

THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

PREPARATION OF LIDAR POINT CLOUD DATA FOR USE
IN A ROS/GAZEBO SIMULATION ENVIRONMENT

NICHOLAS R. SIRERA

Summer 2012

A thesis
submitted in partial fulfillment

of the requirements
for baccalaureate degrees

in Mechanical Engineering and Nuclear Engineering
with honors in Mechanical Engineering

Reviewed and approved* by the following:

Dr. Sean Brennan
Professor of Mechanical Engineering

Thesis Supervisor/Honors Adviser

Dr. Eric Marsh
Professor of Mechanical Engineering

Faculty Reader

* Signatures are on file in the Schreyer Honors College.

i

 ABSTRACT

The driving simulator at Penn State University is currently in a state of disarray.

Several attempts have been made in the past year to make bandage style fixes, each time

raising more questions than they have answered. This thesis examines the prospects of

designing an entirely new software architecture from scratch based on open-source freely

available software. This decision was made not only to keep costs down, but to also take

advantage of the large user bases and potential help available in the open-source

community. The previous architecture, based on CarSim, was deemed too expensive and

too prone to failure to pursue again. This research will examine an environment based on

the Robotic Operating System (ROS) and the Gazebo Simulator. In addition to

determining if this type of architecture is possible, this research will also investigate

methods for converting LIDAR roadway scans into simulation models, and will attempt

to make these models lifelike by applying physical characteristics. In addition, general

conclusions as to the potential success of this new driving simulator architecture will be

explored. Specifically, it was concluded that the method used in this paper to convert

LIDAR point cloud data into a Gazebo simulation should not be recommended for further

study. However, the underlying architecture of ROS and Gazebo simulator is strongly

recommended for continued application in Penn State’s driving simulator.

ii

TABLE OF CONTENTS

LIST OF FIGURES .. iii	

LIST OF TABLES ... v	

ACKNOWLEDGEMENTS ... vi	

Chapter 1 Introduction .. 1	

1.1 Background Information .. 1	

1.2 Organization of this Research .. 2	

Chapter 2 Literature Review ... 4	

2.1 Overview .. 4	

2.2 Driving Simulation ... 5	

2.3 Robotic Operating System (ROS) .. 10	

2.4 Gazebo Simulator ... 12	

2.5 ROS/Gazebo Practical Application .. 16	

2.6 Summary and Research Goals .. 21	

Chapter 3 Conversion of Point Cloud Scan to Collada Mesh ... 23	

3.1 Obtaining Point Cloud via LIDAR Scan .. 23	

3.2 File Processing in Blender .. 25	

3.3 Preparing the Collada Mesh ... 30	

Chapter 4 Importing Collada Mesh into ROS/Gazebo Environment 32	

4.1 Opening an Empty Gazebo World ... 32	

4.2 Importing Road Scan from Collada Mesh .. 35	

Chapter 5 Discussion of Results ... 39	

5.1 Summary and Conclusions ... 39	

5.2 Suggestions for Future Research .. 41	

Appendix A Results of Institute for Psychosocial Medicine Study on Sleepless Driving 43	

Appendix B Results of Penn State Study on 3D Terrain Modeling .. 44	

References .. 45	

iii

LIST OF FIGURES

Figure 2-1: Driver behavior framework (adopted from Al-Shihabi and Mourant, 2001) 8	

Figure 2-2: The Decision-implementation Unit within the total simulation model (adopted
from Al-Shihabi and Mourant, 2001) ... 9	

Figure 2-3: General Structure of Gazebo components (adopted from Koenig and
Howard, 2004) .. 14	

Figure 2-4: University of Freiburg’s detection algorithm in action (adopted from
Plagemann, 2006) ... 17	

Figure 2-5: A possible design for the AwareKitchen (adopted from Rusu et al., 2007) 19	

Figure 2-6: The 2011 (left) and 2012 (right) electronics box for Georgia Tech’s ASV
(adopted from Pickem et al., 2011) .. 21	

Figure 3-1: Importing a point cloud into Blender .. 26	

Figure 3-2: Cheat Lake point cloud map .. 27	

Figure 3-3: Point Cloud Skinner script settings ... 28	

Figure 3-4: The Cheat Lake road point cloud after skinning ... 29	

Figure 3-5: Exporting road to Collada Mesh .. 31	

Figure 4-1: Running the roscore ... 33	

Figure 4-2: Loading the empty world in Gazebo ... 34	

Figure 4-3: The default empty world in Gazebo .. 34	

Figure 4-4: More lifelike empty world in Gazebo ... 35	

Figure 4-5: Importing the Collada Mesh into Gazebo ... 36	

Figure 4-6: Simulated Cheat Lake road in Gazebo .. 37	

Figure 4-7: Full screen simulation of the Cheat Lake LIDAR scan using Gazebo
Simulator .. 38	

Figure A-1: Results of four different measures of driving performance. N = no
sleep/night work condition. B = baseline condition (adopted from Åkerstedt et al.,
2004) ... 43	

iv

Figure B-1: Emergency maneuver detection based on pitch data (adopted from

Varunjikar et al., 2011) .. 44	

Figure B-2: Emergency maneuver detection based on roll data (adopted from Varunjikar
et al., 2011) ... 44	

v

LIST OF TABLES

Table 3-1: Abbreviated Cheat Lake 3D Point Cloud Data ... 24	

vi

ACKNOWLEDGEMENTS

I would like to thank Dr. Sean Brennan for his help as both my thesis advisor and

my honors advisor for the past three years. In addition to providing a topic for my thesis,

he insisted on finding one that I was both capable of tackling as well as interested in

pursuing. I am very grateful for his insistence on pursuing a topic that stimulated my

interest on a personal level, as it made the work significantly more enjoyable. In

addition, he has always been willing to meet and discuss my project regardless of his

incredibly busy schedule.

I would also like to thank Alex Brown and Jesse Pentzer for their help along the

way. This thesis would have absolutely not been possible without Jesse’s expertise in

Ubuntu and Alex’s expertise with all things related to vehicle simulations. They were

always willing to step away from their own projects to help with mine and are the reason

this paper was completed in time.

1

Chapter 1

Introduction

1.1 Background Information

Driving simulators have been present in mainstream society for several years and

across several industries. The most prevalent use of these simulations can be seen in the

enormous consumer market for video games, which can model anything from navigating

a spaceship through an enemy attack, to skiing down the slopes of Aspen, to racing the

streets of Los Angeles. As technology has progressed, the makers of these games have

focused on creating more realistic and lifelike experiences. For example, the

development of advanced physics engines like those encountered in the Unreal series

created by Epic Games have revolutionized the approach taken by game designers.

