
The Pennsylvania State University

The Graduate School

Department of Mechanical and Nuclear Engineering

EXTREMA FEATURES FOR GLOBAL-LOCALIZATION AND

PATTERN MATCHING OF TIME-SERIES DATA

A Dissertation in

Mechanical Engineering

by

Pramod K. Vemulapalli

c© 2012 Pramod K. Vemulapalli

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2012

The thesis of Pramod K. Vemulapalli was reviewed and approved∗ by the following:

Dr. Sean N. Brennan
Associate Professor of Mechanical Engineering
Dissertation Advisor, Chair of Committee

Dr. Henry J. Sommer III
Professor of Mechanical Engineering

Dr. Asok Ray
Distinguished Professor of Mechanical Engineering

Dr. Vishal Monga
Assistant Professor of Electrical Engineering

Dr. Robert T. Collins
Associate Professor of Computer science and Engineering

Karen A. Thole
Professor of Mechanical Engineering
Head of the Department of Mechanical and Nuclear Engineering

∗Signatures are on file in the Graduate School.

Abstract

This dissertation describes the use of extrema features for the purposes of localiza-
tion and pattern matching in time-series data. One of the principle contributions
of this work is to develop a wavelet based framework to extract extrema features
from raw data. The utility of these features is then demonstrated through different
applications in pitch and acceleration-based localization. Another major contribu-
tion is the formulation of the filter optimization problem to obtain robust extrema
as an eigen value problem with a tractable solution. This optimization framework
which was conceived and formulated in a ‘deterministic’ sense was finally extended
to the stochastic domain. This extension resulted in interesting theoretical results
that show that the filters of the Discrete Sine Transform are the optimal filters for
extracting extrema from Gaussian random walk data. Finally, the nature of the
optimal filters for the case of general random walk data was also explored.

iii

Table of Contents

List of Figures ix

List of Tables xiv

Acknowledgments xv

Chapter 1
Introduction to Feature Vectors 1
1.1 Introduction . 1
1.2 Tradeoffs in the feature vector encoding methods 2

1.2.1 Uniqueness versus Robustness 2
1.2.2 Computation versus Dimensionality (Better Accuracy) . . . 3

1.3 A general overview of the feature encoding method 4
1.4 Preprocessing methods . 4

1.4.1 Raw data as a feature vector 5
1.4.2 Quantization . 5
1.4.3 Transform Based techniques 6
1.4.4 Extrema Based Techniques 6

1.5 Encoding Methods . 8
1.6 Encoding Multiple Feature Vectors from Large Datasets 10
1.7 Distance measures for comparing feature vectors 12
1.8 Conclusion . 14

Chapter 2
Introduction to Multi-Scale Extrema Features 15
2.1 Introduction . 15
2.2 Literature Survey . 17

iv

2.2.1 Commonly used Subsequence Matching Techniques 17
2.2.2 Drawbacks of Common Subsequence Matching Techniques . 18
2.2.3 The Vision Approach . 19
2.2.4 Feature-Based Approaches in Subsequence Matching 21
2.2.5 Proposed Approach . 23

2.3 Multi-Scale Extrema Features . 24
2.3.1 Algorithm Overview . 24
2.3.2 Extrema Features . 24
2.3.3 Feature Matching . 30

2.4 Conclusion . 31

Chapter 3
Global Localization Using Pitch Data with Extrema Feature

Matching 35
3.1 Introduction . 35

3.1.1 Global Localization Using LIDAR 36
3.1.2 Global Localization Using Vision Sensors 37
3.1.3 Global Localization Using Other Sensors 38

3.2 Overview . 38
3.3 Multi Scale Extrema Features . 41

3.3.1 General overview of feature vector based localization 41
3.3.2 Previous methods from the literature 42
3.3.3 Feature Matching . 43

3.4 Multi Scale Extrema Analysis . 45
3.4.1 Simulation Approach . 45
3.4.2 Theoretical Approach . 46
3.4.3 Theoretical analysis for choosing the right wavelet 47

3.4.3.1 Uniqueness of the feature vector 48
3.4.3.2 Robustness of the feature vector 50

3.4.3.2.1 Wavelet decomposition 50
3.4.3.2.2 Obtaining Key Points 51
3.4.3.2.3 Computing the point feature vector 52
3.4.3.2.4 Creating the extended feature vector . . . 53

3.4.3.3 Comparison of the theoretical and simulation ap-
proaches. 55

3.4.3.3.1 Simulation Approach 55
3.4.3.3.2 Theoretical Approach 55

3.5 Experimental Results For Pitch-Based Global Localization 59
3.6 Simulation Results For Pitch-Based Global Localization 63
3.7 Conclusions and Future Work . 68

v

Chapter 4
Pattern Matching of In-Vehicle Acceleration Time Series Data 72
4.1 Introduction . 72
4.2 Background and Literature Survey 76
4.3 Multi-scale Encoding . 79
4.4 Experimental Setup . 81
4.5 Experimental Results . 83

4.5.1 Parameter Tuning . 85
4.5.1.1 Selecting the Point Feature Vector 85
4.5.1.2 Extended feature vector dimensionality 87

4.5.2 Experiments . 88
4.5.2.1 Single Axis Acceleration Matching 88
4.5.2.2 Three Axis Acceleration Matching 92

4.6 Conclusion and Future Work . 93

Chapter 5
Optimal Extrema Features 95
5.1 Introduction . 95
5.2 Extrema Features: Principal Issues 100

5.2.1 Background . 101
5.2.2 Properties Governing Performance 102

5.3 Tools and Techniques for Adaptive Extrema Feature Extraction . . 104
5.3.1 Filtering Step: Optimizing robustness via filter coefficient

optimization . 104
5.3.1.1 Derivation of the optimal filter 105
5.3.1.2 Robustness . 110
5.3.1.3 Derivation for the optimally robust filter 112

5.3.2 Extrema Detection Step: (Robustness and Uniqueness) ver-
sus Cardinality . 120

5.3.3 Encoding Step: Obtaining better control over the properties
by using a generalized encoding process 121
5.3.3.1 Background . 121

