths', 'Widths', 'Heights', 'distanceMoved', ...

'angleTraversed', 'massBoulder', 'max massBoulder', 'distanceTruckMoved') ;

%% Plotting

time or shood I say, plotting pi time
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figure;

plot(pi t r,x r(:,3)*180/pi, "+g")

xlabel ('Dimensionless time')

ylabel ('Angular displacement (degrees)')

saveas (gcf, 'fig Full Scale BAB30 Angle and Simulation.fig')

%calculate the linear displacement of the center of the boulder since the
$video tracking is done wrt the boulder C.G. and not the boulder-soil
%subsystem

$calculate radial distance form the center of mass of the boulder to the
$boulder-soil subsystem and then turn it into the dimensionless radial
%distnace, since the output of the numerical integration were the
%dimensionless states

Rbp = sqgrt ((mass_center x-L/2)"2+(mass_center y-H/2)"2)*g/v_truck"2;

%calcuate the angle from center of mass of the boulder-soil subsystem to
sthe boulder C.G.
gamma_bp = atan((mass_center x-L/2)/(mass_center y-H/2));

%3fix the corridinate locations such that the angle is measure from the
$positive x direction
if gamma bp<0
gamma_bp = abs (gamma bp)+pi/2;
xb = x r(:,1)+Rbp*cos (gamma bp-x r(:,3))-Rbp*cos (gamma bp) ;
elseif gamma bp>0
gamma_bp = (gamma bp) +pi/2;
xb = x r(:,1)+Rbp*cos (gamma bp+x r(:,3))-Rbp*cos (gamma bp) ;

end

figure;

plot(pi t r,xb,'+g")

xlabel ('Dimensionless time')

ylabel ('Dimensionless displacement')

figure;

plot(pi t r,x r(:,5),"'+g")

xlabel ('Dimensionless time')

ylabel ('Dimensionless displacement')



FCN_LOW_ORDER_EOM.M

function xprime = fcn Low Order EOM(~,x,mi,ki,ci,m boulder, ...
I b,di,ct,kt,m truck, dt,L,H,1i,gamma,mew,d,phi, ...
rho soil,W,g,mass center x,mass center y,v initial,Kg)

$Mark P. Keske, mark.keske@gmail.com, Alex Brown, aab5009@psu.edu

$this file is commented such that the comments in line with the wvariables
%describes the units

$state vector is [x boulder; v boulder; theta boulder; w boulder; x truck;
$v truck; a truck]

%calcuate the position of the restoring reaction

gamma_reac = atan(mass_center y/(L-mass_center x));%radians
lr = sqgrt((H-mass_center y) "2+ (L-mass_center x)"2);5m

%divide the embedment depth into N equally spaced elements
depth = linspace(0,d,length(mi)) ;%m

%$Passive earth pressure coefficent
Kp = tan(pi/4+phi/2)"2;

%$Preallocate vectors used within the soil force loop

Fix= zeros(length(di),1l);%total force from soil

Fki= zeros(length(di),1l);%soil spring force

Fci= zeros(length(di),1l);%soil damping force

Mi = zeros(length(di),1l);%moments of the soil forces about C.M.
xi = zeros(length(di),l);%linear position of each soil element

xi dot = zeros(length(di),1l);%linear velocity of soil elements
delta xi = zeros(length(di),1);%change in linear positio of soil elements
Pu max = zeros(length(di),1l);%maximum lateral pressure for soil
%based on depth

Area = zeros(length(di),1l);%Cross sectional area of soil elements
max_force = zeros (length(di),1l);%maximum lateral force for soil

%% Calculate the Soil Forces and Moments

$from the top of soil surface to bottom of boulder
for z = l:length(di)

%calcuate the linear position of the soil element
xi(z) = x(1l)+1li(z)*sin(gamma (z)+x(3));%m

%calcuate the change in linear position of the soil element
delta xi(z) = xi(z)-1i(z)*sin(gamma (z));%m

%calcuate the linear velocity of the soil element
xi dot(z) = x(2)+x(4)*1i(z)*cos(gamma(z)+x(3));%m/s

$check to ensure that the boulder is embedded, if not then don't try to
%calculate soil forces that aren't there
if d>0

%calculate the soil element spring force
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Fki(z) = ki(z)*(delta xi(z));5%N

%calcuate the ultimate lateral load for soil at the given depth
Pu max(z) = Kp”2*rho soil*W*depth (z)*g*Kg/depth (end);%Pa

$calcuate the height of a single soil element
delta = depth(2)-depth(l);%m

%calculate the cross sectional area of one soil element
Area(z) = W*delta;sm"2

%calculate the ultimate lateral force for the given depth
max_force(z) = Pu_max(z)*Area(z);%N