These gaming engines stressed the importance of lifelike simulation, from the lighting

effects of cloudy skies to the bone-crunching whiplash of a quarterback being slammed

into the turf. As is the case with most technologies, there was also a more practical and

scientific benefit than simply the creation of a gaming universe. Researchers across

several industries including automotive, aviation, and military/government have been

studying and implementing various uses of driving simulation to enhance their

understanding of real world situations without the associated cost and safety risks.

Engineers at Volvo use the most advanced simulator in Sweden to study how drivers

interact with their vehicles in order to design safety systems inspired by driver behavior

2

(Volvo, 2011). Student pilots practice risky maneuvers while veteran pilots practice

approaches at unfamiliar airports using Microsoft’s Flight Simulator (Beckman 2009).

Even the FBI has licensed a version of the aforementioned Unreal Engine to develop a

“multiplayer crime scene training simulation” to be used for training at the FBI Academy

(Robertson 2012).

While simulation technology has progressed leaps and bounds from its inception,

the field of combining remote robotic interaction with an offsite simulation environment

is still in its relative infancy, dominated most prominently by the military’s Unmanned

Aerial Vehicle (UAV) effort. Attempts have been made in the open source community to

develop standards for furthering research in these areas. Two such byproducts of these

efforts are the Robotic Operating System (ROS) and Gazebo Simulator. This thesis will

outline the first series of steps in using a ROS/Gazebo environment to develop a driving

simulator that is capable of remotely operating a vehicle while simultaneously updating

the simulation environment using information provided by sensors on the vehicle. This

system could ultimately replace Penn State University’s existing simulation package by

providing an open sourced free solution that offers a higher level of performance.

1.2 Organization of this Research

Chapter 2 will contain a literature review of driving simulation and some

examples of its history and usage in both regular society and in research. It will then

explore the software applications used for this particular approach to robotics controlled

driving simulations. Specifically, a background and introduction to the Robotic

3

Operating System (ROS) and its contributions to remote simulation control will be

discussed. In addition, the Gazebo Simulator package and its compatibility with ROS

will be explored. Finally, a summary of the current understanding of ROS/Gazebo

systems will be presented along with specific goals for this particular application.

Chapter 3 will focus on the process involved with scanning a desired area or

environment to be used as a simulation map and running the proper conversations to

make it functional in a ROS/Gazebo framework. It will also provide specific details on

which software packages were utilized to fulfill these requirements. Chapter 4 will

discuss the process of taking the results from Chapter 3 and implementing them into a

ROS/Gazebo world.

Finally, Chapter 5 will present a summary of this particular approach to using

ROS/Gazebo in creating a simulation world and will discuss any setbacks, limitations, or

conclusions drawn from the research. It will also include some topics for further study

that were spawned during the course of this research.

4

Chapter 2

Literature Review

2.1 Overview

This literature review will begin by examining driving simulations and their

prevalence in society. It will discuss a history of the simulation experience, dating back

to early video games and tools that were only suitable for recreational experiences. It

will then transition into the use of driving simulations as a research and educational tool,

specifically how evolving technology allows for more realistic simulation experiences.

The first section will conclude by examining the current research applications for driving

simulators.

The next two sections of the literature review will focus on the software packages

used in this research: Robotic Operating System (ROS) and Gazebo Simulator. A history

of each software package along with a basic explanation of the operating principles

behind each package will be discussed.

The next section will discuss the combination of these two packages into what is

known as a ROS/Gazebo environment and give a few examples of current projects using

this architecture.

The final section of this literature review will include a brief summary of the key

points that pertain to this research project, and a list of goals based upon the furthering of

the field’s current work with ROS and Gazebo will be presented.

5

2.2 Driving Simulation

To examine the history of visually based simulation, it is not necessary to focus

exclusively on the high-level engineering and research markets. In fact, the majority of

people have experienced this field of technology from the comfort of their own homes,

not in an expensive laboratory underground. Almost as quickly as graphical user

interface (GUI) based computers were hitting the market, companies like Atari were

producing the world’s first video game systems. As technology progressed over the next

few decades, a radical shift in the science behind these games can be clearly documented.

While some games, like Nintendo’s Mario Kart, focused very lightly on reality at the

expense of a more fun user experience, some more recent games like Microsoft Xbox’s

Forza Motorsport have taken a sophisticated approach to modeling real life vehicle

dynamics in their games (Togelius et al., 2007). EA Sports successful NHL franchise has

made stunning simulation improvements over the last few releases, including a revamped

physics collision engine in 2012 which promised that every single body check would

evoke a different and realistic reaction from the players involved. In the 2013 edition, the

game tackles another area of simulation physics with a new momentum based skating

engine that flawlessly mimics the way a player interacts with the ice using steel blades

just a few millimeters wide (Sarkar 2012). While these games are mainly for sport, the

first realistic simulation game designed for educational as well as recreational use was

actually developed 35 years ago in 1977 and holds the title as the world’s longest-running

PC game series of all time (Remo, 2009). Microsoft’s popular Flight Simulator,

officially released in 1980, invented a whole new industry of training for both military

6

and civilian alike using a simulated lifelike experience, while subjecting the user to none

of the risks associated with on-the-job training. As Beckman (2009) states, the original

version of the game was run on computers lacking the processing capabilities required to

portray a very lifelike scenario and was therefore viewed by pilots as nothing more than a

game. However, since the turn of the century, both the computer hardware and gaming

software have advanced enough to simulate a fairly realistic flight experience. She goes

on to claim that over 85% of pilots have indicated that they use Flight Simulator to

practice approaches for new airports, and 88% of those pilots have found the software

effective in this effort. It is clear that these simulations are useful in predicting real life

behavior and should continue to be studied in depth.

Several hundred studies have been performed using driving simulators to examine

various areas of automotive behavior. Many of these focus on assessing human behavior,

using the simulator as a tool to allow for safer and easier data acquisition. For example,

researchers at the Institute for Psychosocial Medicine in Sweden published a study in

2004 examining the effects on performance and alertness suffered by drivers commuting

home after a night shift. They used a driving simulator modeled after the Volvo 850 that

was capable of simulating acceleration in three dimensions using roll, pitch and liner

lateral motion. The study was conducted using participants who regularly worked a night

shift and who would report to the simulator immediately after the completion of a shift.