5.3.3.1.1 Trade-off between robustness and unique-
ness via encoding variants 122

5.3.3.2 Proposed generalized encoding process for better
control over uniqueness and cardinality 123

5.4 Experimental Results . 125
5.4.1 Experimental Overview . 125

5.4.1.1 Datasets used in Experiments 126

vi

5.4.2 Results A: Validating Robustness as Imparted by Filter Op-
timization . 127

5.4.3 Results B: Application to the subsequence matching problem 132
5.4.3.1 Brief review of time series subsequence matching . 132
5.4.3.2 Extrema based subsequence matching method . . . 134
5.4.3.3 Experimental Process 136
5.4.3.4 Implementation of well-known sliding window meth-

ods for time-series subsequence matching 141
5.4.3.5 Implementation of extrema methods for time-series

subsequence matching 143
5.4.3.6 Results and Inferences 146

5.5 Conclusions . 149

Chapter 6
Discrete Sine Transform for Extracting Extrema From Random

Walk Data 151
6.1 Introduction . 151
6.2 Optimal Filter for the Case of Gaussian Random Walk Data (Dis-

cretely Sampled Weiner Process) 153
6.2.1 Setting up the matrix for eigen analysis 153
6.2.2 Computing the optimal filter from the eigen vectors 163

6.3 Optimal Filter for the Case of General Random Walk Data (Dis-
cretely Sampled Levy Processes) . 165

6.4 A Statistical Test to Check for the Applicability of the Half-Sine
Filter . 168

6.5 Experiemental Results : Extrema Stability Test 171
6.6 Experimental Results : Subsequence Matching Test 172
6.7 Conclusion . 173

Chapter 7
Conclusions and Future Work 179
7.1 Conclusions . 179
7.2 Future Work . 182

7.2.1 Unifying Extrema Methods and Sliding Window Methods
for Feature Extraction . 183

7.2.2 Adding the uniqueness criterion to the optimization 183
7.2.3 Representation of Extrema Detection as Unsupervised Clus-

tering . 187
7.2.4 Closed-form Solutions to the General Random Walk Prob-

lem . 189

vii

Appendix A
Global Localization using Bias and Scale Invariant Features 191

Appendix B
Extrema Stability Surface Plots 194

Appendix C
Even Eigen Vectors for the Robust Extrema Formulation in

the Case of General Random Walk Data (Discretely
Sampled Levy Processes) 198

Bibliography 213

viii

List of Figures

1.1 A procedural overview of creating feature vectors. 4
1.2 Quantization to obtain feature vectors. 7
1.3 Transform based techniques for preprocessing. 7
1.4 Example output of the preprocessing algorithm for extrema fea-

tures. 8
1.5 Examples of different types of distortions that time series data could

experience. 9
1.6 Sliding window based encoding technique 12
1.7 A visualization of Euclidean distance and DTW based distance for

Raw data based encoding. 13

2.1 The two phases involved in the proposed localization scheme and
the central role played by the feature vector in these phases. 25

2.2 The step by step process involved in obtaining the Multi Scale Ex-
trema Features. 25

2.3 The feature vector creation process by example. 34

3.1 The schematic illustrates the pitch angle of the road and an INS
sensor installed in a vehicle to measure it. 38

3.2 The schematic illustrates the pitch angle of the road and an INS
sensor installed in a vehicle to measure it. 42

3.3 A two dimensional projection of a polytope and its corresponding
lower bound hypersphere for a given point (green). 46

3.4 The average nearest neighbor distance for feature vectors obtained
from different wavelets as a function of their wavelet decomposition
scale. 48

3.5 An illustration of the geometric elements (Hyperplane and Hyper-
cube) that are used to approximate the nearest neighbor polytope. . 57

3.6 A comparison of the theoretical accuracy obtained from the hyper-
plane NN approximation with the simulation results. 60

ix

3.7 A comparison of the theoretical accuracy obtained from the hyper-
cube NN approximation with the simulation results. 61

3.8 The roadway network that was used as a part of the experiments. . 62
3.9 The vehicle setup that was used as a part of the data collection effort. 63
3.10 The overview of the data acquisition setup that was used as a part

of the experiments. 64
3.11 Accuracy curves for localization in a roadway network of 6000 Km. 65
3.12 The localization accuracy of the ‘amplitude bias’ feature vector is

immune to the bias noise present in the sensor. 66
3.13 The plots show that the localization accuracy for the ‘amplitude

bias’ feature vector (top) is severely affected by scale factor noise
while the ‘amplitude bias, amplitude scale’ feature vector (bottom)
is completely immune to it. 70

3.14 The plots examine the effects of band-limited white noise in the
encoder and pitch measurements on localization accuracy. 71

4.1 The effect of the route on in-vehicle acceleration data 76
4.2 The distortions that are exhibited by acceleration data collected on

different runs. 78
4.3 An illustration of the sequential encoding method and the multi-

scale encoding methods. 81
4.4 The routes covered as a part of the data collection effort 83
4.5 The sensors and data acquisition systems used in the experiments. 83
4.6 Accuracy curves for localization in the convoy dataset using differ-

ent types of feature vectors. 86
4.7 Accuracy curves for localization in the non-convoy dataset using

different types of feature vectors. 87
4.8 Effect of the feature vector dimensionality on the retrieval accuracy

for the convoy dataset. 88
4.9 Effect of the feature vector dimensionality on the retrieval accuracy

for the non-convoy dataset. 89
4.10 Accuracy curves for localization in the convoy dataset using differ-

ent types of feature vectors. 90
4.11 Accuracy curves for localization in the non-convoy dataset using

different types of feature vectors. 91
4.12 Accuracy curves for localization in the convoy dataset using differ-

ent types of feature vectors. 92
4.13 Accuracy curves for localization in the non-convoy dataset using

different types of feature vectors. 93

x

5.1 The steps involved in creating features from extrema. 102
5.2 A two dimensional projection of the filter hyperplanes and the re-

gions associated with conditions (5.16) and (5.18). 110
5.3 The two hyperplanes corresponding to the filter will divide the hy-

perspace containing the subsequences into four different regions. . . 111
5.4 Different methods for sequential encoding of extrema. 122
5.5 The steps involved in the generalized encoding method of creating

feature vectors from extrema. 124
5.6 The filters used in the experimental tests. 128
5.7 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 129
5.8 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 130
5.9 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 131
5.10 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 132
5.11 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 133
5.12 Comparison of the extrema stability of the optimal filter against