%apply limiting conditions on spring force such that the spring
$force cannot exceed the ultimate lateral load
if abs(Fki(z))>max force(z)
Fki(z)=sign (Fki(z))*max force(z);3N
end

%calculate the soil element damping force
Fci(z) = ci*(xi dot(z))"2 *sign(xi dot(z));3%N

%calculate the total force from the soil element
Fix(z) = —(Fki(z)+Fci(z)) ;3N

%calculat the resulting moment of the soil force for the element
Mi(z) = -Fix(z)*1i(z)*cos(gamma (z)+x(3)-pi);3N-m

end

%end of soil depth if statement
end
%end of for loop for soil elements

%display the states to the workspace; it's fun to watch the numbers scroll!
clc
disp (%)

%% Calculate the Truck Force and Moment

%$calcuate the radial distance of the truck wrt C.M. of boulder-soil
Fsubsystem
1t = sqgrt((di(l)+dt)"2+mass_center x"2);3%m

%calcuate the angle of the truck wrt C.M. of boulder-soil subsystem
gamma t = atan(mass_center_x/(di(1)+dt));%radians

%calculate the linear velocity of the impact point on the boulder
x_dot_ truck boulder = x(2) + x(4)*1lt*cos(gamma t+x(3));%m/s

%calcuate the foce acting on the truck
F truck = -m truck*x(7) ;%N

%$truck rebound criteria
if F _truck<0

F truck = 0;
end



%calculate the resultin moment of the truck acting on the boulder
M truck = F truck*lt*cos((gamma t+x(3)));3sN-m

%% Calculte the estimated restoring moment due to gravity

%calculate the total moment acting on the boulder without the restoring
$moment and set the restoring moment initially as the sum with opposite
%sign

if (sum(Mi) +sum (M truck))~=0
M reac = -sign(sin(gamma reac+x(3)))*...
(sum (Mi) +sum (M _truck));3N-m
else
M reac = 0;
end

%calculate the maximum restoring momement
M reac max = -sign(sin(gamma_ reac+x(3)))*...
m boulder*g*lr*cos ((gamma reac+x(3)));

%$limit the restoring moment to the maximum theoretical moment
if abs (M reac)>abs (M reac max) sN-m

M reac = M reac max;sN-m
end

%% EOMS
%Collect all of the forces and plug into the state space EOM

o\

set up boundaries so the boulder will not oscilate in the soil or
continue to rotate beyond 90 degrees as there is no truck or mother earth
to push back up on the boulder and 90 degrees is well beyond the
approximation methods used thus far

o oo

o

if x(3)<pi/2&&x(4)>-.1

xprime = [x(2);...%x dot is v
l/(m_boulder+sum(mi))*(sum(Fix)+sum(F_truck));...EOMr xb
x(4);... Stheta dot is omega
1/(I_b+sum(mi.* (di.”2+(L-mass_center x)"2)))*...

(sum (Mi) +sum (M _truck)+M reac);... EOM for theta
x(6);... %xt dot is v_truck
x(7);... Svt dot is a truck

-kt/m_truck*x (6)-kt/ct*x(7)+kt/m_truck*x dot truck boulder];
$EOM for the truck
else % if the boulder goes beyond 90 degrees or starts to rock backwards,
%kill the sum beech
xprime = [0;0;0;0;0;0;0];
end
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FCN_DEOM.M

function xprime = fcn DEOM(~,x,mi, ki, ci,m boulder, ...
I b,di,ct,kt,m truck, dt,L,H,1i,gamma,mew,d,phi, ...
rho soil,W,g,mass center x,mass center y,v initial,Kg)

$Mark P. Keske, mark.keske@gmail.com, Alex Brown, aab5009@psu.edu

$this file is commented such that the comments in line with the wvariables
%describe the units

$state vector is [pi xb; pi xb dot; theta boulder; pi omega b; pi x v;
$pi x v dot; pi x v double dot]

$Transform the dimensionless parameters into dimensioned form to calcuate
%the forces. The forces will then be transformed back into the
%dimensionless state prior to evaluating the DEOM

$Based on scaling laws, xb = pi xb*vo~2/g,
x _boulder = x(1)*v_initial”2/g;%m

x boulder dot = x(2)*v_initial;%m/s

theta = x(3);%radians

theta dot = x(4)*g/v_initial;%rad/s
x_truck = x(5)*v_initial”2/g;%m

x _truck dot = x(6)*v_initial;%m/s

x_truck double dot = x(7)*g;%m/s/s

%calcuate the position of the restoring reaction
gamma_reac = atan(mass_center y/(L-mass_center x));%radians
lr = sqgrt((H-mass_center y) "2+ (L-mass_center x)"2);5m