The participants in their study were involved in 18 simulated accidents when driving after

a night shift versus just two when driving after a full night’s sleep. In a study such as

this, the benefits of using a simulator versus a real car are obvious, as it would be

7

incredibly careless and dangerous to test sleepless individuals in a real life vehicle. A

graph of the results of this study can be found in Appendix A (Åkerstedt et al., 2004).

In addition to studies focusing on human behavior, there have been many others

that focus on the data collection and terrain modeling of simulated roadways.

Researchers at Penn State’s Intelligent Vehicles and Systems Group published a study in

2011 that examined this process of transforming raw collection data into a suitable

simulation model (Varunjikar et al., 2011). As the study points out, most research in the

field focuses on idealized roads, where as this particular study focused on optimizing the

comparison of simulation-predicted results to actual measurements from the road. Using

data collected from LIDAR scans of roadways, Varunjikar attempted to find the best way

to filter the raw point cloud data into a suitable 3D road representation. The study

compared pitch and roll data taken from IMU measurements to those produced by a

simulation to determine the accuracy of its filtering process. Varunjikar’s terrain

modeling approach was so accurate that simulated emergency maneuvers like lane

changes and sudden breaking events could actually be distinguished from normal driving

behavior. This type of terrain modeling represents a significant improvement to driving

simulators based upon idealized roadways. A graphical depiction of this emergency

maneuver detection can be seen in Appendix B.

Another field of interest involves utilizing driving simulators to help model

human behavior for the programming of autonomous vehicles. In 2001, researchers from

Northeastern University published a study in which the goal was to mimic human

behavior in a two-lane rural environment (Al-Shihabi and Mourant, 2001). On a

fundamental level, the group divided human driving into four units of focus. The

8

Perception Unit served to define how the vehicle would perceive its environment in both

global and local terms. The Emotions Unit defined how the model would respond

emotionally to its changing environment. The Decision-making Unit (DMU) would take

input from the Emotions Unit and attempt to find suitable courses of action based upon

the environment. Finally, the Decision-implementation Unit (DIU) attempted to

implement decisions when a traffic condition arose. This framework can be interpreted

pictorially in Figure 2-1.

Figure 2-1: Driver behavior framework (adopted from Al-Shihabi and Mourant, 2001)

9

When applied to an autonomous vehicle in a simulation environment, the relationship

between the driver behavior model and the rest of the environment can be shown in Figure

2-2.

Figure 2-2: The Decision-implementation Unit within the total simulation model (adopted from Al-
Shihabi and Mourant, 2001)

This research resulted in more human-like autonomous vehicles and a virtual simulation

environment that was more realistic and less predictable. In turn, it helped to lay a

foundation for future work modeling human driving behavior for replication in

autonomous vehicles.

10

2.3 Robotic Operating System (ROS)

As the field of robotics has evolved over the last few decades, one of the most

fundamental concerns has been establishing a set of standards for writing robotics

software. As the scale and scope of robotics continues to grow, the ever varying

hardware platforms make it difficult to reuse code from one project to another. Also, the

sheer size of the code alone can be intimidating, as each particular robot requires

programming from driver level software on through perception, abstract reasoning and

beyond (Quigley et al. 2009). A wide variety of software frameworks have been created

to meet these needs, however no one package has successfully accomplished the goal of

becoming an all encompassing solution. A few of these solutions include Microsoft’s

Robotic Developer Studio (RDS), Gostai’s Urbi, Evolution Robotics’ ERSP, National

Instruments’ LabVIEW, and Willow Garage’s Robotic Operating System (ROS) (Guizzo

2010).

The Robotic Operating System (ROS) was originally written under the code name

“switchyard” by Morgan Quigley as part of the Stanford AI Robot (STAIR) project in

2007. In 2008, development shifted primarily to the Personal Robots Program at Willow

Garage, where it is still worked on and distributed today (Willow Garage, 2012). While

it was not intended to be the best framework for all possible robotic applications, it was

designed to meet the following philosophical goals (Quigley et al. 2009):

1. Peer-to-Peer

2. Tools-based

3. Multi-lingual

11

4. Thin

5. Free and Open-Source

In brief summary, ROS was chosen to utilize peer-to-peer connections instead of a central

server design to limit unnecessary traffic flow across slower wireless links, which are

eliminated with its service/master architecture. The developers chose a tools-based

microkernel design as opposed to a monolithic development and runtime environment

with the purpose of improving stability and complexity management. Multi-lingual

support was included to provide flexibility and freedom of choice to robot designers who

use a variety of programming languages. ROS is intended to be language neutral,

supporting C++, Python, Octave, LISP, and many others. The developers of ROS also

designed it to be “thin,” which means that virtually all complexity is located in

standalone libraries and not in the ROS code itself. By separating the dependencies of

codes such as driver and algorithm development from that of the ROS code, ROS allows

for easier code extraction and reuse beyond the original intent of the programming.

Finally, the creators of ROS believed that the best way to facilitate debugging at all levels

of the software stack was to create and distribute ROS as a free and open-sourced

operating system. In addition to better debugging, open-source software promotes quick

adoption by a much broader usage base, which in turn helps it achieve an industry

standard status.

 On a functional level, the ROS operating system can be broken down into four

fundamental concepts (Quigley et al. 2009):

1. Nodes

2. Messages

12

3. Topics

4. Services

In agreement with its modular based design, the fundamental processes that perform

computations in a ROS system are called “nodes.” A system typically consists of several

nodes that communicate with each other in accordance with the peer-to-peer design

philosophy. Specifically, nodes communicate with each other by sending “messages.”

The message itself is a data structure that has a very strict format and can include

integers, floating points, Booleans and constants among others. The way a node actually

sends a message is by publishing it to a pre-established “topic.” Nodes can publish and

subscribe to multiple topics, which are just strings. In addition, topics can have multiple

different nodes publishing and subscribing to them. This creates a system in which the

publishers and subscribers are generally not aware that each other exist, but rather are

linked together by these shared topics. Because topics are not useful for synchronous

transactions, “services” are used instead. A service is a string name along with two

rigorously defined messages (one for request and one for response). Unlike topics, any

particular service can only be advertised by one specific node. These four concepts make

up the essence of communication using ROS, and allow for it to satisfy several of the five

design philosophies.