Gaussian filters with different standard deviations on different time
series datasets. 137

5.13 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 138

5.14 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 139

5.15 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 140

5.16 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 141

5.17 The distorted query signal is obtained by adding bias, scale factor,
outlier and Gaussian noise to the original signal. 142

5.18 The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques. 143

5.19 The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques. 144

xi

5.20 The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques. 145

5.21 The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques. 146

5.22 The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques. 147

5.23 The number of features used by the different techniques for the
subsequence matching results presented in Figures 5.18 - 5.22. The
number of features can be used to gauge the computation involved
with each method. 149

6.1 The half-sine filter. 164
6.2 Optimal filter (Highest Eigen Value) for Random Walk Data 168
6.3 Optimal filter (Second Highest Eigen Value) for Random Walk Data 169
6.4 Optimal filter (Third Highest Eigen Value) for Random Walk Data 170
6.5 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 172
6.6 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 173
6.7 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 174
6.8 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 175
6.9 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 175
6.10 Accuracy curves show the stability of the extrema obtained by using

different filters on different datasets. 176
6.11 The subsequence matching results for different time series datasets

while using different sliding window methods and extrema techniques. 176
6.12 The subsequence matching results for different time series datasets

while using different sliding window methods and extrema techniques. 177
6.13 The subsequence matching results for different time series datasets

while using different sliding window methods and extrema techniques. 177
6.14 The subsequence matching results for different time series datasets

while using different sliding window methods and extrema techniques. 178
6.15 The subsequence matching results for different time series datasets

while using different sliding window methods and extrema techniques. 178

7.1 A comparision of the proposed extrema based window selection
method to the standard sliding window method. 184

xii

7.2 An example case in which the maxima are optimally robust are
far away from the separating hyperplanes but the variation of the
maxima along filter hyperplane is small and would therefore not
lead to very unique features. 185

7.3 A 2D projection of the hyperspace that illustrates the boundary of
the maxima region for conditions given in Eqns (7.7)-(7.10). 188

A.1 The localization accuracy of the ’amplitude bias’ feature vector is
immune to the bias noise present in the sensor. 191

A.2 The localization accuracy of the ’Amplitude Bias Amplitude Scale
Time Scale’ feature vector is immune to the bias noise present in
the sensor. 192

A.3 The localization accuracy of the ’Amplitude Bias Amplitude Scale
Time Scale’ feature vector is immune to the scale noise present in
the sensor. 192

A.4 The plots examine the effects of band-limited white noise in the
encoder and pitch measurements on localization accuracy. 193

B.1 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 195

B.2 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 195

B.3 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 196

B.4 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 196

B.5 Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time
series datasets. 197

xiii

List of Tables

2.1 Feature vector formulations and the associated types of invariance. . 29

3.1 Value of the ‘k’ Parameter for Different Wavelets 54
3.2 Nomenclature for Equations 3.10 and 3.11 64
3.3 Comparision Of Different Sensor Modalities For Localization 69

5.1 Filter Definitions . 128

xiv

Acknowledgments

xv

Dedication

To all the community activists, organizers and social workers who have made this
world a better place and the fruits of whose sacrifice and labor I am currently
enjoying and to my parents, Ravindra Vemulapalli, and Vasantalata Vemulapalli.

xvi

Chapter 1
Introduction to Feature Vectors

1.1 Introduction

The problem of encoding raw data into a set of feature vectors is important in

the context of a wide range of pattern recognition problems. While the main

area of concentration in this dissertation is the application of extrema features for

localization problems, this chapter aims to introduce features in the more general

context of dimension reduction and pattern matching. It is important to provide

this background as it makes it easier to appreciate how the techniques developed

in this dissertation could apply to a wide range of different pattern recognition

problems. Raw data is typically encoded into the form of a vector, with a fixed

dimension, and this vector is often referred to as the feature vector. A large

body of pattern recognition theory assumes that features in the form of fixed

dimension vectors are available for analysis [1]. The ability of the features to

2

capture the essential information in a dataset is an important factor that affects

the performance of most pattern recognition algorithms. The discussion in this

section is mainly focused towards feature vectors from time series data but the

explanations could apply to other types of data as well.

1.2 Tradeoffs in the feature vector encoding meth-

ods

Before introducing the different types of feature vector encoding techniques, it is

important to go through some of the underlying tradeoffs involved in creating a

feature vector. This overview of the tradeoffs will help the reader gain much better

insight into the properties of different feature vectors that will be presented in later

sections.

1.2.1 Uniqueness versus Robustness

One of the fundamental tradeoffs involved in creating feature vectors is the choice

between uniqueness and robustness. The notions of uniqueness and robustness

directly correspond to the ideas of ‘signal’ and ‘noise’ in a data stream. The ability

of a feature vector to encode the ‘signal’ information determines its uniqueness,

while its ability to reject the effects of noise will determine its robustness. For

example, a feature vector created by directly using the raw data is very unique

3

but is not robust because the match of this data to a database is easily affected by

noise (example: constant bias, etc). If the feature vector was encoded by using the

mean subtracted values of the raw data then the feature vector would be robust

to bias variations in the matching process. However, the uniqueness of this new

feature vector is reduced because a single parameter has been removed from the

data. It is important to note that the concepts of uniqueness and robustness are

discussed here in the context of the encoding step of the feature vector and could

be used in other contexts as explained below. The tradeoff between uniqueness

and robustness could also arise in certain preprocessing steps in the development

of a feature vector. For example, a common preprocessing step is to transform the

given signal by using different transforms (Fourier, Wavelet etc) and to use the

resulting coefficients in the feature vector. In those situations, one could optimize

the preprocessing phase such that it provides more unique and robust coefficients

which will in turn lead to better feature vectors.