%divide the embedment depth into N equally spaced elements
depth = linspace(0,d,length(mi)) ;%m

%$Passive earth pressure coefficent
Kp = tan(pi/4+phi/2)"2;

%$Preallocate vectors used within the soil force loop

Fix= zeros(length(di),1l);%total force from soil

Fki= zeros(length(di),1l);%soil spring force

Fci= zeros(length(di),1l);%soil damping force

Mi = zeros(length(di),1l);%moments of the soil forces about C.M.

xi = zeros(length(di),l);%linear position of each soil element

xi dot = zeros(length(di),1);%linear velocity of soil elements

delta xi = zeros(length(di),1l);%change in linear positio of soil elements
Pu max = zeros(length(di),1l);%maximum lateral pressure for soil

%based on depth

Area = zeros(length(di),1l);%Cross sectional area of soil elements
max_force = zeros(length(di),1);%maximum lateral force for soil

%% Soil Forces and Moments

$from the top of soil surface to bottom of boulder
for z = 1l:length(di)
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%calcuate the linear position of the soil element
xi(z) = x boulder+li(z)*sin(gamma (z)+theta); Fm

%calcuate the change in linear position of the soil element
delta xi(z) = xi(z)-1i(z)*sin(gamma(z)); sm

%calcuate the linear velocity of the soil element
xi dot(z) = x boulder dot+theta dot*1li(z)*cos(gamma (z)+theta); $m

%$check to ensure that the boulder is embedded,

%calculate soil forces that aren't there
if d>0

end

%calcuate the height of a single soil element
delta = depth(2)-depth(1l); $m

%calculate the soil element spring force
Fki(z) = ki(z)*(delta xi(z)); Sm

%calcuate the ultimate lateral load for soil at the given depth
Pu max(z) = Kp”2*rho soil*W*depth (z)*g*Kg/depth (end);%Pa

%$calculate the cross sectional area of one soil element
Area(z) = W*delta; Sm” 2

$calculate the ultimate lateral force for the given depth
max_ force(z) = Pu max(z)*Area(z); SN

Sapply limiting conditions on spring force such that the spring
%$force cannot exceed the ultimate lateral load
if abs(Fki(z))>max force(z)
Fki(z)=sign(Fki(z))*max_ force(z) ;3N
end

$calculate the soil element damping force
Fci(z) = ci*(xi _dot(z))"2 *sign(xi dot(z)) ;5N

%calculate the total force from the soil element
Fix(z) = —-(Fki(z)+Fci(z)) ;%N

$calculat the resulting moment of the soil force for the element
Mi(z) = -Fix(z)*1li(z)*cos(gamma (z)+theta-pi);sN-m

%end of soil depth if statement

end
%end of

$display the states to the workspace;

clc
disp (x)

for loop for soil elements

%% Calculate the Truck Force and Moment

%calcuate the radial distance of the truck wrt C.M. of boulder-soil
%subsystem

if not then don't try to

it's fun to watch the numbers scroll!
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1t = sqrt((di(l)+dt)*2+mass_center x"2);%m

$calcuate the angle of the truck wrt C.M. of boulder-soil subsystem

o)

gamma_t = atan(mass_center_x/(di(1)+dt)); % in thesis

%calcuate the foce acting on the truck
F truck = -m truck*x truck double dot;3%N

$truck rebound criteria

if F truck<0
F truck = 0;%we don't want the truck to influence the boulder if it
%'rebounds'.

end

$truck rebound criteria
if x truck<0

F truck = 0;
end

$calculate the resultin moment of the truck acting on the boulder
M truck = F_truck*lt*cos((gamma_t+theta));%N—m
%% Calculte the estimated restoring moment due to gravity

$calculate the total moment acting on the boulder without the restoring
$moment and set the restoring moment initially as the sum with opposite
$sign

if (sum(Mi) +sum(M_truck))~=0

M reac = -sign(sin(gamma reac+x(3)))*...
(sum(Mi) +sum (M truck));sN-m
else
M reac = 0;

end

$calculate the maximum restoring momement
M reac max = m _boulder*g*lr*cos ((gamma reac+x(3)));

$limit the restoring moment to the maximum theoretical moment
if abs (M reac)>abs (M reac max) sN-m

M reac = sign(M reac)*M reac max; 3N-m
end

%% DEOM
%Collect all of the forces and plug into the state space EOM

o\

set up boundaries so the boulder will not oscilate in the soil or
continue to rotate beyond 90 degrees as there is no truck or mother earth
to push back up on the boulder and 90 degrees is well beyond the
approximation methods used thus far

if theta<pi/2&&theta dot>-.1

o oo

oe

sconvert the dimensioned form of all the forces into the equivalent pi
$parameters as seen in CH.5



%$it should be noted that the states x[] are used within the DEOM and
$not xb, xt, etc.