2.4 Gazebo Simulator

As robotic applications have increased in both number and complexity, it has

become obvious that not every change, feature, or strategy can be field tested in a

13

reasonable amount of time. Simulators have solved that problem by developing virtual

worlds that closely model the physics of real life, while simultaneously allowing for

testing and data collection in a reliable way. A few of the more useful 3D simulation

software packages include Festo’s COSIMIR, Cyberbotics’ Webots, Mechanical

Simulation Corporation’s CarSim, and Willow Garage’s Gazebo.

The Gazebo Simulator project started in the fall of 2002 at the University of

Southern California. It was written during the time of the Player/Stage project by Dr.

Andrew Howard and his student Nate Koenig, and was designed to fulfill the need for a

3D simulator capable of simulating a population of robots, sensors, and objects, while

also generating realistic sensor feedback and physically lifelike interactions between

objects (Gazebo, 2012). According to its co-founder Nate Koenig, what separated

Gazebo from its predecessor, the Stage project, was the need for a simulator capable of

handling robotic vehicles in outdoor applications. It is able to reproduce the mass,

velocity, friction, and other object attributes in order to realistically simulate those objects

being pushed, pulled, or knocked over. In addition, the robots used in the simulator are

dynamic structures utilizing rigid bodies connected by joints. They can accurately

interact with the landscape in which they are placed, including interaction with any and

all user defined objects. Finally, all aspects of the landscape environment can be

controlled as well, including lighting conditions as well as friction coefficients (Koenig

and Howard, 2004). Although the Gazebo simulator offers these sophisticated features, it

is still limited in various areas, including the physics modeling of soil, sand, and grass,

and in its ability to incorporate fluid dynamics and thermodynamics into its models.

14

Despite these limitations, Gazebo is still an excellent choice for outdoor robotic

simulation.

On an operational level, the Gazebo simulator was designed around the

philosophy that new robots, actuators, sensors, and arbitrary objects should be easy to

create and integrate with the software. To achieve this, a very simple Application

Programming Interface (API) is maintained along with open source libraries which

handle the visualization and physics simulation. A graphical interpretation of this

architecture can be seen in Figure 2-3.

Figure 2-3: General Structure of Gazebo components (adopted from Koenig and Howard, 2004)

 As with many popular simulation packages, Gazebo utilizes the Open Dynamics

Engine physics engine created by Russell Smith. The ODE is a free library for

15

simulating articulated rigid body dynamics on a level of industrial quality. According to

its creator, the ODE is good for simulating articulated rigid body structures, was designed

to be used in interactive or real-time simulation, uses a highly stable integrator (to avoid

exponential growth of simulation errors), has hard contacts (colliding bodies do not

penetrate one another), and has a built-in collision system (Smith, 2006). Gazebo

expands upon ODE by allowing for the creation of both normal (using ODE) and abstract

(using Gazebo) objects. By separating the abstraction, it is possible to interchange the

physics engine should another be more suitable (Koenig and Howard, 2004).

 While the primary function of Gazebo is to simulate dynamics, which can occur

with or without a graphical user interface (GUI), its success has been largely attributed to

its elegant interface. The visualization in Gazebo is controlled by OpenGL and OpenGL

Utility Toolkit (GLUT). OpenGL is a platform independent standard library for creating

2D and 3D interactive applications, while GLUT is an independent toolkit for OpenGL

applications that utilizes a window system. In essence, OpenGL renders the

visualizations, which are displayed to the user via GLUT. GLUT is also platform

independent, and can interact with the most common input methods such as keyboards

and mice. This visualization system is especially useful because many of its key features

are already implemented in graphics hardware, allowing the CPU to spend more of its

resources on the computationally demanding dynamics engine (Koenig and Howard,

2004).

 The collection of models and sensors make up “The World” in a Gazebo

environment. The models are directly connected to the dynamics engine, and are divided

into stationary (buildings, roads, etc.) and dynamic (robots, cars, etc.). A model can be

16

defined as any object that has a physical representation, and can be as simple as one rigid

body. The models are made up of bodies, joints, and interfaces. Bodies are the

fundamental building blocks of models and assume all the physical properties of an

object such as mass, friction, and color. They take the form of lines, planes, spheres,

boxes, and cylinders. Joints are the instruments by which bodies are connected together.

As in real life, many different joints exist to form the kinematic and dynamic

relationships between bodies, such as hinge joints, slider joints, and universal joints.

Finally, interfaces allow for the client programs to access and control models. They can

instruct a joint to move via the application of a force, or they can instruct a sensor to

collect and report back data. Sensors are kept separate from the dynamics engine, as they

only collect and emit data. In Gazebo, they are abstract components until applied to a

physical model. Sensors can be used for a number of useful purposes, such as measuring

distance traveled, measuring distance between the sensor and other objects, and viewing

the world through the eyes of the model, all of which would be very useful in a remote

control simulation environment.

2.5 ROS/Gazebo Practical Application

Both ROS and Gazebo have been implemented in a number of successful research

and industry projects, including several in which they are combined to form a

ROS/Gazebo environment. In the case of industry, ROS has been making headway

having been utilized as the middleware in a number of commercial products including

Aldebaran’s NAO humanoid and Meka Robotics’ systems. Most surprisingly, however,

17

was the Southwest Research Institute’s (a privately owned R&D organization located in

San Antonia, Texas) agreement with Motoman (one of the biggest industrial robot

makers in the world) to develop a ROS interface for Motoman’s SIA20 7-axis robot

(Bouchard, 2011). Prior to this announcement, private robotics companies would create

their own proprietary OS and controller. Motoman is betting that the open-source nature

of the ROS community could prove to be a valuable asset to its customers. In the

research field, Gazebo has also witnessed a flurry of activity. In the traditional robotic

navigation sense, several groups have undertaken projects utilizing Gazebo as their

primary simulation and dynamics engine. For example, a team at the University of

Freiburg has been studying ways to make mobile robots self aware of system faults and

to identify where these faults occur (Plagemann, 2006). They rely heavily on Gazebo to

test their detection algorithm. As shown in Figure 2-4, the image on the left simulates a

robot that has collided with an undetected object, while the image on the right shows a

robot that has collided with a glass door undetected by its sensors.

Figure 2-4: University of Freiburg’s detection algorithm in action (adopted from Plagemann, 2006)

18

In addition to this traditional research, some project teams have taken a more

creative approach to utilizing Gazebo. The Intelligent Autonomous Systems group at the

Technische Universität Műnchen has been working on a project that is testing the limits

of what is possible in Gazebo. Their goal is to extend Gazebo’s capabilities beyond those

of simple navigation and into such realms as RFID scanning, enhanced robotic

manipulation (recognizing, measuring, and determining the best grip position to grasp

objects), and enabling cognitive processing directly in the Gazebo simulation middleware

(Rusu et al., 2007). Figure 2-5 gives a hypothetical depiction of what one of these

futuristic robots could look like, using new sensors to detect a range of items such as the

RFID compatible cupboard and the half full glasses on the kitchen top.