1.2.2 Computation versus Dimensionality (Better Accu-

racy)

The dimensionality of feature vector has an effect on the uniqueness of a feature

vector. Higher dimensional feature vectors are expected to be more unique, be-

cause of the additional volume created in the search space because of their high

dimensionality. One of the main drawbacks of using higher dimensional features

4

is the additional computational and memory requirements needed to handle those

features. These problems associated with high dimensional features is often re-

ferred to as the ‘curse of dimensionality’[2]. Given the tradeoff, it is important

to choose a feature vector with the right number of dimensions for a particular

application.

1.3 A general overview of the feature encoding

method

This section provides an overview of the general procedure that is followed in

creating a feature vector. The first step involves preprocessing the raw data to

obtain certain parameters of interest and the second step involves encoding those

parameters into a feature vector. This process is illustrated by a schematic in

Figure 1.1.

Raw

Data
Preprocessing

Feature

Vectors

Encoding

Procedure

Figure 1.1: A procedural overview of creating feature vectors.

1.4 Preprocessing methods

Given the importance of feature vector representation in pattern recognition there

are a wide range of preprocessing methods that have been proposed to address

5

this problem. Some of these techniques have been presented below to stand as

representatives for large families of variants that can be derived based on them.

1.4.1 Raw data as a feature vector

The most direct method of encoding a feature vector is to utilize the raw data

as the feature vector. This method is not usually efficient as it is based on the

assumption that the raw data only contains ‘signal’ information and no ‘noise’

information. The raw data is usually used as a feature vector in techniques where a

more elaborate scheme is utilized as a part of the feature vector comparison scheme.

This method of encoding will also result in high dimensional feature vectors which

will increase the computational burden. Given the combined drawbacks of high

dimensionality and less robustness to noise, dimension reduction techniques such

as the ones presented below are often utilized in creating feature vectors.

1.4.2 Quantization

A very standard and straightforward technique to perform dimension reduction is

through quantization. Figure 1.2 shows the result of quantization when performed

over a certain time interval ‘t’ and amplitude ‘a’. In quantization methods, the

higher dimensional raw data can be viewed as an analog signal and the quantization

technique as a process of digitizing the higher dimensional ‘analog’ signal. A large

body of work in signal processing deals with this very specific problem and different

6

variants of this type of method have been proposed [3].

1.4.3 Transform Based techniques

In signal processing, a common method to extract ‘signal’ information is to trans-

form the signal to represent it is a set of coefficients of certain basis functions.

Depending on the signal and the basis functions that are used, it may be possible

to separate out the ‘signal’ and the ‘noise’ components of the original data. One

could therefore select the coefficients corresponding to the ‘signal’ component and

use them in encoding a feature vector. Figure 1.3 shows an example in which a

signal is transformed using the FFT to obtain the coefficients corresponding to the

sinusoidal basis functions [4]. In Figure 1.3 , the coefficients corresponding to the

lowest frequencies are used in the encoding process and this could have been done

because the coefficients corresponding to higher frequencies contained more ‘noise’

than ‘signal’ information. A large set of encoding methods that utilize transforma-

tions such as the discrete cosine transform [5], the wavelet transform [6] etc have

been proposed in literature.

1.4.4 Extrema Based Techniques

In extrema based techniques, the location and the amplitude of the extrema are

extracted during the preprocessing stage and are used to encode the feature vector

[7] as shown in Figure 1.4. It is common to filter the signal before identifying the

7

Figure 1.2: Quantization to obtain feature vectors.

Figure 1.3: Transform based techniques for preprocessing.

locations of the extrema in order to eliminate noise or to create new extrema or

for both the previous reasons. In order to choose the most significant extrema in a

signal, it is also common to use a parameter that measures the significance of each

extrema and selects them by thresholding such a parameter. A common parameter

that is used to eliminate insignificant extrema is the amplitude distance between

a prospective extrema and its neighboring points.

8

Figure 1.4: Example output of the preprocessing algorithm for extrema features.

1.5 Encoding Methods

The data obtained from the preprocessing stage is usually modified in different

ways to obtain a feature vector. The most common modification is to subtract the

output of preprocessing step by the mean and divide it by the standard deviation

of the data used to generate the feature vector. This normalization step would

provide immunity from changes in bias and scale factor variations of a signal such

as those shown in Figure 1.5. In some situations, it might be easier to perform

the normalization on the input data rather than the output of the preprocessing

stage and in those cases the normalization step would be part of the preprocessing

stage. In the case of extrema features, it is preferable to encode a feature vector

based on the relative distances between the extrema in order to obtain immunity

(or invariance) from scale factor and bias distortion. Sometimes the distortions in

the signal may be complicated in nature such as a varying bias or scale factor or

temporal distortions as shown in Figure 1.5. These distortions may severely affect

9

the ability of most encoding methods to obtain a proper match. The extrema based

methods offer certain advantages in case of such complex distortions because the

extrema are usually left intact in spite of these distortions. Distortions such as

addition of severe Gaussian random noise tend to alter the extrema present in

a signal and could lead to mismatches when the encoding is done with extrema

based techniques. In these cases it is customary to filter signal before the extrema

extraction process in order to attenuate the noise in the signal.

Figure 1.5: Examples of different types of distortions that time series data could
experience.