$This is done quite simpley by multiplying the entire right hand side
%$of the equations by the scaling factor for force or moment

$the force scaling factor is which is 1/ (mg) and moment is 1/ (mv"2)

%the states are driven by the dimensionless initial velocity of the truck
$which is 1. v o truck/v o truck = 1; It can also be conceptualized using
%the velocity vector of the truck after a simulation. The dimensioned form
$will start at 13.4 m/s say, and the it is transformed into the
%dimesnionless zone by dividing the entire vector by the repeating
$parameter v_o truck, which low and behold gives you 1 at the time of
$impact.

xprime = [x(2);...%pi dot xb is pi xbdot, the dimensionless rate

$0f change of the parameter is the next parameter

%the left hand side of the xb dotdot code is the dimensionless form of
sthe effective mass of the system. meff is turned into pi meff simply
%by dividing by the repeating parameter m truck. the ratio is inverted
%$in the xdd line because of state space form, governing DEOM for the

%boulder in the X direciton is mxdd = ... so xdd = 1/m*forces.
m_truck/ (m boulder+sum(mi))*...
((sum(Fix)+sum(F truck))/(m_truck*g));... EOM for xb
x(4);... %pi_dot theta (if you will), is pi thetadot

$similar to the boulder translation, the boulder rotation is made
$dimensionless by multiplying both sides by the representative
$repeating parameter grouping. pi J = g"2*J/(mv"4) therefore, it
%$is inverted and multiplied with the dimesnionless moments as
$created using pi Mommy = M/ (mv"2) , Nm / (kgm"2/s”2) is indeed
%$dimensionless

m_truck*v_initial”4/(g”2*(I_b+sum(mi.*...
(di.”2+(L-mass_center x)"2))))* ((sum(Mi)+sum(M_truck)+M reac)...
/(m_truck*v_initial”2));... EOM for pi dot thetadot

%or pi thetadotdot

x(6);... spi_dot xt is pi_ xtdot
x(7);... %pi dot vt is pi xtdotdot

$samesies as the boulder x dirction

$this one is a bit more intricate since the equation was not

Swritten explicitly in terms of forces, but rather it had k truck,

%c_truck, etc. etc. Therefore each parameter was turned into the

%$dimensionless form.

~kt*(v_initial”2/(m_truck*g”2))*x(6)-kt*(v_initial”2/...

(m_truck*g”2))/ (ct*(v_initial/ (m_truck*g)))*x(7)+...

kt* (v_initial”2/(m_truck*g”"2))*(x(2)+...

x(4)*1t*g/v_initial”2*cos(gamma_t+x(3)))]; %DEOM for a
%$dimensionless truck, ba ba baaaaa ghost truck.

else% 1f the boulder goes beyond 90 degrees or starts to rock backwards,
$kill the sum beech
xprime = [0;0;0;0;0;0;0];

end
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FCN_FRACTURE.M
function [n,sigmal] = fcn fracture(lengthCantilever, peakForce,W,L, ...
sigmaTensileUltimate, sigmaCompressionUltimate)
$Mark P. Keske, mark.keske@gmail.com
%% Calculate the factor of safety for the given boulder geometries

%Calculate the maximum bending moment from the impact
peakMoment = peakForce*lengthCantilever; 3%N-m

%Calculate area moment of inertia, assuming impact is along the length axis
I area = 1/12*W*L"3; m"4

A area = L*W;%m"2

%Normal stress as a result of bending
sigmaX = peakMoment*L/2 / I area; %N/m"2;

%$Shear force from impact
tauXY = peakForce/A area; SN/m"2;

%Calculate the principle stresses
sigmal = (sigmaX/2 + sqgrt((sigmaX/2)"2+tauXyY))/le6; SMN/m"2
sigma2 = (sigmaX/2 - sqrt((sigmaX/2)"~2+tauXyY))/le6; MN/m"2

$Apply Brittle Coulomb Mohr failure criteria since it is more
%conservative than Modified Mohr

%negative value used for contour plotting

if (sigmal>=sigma2 && sigma2>=0) SFirst Quadrant of 02 vs. ol

n = -(sigmaTensileUltimate/sigmal-1);
elseif (sigmal>=0 && 0>=sigmaZz) $4th Quadrant of 02 vs. ol

n = -((sigmal/sigmaTensileUltimate-sigma2/sigmaCompressionUltimate)~-1-1);
else

n = -(-sigmaCompressionUltimate/sigma2-1);

end