19

Figure 2-5: A possible design for the AwareKitchen (adopted from Rusu et al., 2007)

While these projects represent great strides forward for both ROS and Gazebo, the

projects of most interest to this thesis are those that combine the two software packages

into what is known as a ROS/Gazebo environment. These environments utilize a

specially designed version of Gazebo that is intended to work seamlessly with ROS. This

environment has been the platform of choice for many recent projects, including the

research performed in this thesis. At Georgia Tech, robotics students have been working

on Autonomous Surface Vessels (ASVs) to submit in the AUVSI RoboBoat Competition

for each of the past three years (Pickem et al., 2011). As the name implies, the AUVSI

RoboBoat Competition is an annual robotics competition held each July by the

20

Association for Unmanned Vehicle Systems International. In July of 2012, they held

their 5th annual event, which presents students with an aquatic obstacle course through

which the students are to race their self-designed ASVs (AUVSI, 2012). For the 2012

competition, the team from Georgia Tech switched the entire software architecture of

their ASV to a ROS/Gazebo environment. Making such a switch achieved quite a few

benefits; in the words of the Georgia Tech team:

The biggest advantage of ROS though is the straightforward switch between simulation

and real hardware. All that has to be changed are the drivers supplying the sensory inputs,

i.e. whether the sensor data is published by Gazebo or by real hardware sensors. ROS

itself and all modules that process sensor data are agnostic to the underlying low-level

driver architecture meaning that once sensor data is published in the form of ROS

messages, all higher software layers can use said data and are not concerned with whether

the data was created by a simulation or by physical sensors. The hardware abstraction

layers in the form of drivers is therefore completely transparent to all higher level layers.

The only purpose of hardware drivers is to read data from sensors and publish that data as

ROS message (Pickem et al., 2011).

As they pointed out, the switch was made primarily for the benefits of switching between

real world and simulation seamlessly, which is an essential part of this thesis project. To

demonstrate just how radically the ROS/Gazebo environment changed their robot,

consider the comparison between the electronics box from the 2011 robot (shown left) to

the 2012 robot (shown right) depicted in Figure 2-6.

21

Figure 2-6: The 2011 (left) and 2012 (right) electronics box for Georgia Tech’s ASV (adopted from
Pickem et al., 2011)

The ROS/Gazebo software architecture significantly simplifies the hardware

required to perform the same functions of processing simulation and real world sensor

data. In addition to improvements in hardware, the team noticed strong improvements in

their simulation environment. Because ROS acts as an interface to route data and Gazebo

is capable of simulating sensor data like GPS, IMU, and camera images in addition to

physical properties like friction and mass, the Georgia Tech group was able to test their

code for position and velocity estimation and control, obstacle avoidance, global

waypoints, blob tracking, template matching and point cloud generation. They were able

to achieve all of this before deploying any of these systems on the actual boat, due in

great part to the ROS/Gazebo setup.

2.6 Summary and Research Goals

This literature review has provided an introduction to several aspects of

importance to the rest of this paper. First, an introduction into simulation, both generic

22

and with respect to automotive vehicles has been provided along with current areas of

research and a general reasoning of why this field is an important one to investigate

further. Second, an introduction into the two software packages ROS (Robotic Operating

System) and Gazebo Simulator was given which included a history of their development

and an overview of their general methodology. In addition, several projects utilizing both

of these software packages were examined, culminating in an in-depth look at the

research potential of combining the two into a ROS/Gazebo environment.

This research aims to solve the first series of obstacles in constructing a

ROS/Gazebo environment to be used as part of a solution to fix Penn State University’s

ailing driving simulator. Specifically, this paper will focus on the preliminary steps of

converting point cloud data obtained from a LIDAR scan into a simulation map to be

used in Gazebo. This research focuses on processing data that was previously collected

(not processing live data), but the insight gathered from this research should provide a

solid foundation for further work on this driving simulator project.

23

Chapter 3

Conversion of Point Cloud Scan to Collada Mesh

3.1 Obtaining Point Cloud via LIDAR Scan

While the physical act of obtaining a Light Detection and Ranging (LIDAR) scan

is not covered within the scope of this paper, it is important to briefly discuss the purpose

of such a step. Considering once again the long-term goal of this research, which is to

construct a real-time simulation and remote control system, it is important to use sensors

that can produce accurate data in a variety of environments. It is also important to use

sensors which produce real-time data that requires as little preprocessing as possible.

LIDAR accomplishes all three of these goals. First, LIDAR scanning produces range

data that can be used to construct terrain models within 1-2 cm of accuracy. Second,

LIDAR scanning does not depend on ambient lighting and therefore produces this

accurate data regardless of lighting conditions. Third, the LIDAR sensor produces

geometric data in the form of a 3D point cloud, which is essential for real-time processing

of the scan (Rekleitis et al., 2009).

The data used in this thesis was produced from a LIDAR scan of Cheat Lake,

West Virginia and covers a stretch of road a few hundred meters long. It was given in

Stanford (*.ply) format, and is essentially a three columned list of geometric points

24

formatted in ASCII. While the actual file contains 2,031 elements, an abbreviated list of

the first 20 elements can be seen in Table 3-1.

Table 3-1: Abbreviated Cheat Lake 3D Point Cloud Data

ply
format ascii 1.0
element vertex 2031
property float x
property float y
property float z
end_header

0 0 0
-6.55829 4.429809 0.415514
-12.9737 9.047907 0.852932
-19.4399 13.68936 1.310421
-25.7991 18.39562 1.770145
-32.0649 23.15353 2.254174
-38.3692 28.22305 2.60648
-44.5458 33.18459 3.081154
-50.6534 38.19985 3.529472
-56.5521 43.15836 3.944815
-62.7542 48.62357 4.387047
-68.6404 53.85921 4.870702
-74.4937 59.22307 5.282593
-80.2803 64.77343 5.682815
-85.9339 70.25742 6.130975
-91.5566 75.8537 6.624161
-97.0901 81.50518 7.056619
-102.504 87.28787 7.462627
-107.892 93.15742 7.914748
-113.111 99.03428 8.376996

 All examples and screen shots provided in Chapters 3 and 4 were produced using

this data, and they were produced under the assumption that they would contain enough

detail to handle future simulations.