10

1.6 Encoding Multiple Feature Vectors from Large

Datasets

Parameters such as temperature, humidity, stock prices etc tend to vary in a con-

tinuous manner and therefore lead to a constant stream of data. In such situations,

it is important to generate multiple feature vectors from a single data stream to

encode different parts of the data stream. The methods described in section 1.4

assume that only a single feature vector is generated from a time series and so a

sliding window method is used to extend these techniques to situations that need

analysis of a data stream. In the sliding window method, small portions of the data

stream are extracted by windowing the signal and a feature vector corresponding

to each windowed signal is evaluated as shown in Figure 1.6. Choosing the sliding

window discretization or the step size for the sliding window involves a tradeoff

between computation and generating a uniform encoding of a time series. A large

step size might make the algorithm susceptible to signals that may start between

the individual steps, but a small step size would create a large volume of feature

vectors and this would increase the computation. Extrema based methods are

able to completely circumvent the need for a sliding window based discretization

because the extrema provide natural points to start and stop the encoding pro-

cess. In the case of the extrema techniques, all sets of a ‘fixed number of adjacent

extrema’ in a signal are used to encode a feature. Another key parameter of the

11

sliding window method is the size of the window that is used. A small window

might result in non-unique features while a large window would not be able to

match query signals that are shorter than the window’s size. Feature vectors ob-

tained from using different window sizes could be stored and can be used when

needed for a particular query signal. Such an approach, though feasible, would

increase the memory requirements for the algorithm. It is therefore important to

select a window size that would work well for all types of query signals that one

may encounter. The extrema features are able to circumvent the limitations of

this ‘one size fits all’ restriction of the sliding window method. This is because a

feature is built only if there are adequate numbers of extrema to support it. As

the number of extrema in a region of a signal depends on the amount of variation

in the signal, the technique automatically has feature vectors that span over large

areas of slowly varying parts of a signal and over small areas in the quickly varying

regions. Thus the effective ‘window size’ for each extrema feature is adaptive and

is based on the underlying variation in the signal. This adaptive nature of the

algorithm also results in efficient computational and memory requirements for the

extrema based methods.

12

Figure 1.6: Sliding window based encoding technique

1.7 Distance measures for comparing feature vec-

tors

The distance metric that is used to compare two feature vectors is also critical

in properly gauging the extent of the match between two feature vectors. The

most commonly used distance measure is the Euclidean distance and will be the

measure of choice for all extrema based features developed in this dissertation.

This subsection briefly describes some of the other distance metrics that are used in

comparing time series feature vectors. Most of the non-Euclidean distance metrics

are used to compare feature vectors which are obtained by directly encoding raw

data as described in section 1.4.1. The Dynamic Time Warping (DTW) distance

is the most popular among the non Euclidean distance based metrics because of

its capacity to correct for temporal distortion that is observed in many real-life

13

signals. A comparison of the Euclidean distance and DTW distance for a raw

data based feature vector encoding is shown in Figure 1.7. While the Euclidean

distance measure shows considerable difference in the signals, the DTW measures

[8] shows that the signals are very similar by performing distance calculations

after accounting for temporal distortion. The temporal distortion between the two

signals can be observed by viewing the gray lines connecting both the signals in

Figure 1.7 . Researchers have proposed a host of other distance measures that

provide immunity under a variety of signal distortions such as amplitude shifting,

temporal distortion etc. Some of the most popular distance measures include the

LCSS (Least common subsequence) [9], ERP (Edit distance with penalty) [10] etc

and a through overview of the different types of distance measures and their utility

on a wide range of datasets has been demonstrated by Keogh [11].

Figure 1.7: A visualization of Euclidean distance and DTW based distance for
Raw data based encoding.

14

1.8 Conclusion

This chapter provides a quick overview of the different types of feature vectors and

delves into some of their characteristics. The next chapter introduces the multi

scale extrema features that are proposed as a part of this dissertation. The utility

of the Multi-scale extrema features is demonstrated in chapter 3, by applying it

to solving the problem of global localization using pitch information. The method

is also utilized to perform pattern matching using acceleration data as shown in

chapter 4. Chapter 5 puts forward a theoretical framework that would allow one

to perform optimization to obtain an optimal filter that could be utilized to obtain

robust extrema. Chapter 6 provides closed form solutions for the optimal filter

in the case where the optimization is performed on Random Walk Data. This

document ends with the description of the conclusions and the plans for future

work.

Chapter 2
Introduction to Multi-Scale Extrema

Features

2.1 Introduction

Given the task of matching a particular time series signal to another time series

signal that is not exactly similar, any person would quickly try to match parts or

features from one signal to another and then comment on the overall validity of

the match. Researchers have utilized this basic human approach as a source of

inspiration for their algorithms. The following list summarizes the observations

made in literature about the way humans match signals.

1. Humans seem to depend on landmarks in organizing their spatial memory

[12]. In [7], it was noted that a relatively successful strategy to duplicate a

signal would be to remember its major peaks and valleys (landmarks) and

16

by joining these points by smooth curves.

2. Humans tend to smooth out the fluctuations from much smaller time scales

as noise [7].

3. Humans, when matching two sequences, seem to perform sequential matches

of a set of subsequences [13].

4. There is evidence to suggest that human visual systems are sensitive to “prim-

itives” such as tangent and curvature discontinuities [14]. It was also reported

in [15] that it is natural to suppose the existence of these primitives or fea-

tures of second and higher orders, which describe different combinations of

first order features, in the visual cortex.

The aim of this chapter is to develop a solution approach that is compatible with

the above notions of the way humans match signals, utilizing the mathematical

and the algorithmic contributions made in pattern matching. The next section

presents a brief overview of the literature in this area. Section 2.3 describes Multi

scale extrema features which use a wavelet-based framework to obtain features from

time series. The chapter ends with the implications of the proposed framework of

time series matching.

17

2.2 Literature Survey

2.2.1 Commonly used Subsequence Matching Techniques

In [4], Faloutsos posed a very fundamental question regarding time series data.

The question is, “Given a certain time series signal (say a “query” signal), what is

the procedure to extract similar time series from a signal database?”. This prob-

lem is often referred to as the subsequence matching problem in literature. It is

important to note that the word ‘similar’ is very critical in the above question.