25

3.2 File Processing in Blender

An intermediary software package was used to convert the point cloud data given

in the Stanford (*.ply) file to a Collada Mesh (*.dae) file recognized by Gazebo. While

there are several potential candidates, ultimately Blender was chosen for this research.

Blender is a 3D computer graphics software package useful for visual effects, interactive

3D applications, and animated films. Most importantly, however, it is open-source and

easily attainable as a free download. Following the same reasoning behind the selections

of ROS and Gazebo, it was important to select an open-source file processor, both for

reasons of cost and of maximum compatibility with future updates to this simulation

system. Blender accomplishes both of these, while providing sufficient documentation

and tutorials generated by its large user base.

The first step in converting a Stanford point cloud to a Collada Mesh is to skin the

point cloud, thereby creating a surface. While Blender version 2.62 does not offer native

support for such a skinning, there is a free Python plug-in script called “Point Cloud

Skinner (v.0.16)” created by internet user “Hans.P.G.” available on the

BlenderArtists.org website (Hans.P.G., 2012). Installation of the plug-in is very

straightforward. Simply navigate to the “File, User Preferences” menu, then select Add-

ons, and Install New Add-on. Locate the downloaded Python script, and install. Select

the checkbox next to the Point Cloud Skinning script to make sure it is enabled. Now

that Blender is capable of skinning a point cloud, the next step is to import the Stanford

Point Cloud. A visual tutorial is shown in Figure 3-1.

26

Figure 3-1: Importing a point cloud into Blender

After selecting the file, the point cloud should appear in Blender’s main window. For the

Cheat Lake example, see Figure 3-2.

27

Figure 3-2: Cheat Lake point cloud map

Now that the road’s point cloud scan has been imported into Blender, the next step is to

perform a point cloud skin that will turn this collection of 3D points into a surface. The

recently added Point Cloud Skinner menu is visible in the bottom right hand corner of

Figure 3-2. After expanding the menu, several options for the skinner are available. A

close-up view can be seen in Figure 3-3.

28

Figure 3-3: Point Cloud Skinner script settings

It is essential to select the proper point cloud from the “target” menu. After this has been

selected, the only other setting of importance is the “distance for skin.” This setting

controls the radius the skinner uses to connect points together. A greater distance will

result in a better skin; however it will significantly increase the processing time necessary

to generate the skin. A distance around 10 worked well for the Cheat Lake point cloud.

The results of this point cloud skin can be seen in Figure 3-4.

29

Figure 3-4: The Cheat Lake road point cloud after skinning

Because of compatibility issues between the Point Cloud Skinner, the Collada Mesh

Export tool, and Blender versions 2.62 and 2.63a, it is necessary at this point in the

process to save the skinned point cloud as a blender (*.blend) file. In this example the

file was saved as “cheatlaketurn.blend”. These compatibility issues will be explored

further in the next section.

30

3.3 Preparing the Collada Mesh

The preparation of the Collada Mesh to be used in Gazebo is relatively

straightforward compared to the previous steps. While previous versions of Blender

supported Collada Mesh Export via the use of plug-ins, version 2.62 does not support

Collada Meshing at all. However, the very recently released version 2.63a (Blender, May

2012) provides native support for Collada Mesh Exportation. While version 2.63a

supports Collada Mesh Export, it does not support the Point Cloud Skinner plug-in. It is

for this reason that dividing the conversion into two separate steps, handled by two

different versions of Blender is necessary. Using Blender 2.63a, the skinned point cloud

file created in the previous steps (cheatlaketurn.blend) is opened as an existing project.

To convert the blend file into a Collada Mesh (*.dae), navigate to the export window and

select “COLLADA (*.dae). Name the file and select a desired save destination

(cheatlaketurn.dae). This process can be seen in Figure 3-5.

31

Figure 3-5: Exporting road to Collada Mesh

At this point in the process, the work using Blender has been completed. The road scan

is now ready to be used as input into Gazebo.

32

Chapter 4

Importing Collada Mesh into ROS/Gazebo Environment

4.1 Opening an Empty Gazebo World

At this step, the file processing is complete and the road scan is ready to be

opened in Gazebo. For this example, an Ubuntu machine running ROS Fuerte with the

built in Gazebo package was used. The first step is to open a terminal and begin running

the roscore using the command:

roscore

This is depicted in Figure 4-1.

33

Figure 4-1: Running the roscore

Open a new terminal tab by typing Control + Shift + T. In this terminal, run the

command (Figure 4-2):

roslaunch gazebo_worlds empty_world.launch

This command will load an instance of Gazebo’s default empty world, which can be seen

in Figure 4-3.

34

Figure 4-2: Loading the empty world in Gazebo

Figure 4-3: The default empty world in Gazebo

35

To make the graphical display of the environment friendlier, the empty world can be

modified by changing the fog and background settings. These improvements can be seen

in Figure 4-4.

Figure 4-4: More lifelike empty world in Gazebo

4.2 Importing Road Scan from Collada Mesh

 To import the road scan, simply navigate to “File, Import Mesh” (Figure 4-5).

Select the desired Collada Mesh (cheatlaketurn.dae), and select Open.

36

Figure 4-5: Importing the Collada Mesh into Gazebo

The road is loaded into Gazebo as shown in Figure 4-6 and again as a full screen

simulation in Figure 4-7. At this point, further properties could be assigned to the road,

such as color and texture, friction, gravity, and other visual and collision parameters.

37

Figure 4-6: Simulated Cheat Lake road in Gazebo

38

Figure 4-7: Full screen simulation of the Cheat Lake LIDAR scan using Gazebo Simulator

39

Chapter 5

Discussion of Results

5.1 Summary and Conclusions

Simulation (and more specifically automotive vehicle simulation) is an area of

significant interest for both the research and industrial sectors. It has been shown that all

areas of this science are receiving attention from researchers, including improving the

lifelike characteristics of the simulators, studying human behavior using the simulator as

a tool, and using the simulator to develop smarter more realistic autonomous vehicles. In

an effort to restore Penn State’s currently defunct driving simulator to working order, an

attempt at rebuilding the entire simulator architecture using open-sourced free software is

being investigated. This approach began from scratch, with the ultimate goal of

producing a driving simulator of significant ability. The research team is hoping that one

day, the system will be able to receive sensor outputs such as LIDAR and GPS data from

a remote vehicle and use this data to construct a live simulation model in the cabin of the

simulator. In addition, the hope is to then drive through the environment with the

simulator, while the remote vehicle mimics the simulator’s path, updating the

environment sensors in real-time. The first step in this lofty project was to determine

which software packages were best suited to handling this task. After significant research

into the Robot Operating System (ROS) and Gazebo Simulator, it was determined that

the combination of these two open-source software packages was not only capable of

40

accomplishing this task, but in fact seemingly designed with these applications in mind.

After establishing this, it was a second goal of this thesis to discover a way to convert

sensor output (in this case LIDAR data) into a format that could be understood and used

by the Gazebo simulator. This was accomplished using a few more open-source tools

including Blender and a Python plug-in script. Using a LIDAR scan of Cheat Lake, WV,

the point cloud data was ultimately skinned and converted into a Collada Mesh, which

was successfully imported into the Gazebo simulator. Several other alternative methods

were investigated, but all failed to achieve the same results as the Blender method. A

third goal of this thesis was to take the simulated roadway and apply realistic properties

using Gazebo such as color and texture, friction, and gravity. However, this goal was not

met, as several different attempts to do so ultimately caused the Gazebo simulator to

crash. The research ended with the failure to meet this goal.

Based upon the results of this research, several conclusions were drawn as to the

effectiveness of this method. First, it is highly recommended to continue with the use of

ROS and Gazebo Simulator as the software architecture of choice for this simulation

effort. Their combined suitability for this research application was independently

confirmed several times throughout the course of the literature review. Second, while the

Blender method of processing the point cloud data was effective, it was inefficient and in

its current form could not be used for running a continuously updating live simulator.

Although a script could be written to automate this process, further research into ROS

and Gazebo revealed that these two tools alone are capable of converting LIDAR data

into a simulated environment, though a specific and detailed method to do so has yet to

be discovered by this research. In addition, the Collada Mesh generated by this Blender

41

method seemed to cause significant problems in Gazebo, resulting in the failure to

implement lifelike properties on the model. It is because of these last two observations

that the ultimate conclusion drawn from this method is that it should not be recommended

for further study.

5.2 Suggestions for Future Research

As this thesis was essentially an introduction into a much bigger project, there are

several suggested areas for future research. As previously mentioned, it is strongly

suggested to pursue an alternative method than the one using Blender that was presented

in this paper. Based upon further research, it is recommended to pursue a method that

uses only ROS and Gazebo for this purpose. Such a method would require significant

expertise in both ROS and the Gazebo Simulator, which was not achieved in this

introductory research.

In addition to the topics covered in this thesis, it would also be necessary to

determine a way to utilize the Gazebo software on a multi-screen simulator system. The

driving simulator at Penn State currently has three screens simulating vision out of the

front windshield, and also one additional screen on each side to represent views seen in

the side mirrors. Because all of Gazebo’s key features can be run headless (without a

GUI), it might be necessary to implement some other kind of graphics engine to create

the multiple displays that would be required.

Other research topics that would be necessary to explore but differ significantly

from the scope of this thesis include determining ways to send data to and from the

42

remote vehicle and the driving simulator software, wiring the gas pedal, brake pedal and

steering wheel of the simulator to serve as inputs to the remote vehicle, and creating a

cabin platform that could simulate acceleration in 3D using roll, pitch and liner lateral

motion. The completion of this project would take several months if not years, and

require significant research into several different fields of research above and beyond the

virtual worlds explored in this thesis.

43

Appendix A

Results of Institute for Psychosocial Medicine Study on Sleepless Driving

Figure A-1: Results of four different measures of driving performance. N = no sleep/night work
condition. B = baseline condition (adopted from Åkerstedt et al., 2004)

44

Appendix B

Results of Penn State Study on 3D Terrain Modeling

Figure B-1: Emergency maneuver detection based on pitch data (adopted from Varunjikar et al.,
2011)

Figure B-2: Emergency maneuver detection based on roll data (adopted from Varunjikar et al.,
2011)

45

References

"About Gazebo." GazeboSim. Web. 20 July 2012.

<http://www.gazebosim.org/about.html>.

Akerstedt, Torbjorn, Bjorn Peters, Anna Anund, and Goran Kecklund. Impaired

Alertness and Performance Driving Home from the Night Shift: A Driving

Simulator Study. Tech. European Sleep Research Society, 22 Oct. 2004. Web. 17

July 2012.

Al-Shihabi, Talal, and Ronald R. Mourant. "A Framework for Modeling Human-like

Driving Behaviors For Autonomous Vehicles in Driving Simulators." Proc. of

International Conference on Autonomous Agents. Northeastern University, June

2001. Web. 20 July 2012.

Beckman, Wendy S. "Pilot Perspective on the Microsoft Flight Simulator for Instrument

Training and Proficiency." International Journal of Applied Aviation Studies 9.2

(2009): 171-80. Web. 20 July 2012.

Bouchard, Samuel. "Robot Operating System Making Its Way Into Industrial Robotics."

Ieee Spectrum. IEEE, 21 Sept. 2011. Web. 16 July 2012.

<http://spectrum.ieee.org/automaton/robotics/robotics-software/robot-operating-

system-making-its-way-into-industrial-robotics>.

Diewald, Stefan. "Implementation of a Development Toolchain for the Simulation of

Mobile Devices Using the ROS Middleware." Thesis. Technische Universitat

46

Munchen, 2011. 27 May 2011. Web. 20 July 2012.

<https://vmi.lmt.ei.tum.de/publications/students/Diewald-Diplomarbeit.pdf>.

Download. Blender, n.d. Web. 2 July 2012.

<http://www.blender.org/index.php?id=1262&f=http://download.blender.org/rele

ase/Blender2.63/blender-2.63a-linux-glibc27-x86_64.tar.bz2>.

Guizzo, Erico. "Microsoft Shifts Robotics Strategy, Makes Robotics Studio Available

Free." Ieee Spectrum. IEEE, 20 May 2010. Web. 20 July 2012.

<http://spectrum.ieee.org/automaton/robotics/robotics-software/052010-

microsoft-shifts-robotics-strategy-makes-robotics-studio-available-free>.

Hans.P.G. "A Script to Skin a Point Cloud (for Blender 2.6x or Later)."

BlenderArtists.org, 8 Jan. 2012. Web. 28 June 2012.

<http://blenderartists.org/forum/showthread.php?241950-A-Script-to-Skin-a-

Point-Cloud-%28for-Blender-2.6x-or-Later%29>.