Faloutsos answered this question using Euclidean distance as the definition of sim-

ilarity. While Faloutsos’s work utilized the Discrete Fourier transform, subsequent

work using Discrete Wavelet Transform [16], Piecewise Aggregate approximation

[17], Adaptive piece wise constant approximation [18] etc used the same paradigm

of Euclidean distance between query signal and database signal as the criterion. It

was reported that by 2005, more than two dozen techniques based on the Euclidean

distance criterion have appeared in literature [19]. Even so, some have found that

the distortions that take place in the temporal data impede the techniques that

utilize Euclidean distance measure. For example, time warping methods [8] that

allow for temporal distortions have been proposed by many researchers. These

methods based on dynamic programming have very high computational demands,

and some have sought more efficient implementations [20]. In [19] the authors

were able to implement Dynamic Time Warping (DTW) via indexing and with

18

no false dismissals and a relatively tight lower bound. The DTW method of an-

alyzing similarity can also be seen as a modified Euclidean criterion which allows

for temporal distortion. Similar to DTW, common subsequence based methods

[21, 9] were built to handle noise in the temporal domain but were reported to

be more sensitive to amplitude shifting and scaling [22]. While some researchers

have built algorithms that can handle amplitude shifting and scaling [6, 23, 22, 24],

these methods do not take temporal warping into account. A common underlying

characteristic of all these methods is that they utilize a sliding window framework

for analysis, and this methodology has certain disadvantages that are elaborated

in the next sub section.

2.2.2 Drawbacks of Common Subsequence Matching Tech-

niques

A large majority of the time series data retrieval methods perform full sequence

matching [6], that is they assume the signals in the database are of the same size

as the query signal. A common approach to achieve sub-sequence matching from

these full sequence algorithms is by using the sliding window technique [18, 19] .

In this method, a sliding window over the data set is used to create feature vectors

at each offset of the window and these feature vectors are efficiently indexed for

retrieval purposes [6].The sliding window method has a number of drawbacks, most

significantly that it does not extend well to higher dimensions. Given the nature

19

of this comparison process, one might need to vary the window size in order to

accommodate transformations such as temporal scaling in the query signal. While

this approach may seem expensive in terms of the computational and memory

resources that are required, the one dimensional nature of time series data makes

it feasible. The windowing based approach also reduces the flexibility in terms of

the length of the query signal that can be used. Any query that is shorter than

the prescribed window length would require the entire database to be reevaluated

at a finer resolution in order to handle it. Additionally, any query above the

prescribed length would mean that certain low frequency features would not be

used in the matching process, which in turn leads to higher computation or lower

accuracy. Another byproduct of the sliding window approach is that a large amount

of processing must be performed, for the sake of mathematical exactness, in order

to ascertain which window has the closest match (based on Euclidean criteria or

other distance measures) with respect to the query signal. Given the drawbacks of

the sliding window approach, there is a clear need to explore alternative notions

of similarity between the query signal and the database that may overcome many

of the above drawbacks.

2.2.3 The Vision Approach

The problem of Vision-based robot localization [25, 26] and Robust Image Hashing

[27, 28, 29] have a number of similarities to the above problem. For example, In

20

these problems, a query image must be compared to a large set of images present

in a database in order to extract those images that closely match the query image.

Vision-based localization systems are built to handle large changes due to per-

spective distortion, scaling, photometric conditions, etc of the query image with

respect to the database images. On the other hand, Robust Image Hashing consid-

ers matching in the presence of changes due to different compression techniques,

shearing, cropping etc. One can see that the above problems are basically higher di-

mensional versions of the time series matching problem. One can also immediately

notice that the Euclidean distance criterion / sliding window approach becomes

problematic in the context of image data as it becomes infeasible in terms of the

necessary memory and computational resources. The large number of different

transformations such as scaling, rotation, perspective distortion, lighting, and oc-

clusions drastically increases the number of different possibilities that have to be

covered by a 2-D sliding window. Given these drawbacks, the vision community

has developed a feature-based approach to vision based localization and object

detection [30, 31]. The feature vectors are designed to be scale, rotation, and/or

affine invariant and can be matched in spite of these transformations existing be-

tween the query image and the database images. These feature vectors are created

in any particular image by identifying unique points (key points) where these fea-

tures have to be located. A match is established between a query and a database

image only if there are sufficient number of feature vector matches, all of which

21

are spatially coherent [25]. The notion of similarity that is used in this case is the

number of feature vector matches that satisfy spatial proximity constraints. This

similarity notion is very powerful as it allows for matching to be made under a host

of transformations, noisy data and outliers. While most of the vision-based local-

ization papers have used feature vectors that are obtained from local patches at

key points [30], some researchers in the image processing community have utilized

the relative configuration of the key points with respect to each other to obtain a

feature vector [28, 29] . In [28], Monga et.al have used the relative locations of the

modulus maxima of the wavelet transform of an image for Robust Image Hash-

ing. This research must be viewed in context of the work done by mathematicians

who have shown that the wavelet modulus maxima is a complete and stable signal

representation as long as the signal is band limited and the wavelet has compact

support [32, 33, 34]. The feature vectors generated from wavelet modulus maxima

are thus a much more compact yet complete representation of the signal than the

features that are obtained from a sliding window approach.

2.2.4 Feature-Based Approaches in Subsequence Matching

There have been few instances where researchers in different fields have suggested

methods for time series data that are analogous to those utilized in vision. Perhaps

the closest is in the field of audio retrieval methods [35, 36]. This is a rather special

domain-specific time series sub sequence matching problem, and the same problems

22

as above can be expected. It must be noted that an audio retrieval method that

utilizes a feature vector that was based on relative distances between adjacent

peaks in the spectrogram of the audio signals was reported in [37, 38] and has

certain similarities to the proposed method. It is interesting to note that this

algorithm is the technology behind ‘Shazham’, a popular audio identification app

on smart phones. The use of “landmarks”, which are the same as extrema, in

time series data was suggested in [7] to facilitate full sequence matching. This

method is interesting as it allows the matching process even if the query signal is

transformed in a number of different ways. The main drawback of this method

is that it does not adequately explore the possibility of creating these landmark-

based features at multiple spatial resolutions and the possibility of using such

techniques for subsequence matching. The use of ‘perceptually important points’

for subsequence matching was suggested by [39] for stock time series data, but this

method ultimately reverted to using a sliding window approach for subsequence

matching. Specifically, this paper suggested a sliding window method with different

window sizes in order to extract patterns at multiple spatial resolutions. While

this approach is computationally taxing, the attempt underlines the importance of

extracting features at different resolutions for certain datasets such as stock market

data. Both the above methods [39, 7] utilize key points (landmarks/perceptually

important points) and suggest further research along the same direction in handling

time series data.