Koenig, Nathan, and Andrew Howard. "Design and Use Paradigms for Gazebo, An

Open-Source Multi-Robot Simulator." Proc. of IEEE/RSJ International

Conference on Intelligent Robots and Systems, Sendai, Japan. University of

Southern California, Sept.-Oct. 2004. Web. 19 July 2012.

<http://cres.usc.edu/pubdb_html/files_upload/394.pdf>.

Lucas, Simon M., and Renzo De Nardi. "Computational Intelligence in Racing Games."

Advanced Intelligent Paradigms in Computer Games. By Julian Togelius. N.p.:

Springer Berlin / Heidelberg, 2007. 39-69. Web. 12 July 2012.

<http://www0.cs.ucl.ac.uk/staff/R.DeNardi/Togelius2007Computational.pdf>.

47

Pickem, Daniel, David Morioniti, Chris Taylor, Santiago Balestrini-Robinson, and

Dimitri Mavris. Captain Hindsight: An Autonomous Surface Vessel. Tech.

Georgia Institue of Technology, Aug. 2011. Web. 17 July 2012.

<http://mrg.gatech.edu/wordpress/wp-

content/uploads/2011/08/paper_reduced.pdf>.

Plagemann, Christian, Cyrill Stachnis, and Wolfram Burgard. Efficient Failure Detection

for Mobile Robots Using Mixed-Abstraction Particle Filters. Tech. University of

Freiburg, 2006. Web. 20 July 2012. <http://www.informatik.uni-

freiburg.de/~plagem/bib/plagemann06euros.pdf>.

Quigley, Morgan, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,

Eric Berger, Rob Wheeler, and Andrew Ng. "ROS: An Open-source Robot

Operating System." Diss. Stanford University, 2009. Stanford University. Web.

20 July 2012. <http://ai.stanford.edu/~ang/papers/icraoss09-ROS.pdf>.

Rekleitis, Ioannis, Jean-Luc Bedwani, and Erick Dupuis. "Autonomous Planetary

Exploration Using LIDAR Data." Proc. of 2009 IEEE International Conference

on Robotics and Automation, Kobe International Conference Center, Kobe,

Japan. IEEE, May 2009. Web. 19 July 2012.

<http://www.cim.mcgill.ca/~yiannis/Publications/ICRA_2009a.pdf>.

Remo, Chris. "Microsoft Makes Big Cuts At Flight Sim Studio." Gamasutra. N.p., 23

Jan. 2009. Web. 12 July 2012. <Microsoft Makes Big Cuts At Flight Sim

Studio>.

Robertson, Adi. "Epic Licensing Unreal Engine 3 for FBI Training Sim and Other

'serious Games'" The Verge. N.p., 28 Mar. 2012. Web. 16 July 2012.

48

<http://www.theverge.com/2012/3/28/2908051/epic-unreal-engine-3-licensed-

government-agencies>.

"RoboBoat Overview." AUVSI Foundation, n.d. Web. 20 July 2012.

<http://www.auvsifoundation.org/foundation/competitions/roboboat/roboboatover

view/>.

"ROS." Willow Garage. N.p., n.d. Web. 20 July 2012.

<http://www.willowgarage.com/pages/software/ros-platform>.

Rusu, Radu B., Alexis Maldonado, Michael Beetz, and Brian Gerkey. Extending

Player/Stage/Gazebo towards Cognitive Robots Acting in Ubiquitous Sensor-

equipped Environments. Tech. Technische Universitat Munchen, 2007. Web. 19

July 2012.

<http://www.willowgarage.com/sites/default/files/Rusu07ICRA_NRS.pdf>.

Sarkar, Samit. "'NHL 13' Challenges You to Be a Smarter Hockey Player." The Verge.

N.p., 4 July 2012. Web. 20 July 2012.

<http://www.theverge.com/gaming/2012/7/4/3135416/nhl-13-challenges-you-to-

be-a-smarter-hockey-player>.

Smith, Russell. "Open Dynamics Engine V0.5 User Guide." N.p., 23 Feb. 2006. Web. 18

July 2012.

<https://www.mmpong.net/trac/export/b3244fd9c50885e050e826f0916bd03d8df

9a51b/doc/ode-latest-userguide.pdf>.

Varunjikar, Tejas M., Pramod K. Vemulapalli, and Sean N. Brennan. Multi-Body Vehicle

Dynamics Simulation Based On Measured 3D Terrain Data. Tech. Pennsylvania

49

State University Department of Mechanical & Nuclear Engineering, n.d. Web. 16

July 2012.

Volvo Group. R&D. Sweden’s Most Advanced Driving Simulator Comes to Gothenburg.

Volvo Group Global. N.p., 18 May 2011. Web. 16 July 2012.

<http://www.volvogroup.com/group/global/en-

gb/researchandtechnology/news_updates/_layouts/CWP.Internet.VolvoCom/New

sItem.aspx?News.ItemId=102523&News.Language=en-gb>.

Academic Vita of Nicholas R. Sirera

Nicholas R. Sirera
315 West Beaver Avenue nrs5054@psu.edu
Apartment 8
State College, PA 16801

Education
The Pennsylvania State University B.S. Mechanical Engineering
Schreyer Honors College B.S. Nuclear Engineering
College of Engineering Engineering Entrepreneurship Minor
University Park, PA

Thesis Title: Preparation of LIDAR Point Cloud Data for Use in a ROS/Gazebo
Simulation Environment

Thesis Supervisor: Dr. Sean Brennan

Work Experience
PSU Intelligent Vehicles and Systems Group (May 2011 – August 2012)
Undergraduate Researcher
Supervisors: Dr. Sean Brennan, Alex Brown

Curtiss-Wright Corporation (January 2009 – August 2010)
Engineering Co-op
Supervisors: Brian Eckels, Ross Klein, Paul Stasko

Awards
Spark’s Award (Recognition of 4.0 GPA after sophomore year)
President’s Freshman Award (Recognition of 4.0 GPA after freshmen year)
Collegiate Roller Hockey Scholar Athlete of the Year (2011-2012 Season)
Collegiate Roller Hockey National Champions (2009-2010 Season)
William J. and Lois Kesterson Leight Memorial Scholarship
Professor H. A. Everett Memorial Scholarship
Louis A. Harding Memorial Scholarship
Nicholas A. Petrick Scholarship
Arthur Wilcox Memorial Award
Exelon Nuclear’s Contributions Program Candidate
Valedictorian, Pine-Richland High School Class of 2007

Activities
Penn State University Roller Hockey Captain/Member