23

2.2.5 Proposed Approach

One of the aims of this work is to utilize this notion of similarity that has been

developed by the vision community, and modify it to handle time series data.

Specifically, this work seeks to borrow 2-D image processing methods to implement

a feature vector based on the relative distance of the wavelet modulus maxima key

points with respect to each other within 1-D time series data. The first step in

this direction was made by choosing the extrema as the basis for feature encoding.

This use of extrema features has the advantages of not requiring a sliding window

method and being resilient to severe distortions as described in sections 1.6 and 1.7.

In order to enable analysis at multiple resolutions, a wavelet-based approach is

utilized. One of the other advantages of this approach is that a signal of any

length can be input as a query. This is because the signal is represented in the

feature space rather than the signal space and so the matching process is not

constrained to using an input signal of a particular length. The whole framework

itself is much more robust to noise and outliers as these entities might effect a few

features, while the rest of the features generated by algorithm can still be used to

obtain a match.

24

2.3 Multi-Scale Extrema Features

This section provides the details of the proposed method for extrema feature gen-

eration.

2.3.1 Algorithm Overview

To frame the problem succinctly, a query signal must be compared to a database

of signals in order to obtain the locations of maximum agreement. Implementation

of an algorithm to achieve this can be divided into two phases: a Preprocessing

Phase and an Online Phase. In the preprocessing phase, the signal-database is

processed to obtain feature vectors which are stored in an index database. In the

online phase, the query signal is used to create feature vectors which are used in

conjunction with the index database in order to identify locations of similar signals

in the signal-database. A schematic that illustrates the above process is shown in

Figure 2.1.

2.3.2 Extrema Features

This sub-section introduces the ‘Multi Scale Extrema Feature’, which presents a

very efficient wavelet based scheme to generate feature vectors that capture the

behavior of the signals over different resolutions. The individual steps involved

in generating this feature vector are shown in Figure 2.2 and the corresponding

descriptions are given below.

25

Figure 2.1: The two phases involved in the proposed localization scheme and the
central role played by the feature vector in these phases.

Figure 2.2: The step by step process involved in obtaining the Multi Scale Extrema
Features.

1. Wavelet decomposition: To separate high-frequency noise from low-frequency

features, wavelet decomposition is performed to partition the signal into its

components corresponding to dyadic frequency bands. Next, feature vectors

corresponding to each frequency band are computed. This method is used to

restrict the effect of frequency-selective noise by limiting it to those feature

vectors which have been extracted from the noise-affected frequency bands.

26

The Wavelet transform is performed by using the so-called “Derivative of

Gaussian wavelet” whose Fourier transform is shown below.

ψ̂ = iωe−ω2/2 (2.1)

It has been shown that the wavelet transform [32] is equivalent to a multi

scale differential operator.

Wf (u, s) = sn dn(f ∗ θs)(u)
dxn

(2.2)

Where the wavelet ψ(t) = (−1)n dnθ(t)
dxn

and θ(t) is typically chosen as the

Gaussian function. In the present case n = 1, as we are utilizing the Deriva-

tive of Gaussian (‘DerGauss’) Wavelet. Thus, the output signals, obtained

from the wavelet transform, contain peaks corresponding to the high vari-

ation points of different Gaussian-smoothed versions of the original signal.

Step 1 in Figure 2.3 presents an example of this wavelet transform of a signal.

2. Obtaining Keypoints: Local maxima of the output from the wavelet trans-

form are then selected as candidate “key points”. These local maxima are

calculated from the wavelet transform at each scale. This implies that, if a

local maxima exists at time uo and scale so , then:

∂Wf(u, s)
∂u

= 0 | (u = uo, s = so) (2.3)

27

These key points are found from the finite-difference implementation of this

equation. A heuristic measure for the susceptibility of a certain local maxima

to noise is evaluated by measuring its distance to the neighboring peaks. A

threshold for this heuristic measure is used to decide if a local maxima is to

be designated as a key point.

Step2 in Figure 2.3 shows that the key points of the wavelet transform at

different scales. This entire process of taking the wavelet transform and

finding the local maxima in the above manner is called ‘Wavelet Modulus

Maxima’ [32]. By encoding the shape information at recognizable key points,

this algorithm is able to achieve shift invariance. This procedure does away

the need for encoding closely-offset overlapping frames, thus reducing the

number of feature vectors required to encode a particular stretch of data.

An underlying assumption in this analysis is that the data is composed of

different regions of constant slope (straight lines) and that the key points are

the high curvature ‘bridge’ points between these straight lines. Road data

tends to exhibit this effect, at least for the six thousand km measured by the

authors.

3. Computing the point feature vector: Once the key points are obtained, the

distance of a key point to its adjacent neighbors is used to compute a point

feature vector (PFV). By using the neighboring key points, the PFV is able

to expand to a scale suited to the underlying variation present in the signal.

28

Thus, the signal length that is encoded is larger if the key points are far

apart because of little variation in the data, and vice versa. This adaptive

nature of the proposed PFV enables it to overcome ‘the one size fits all’

restriction of the sliding window technique. For a one dimensional signal,

the distance between two points in that signal is given by distance along the

abscissa and the ordinate. Thus, four numerical quantities are required to

describe the location of both the neighbors present on each side of a point.

Let a and c denote the distance of a key point along the abscissa to each

of its neighbors and let b and d be its distance along the ordinate to the

same neighbors as shown in step3 of Figure 2.3. Depending on the nature

of invariance that one would like to incorporate into the matching process,

the PFV at that particular key point could be encoded in a variety of ways

as shown in Table 2.1. For example, the first encoding scheme in Table 2.1

allows the PFV to be scale invariant with respect to the input data. Thus,

a PFV computed on a signal which is scaled by different amounts along the

abscissa and the ordinate will be the same as that computed on the un-scaled

signal. As only the relative distances between key points are used to compute

the PFV, all the above PFVs are bias invariant. It is important to note that

“Time Bias” invariance is not mentioned in the above list as that corresponds

to the basic subsequence matching problem and is present in each one of those

cases. Both bias and scale errors are commonly encountered in a number of

29

Table 2.1: Feature vector formulations and the associated types of invariance.

Types of Invariance Feature Vector Encoding

Amplitude Bias

Amplitude Scale
[

a√
a2 + c2

c√
a2 + c2

b√
b2 + d2

d√
b2 + d2

]

Time Scale
Amplitude Bias

Amplitude Scale
[a√

a2 + c2

c√
a2 + c2

b d
]

Amplitude Bias

Time Scale
[

a c
b√

b2 + d2

d√
b2 + d2

]

Amplitude Bias
[

a c b d
]

datasets and the point feature vector can be designed to be immune to them.

4. Creating the extended feature vector: Finally, adjacent PFVs are bundled to-

gether to create an extended feature vector in order to obtain an adequately

unique representation of the shape around the key point. As certain dimen-

sions may be identical between adjacent PFVs, it is beneficial to remove these

redundant dimensions to improve the computational performance of the algo-

rithm. Higher dimensions typically imply more computational effort and this

phenomenon is often described as the ‘Curse of Dimensionality’ [2]. Choosing

the length of an extended feature vector is a tradeoff between increasing the

uniqueness of a feature and restricting the effect of an erroneous key point on

30

the recognition of its neighborhood. Through implementation, it was found

that at least three adjacent features in each extended feature vector are nec-

essary for robust localization. Combining three ‘amplitude bias’ PFVs and

removing their redundant dimensions leads to an ‘8’ dimensional extended

feature vector. The extended feature vector can be seen as containing only

the first and the third PFV of the three PFVs as the dimensions of the second

PFV are present either in the first or third PFV when the ‘amplitude bias’

formulation is used. An example extended feature vector of this nature is

shown in step 4 of Figure 2.3.

2.3.3 Feature Matching

Once the feature vectors are created they are used differently in the preprocessing

phase and the online phase.

1. Preprocessing phase: In the pre-processing phase, the extended feature vec-

tors are used to create a KD-tree in order to be able to perform an efficient

search through the database of features. As the primary aim of this disserta-

tion is to explore the efficacy of the feature vectors for localization, a generic

tree was used for testing the vectors. A more detailed treatment of the vari-

ous types of tree data structures that can be used for localization is presented

in [40, 41]. An interesting new data structure called vocabulary tree [42] has

been reported to perform vision based localization very efficiently, and could

31

easily be extended to the proposed method as well.

2. Online phase: In the online phase, the feature vectors are tested for a match

within the database to obtain a match for a particular query signal. Each

query signal generates multiple feature vectors that are tested for a match

within the database to determine their corresponding position estimate in

the signal database. Each position estimate was compiled into a histogram

and the position with the highest value in the histogram is output as the best

position estimate for a query signal. For applications which need multiple

outputs, the histogram can be used to output multiple position estimates by

identifying peaks in a sequential manner based upon their height.

2.4 Conclusion

Given the premise that one of the motivations for designing this algorithm is to

obtain features that enable a more ‘human-like’ matching technique, the below

table identifies how the algorithm described in the previous section embodies the

leads enumerated in section 2.1.

1. • Intuition: Humans rely on landmarks in organizing their spatial memory

[12]. In [7], it was noted that a relatively successful strategy to duplicate

a signal would be to remember it major peaks and valleys (landmarks)

and by joining these points by smooth curves.

32

• Algorithm: In proposed method key points (wavelet modulus maxima)

are identified and the relative distance between these key points become

the basis for the feature vector.

2. • Intuition: Humans tend to smooth out the fluctuations from much

smaller time scales as noise [7].

• Algorithm: The proposed uses the wavelet transform and breaks a signal

down into dyadic frequency bands, and thus a signal in a low frequency

band will have its high frequency content filtered out.

3. • Intuition: Humans, when matching two sequences, seem to perform

sequential matches of a set of subsequences [43].

• Algorithm: The proposed method utilizes multiple feature vectors which

span over different parts of the query signal and these multiple feature

vectors can be seen as being extracted from different subsequences of

the query sequence and be used for the matching process.

4. • Intuition: There is evidence to suggest that human visual systems are

sensitive to “primitives” such as tangent and curvature discontinuities

[14]. It was also reported in [15] that it is natural to suppose the exis-

tence of these primitives or features of second and higher orders, which

describe different combinations of first order features, in the visual cor-

tex.

33

• Algorithm: In the proposed method, small primitives known as the

point feature vectors are extracted from the key points and different

combinations of these point feature vectors are used to generate the

final feature, analogous to the human visual process.

34

Figure 2.3: The feature vector creation process by example.

Chapter 3
Global Localization Using Pitch Data

with Extrema Feature Matching

3.1 Introduction

Advanced vehicle systems such as autonomous vehicles, driver-assist systems, and

collision warning systems, etc. all benefit from accurate estimates of vehicle loca-

tion. While GPS provides position information, it is quite susceptible to intentional

attack [44], outages, and signal reception problems. As the GPS signal is weak

it could be easily jammed by using relatively lower power jamming equipment.

Consequently, there is growing interest to develop alternatives to GPS such as

map-based localization techniques [45], including some which rely on onboard LI-

DAR [46] and vision sensors [47] in order to increase the reliability and robustness

of the localization systems. The problem of map-based localization can be broken

36

down into two phases: global localization and local tracking. Global localization

[46, 47] tries to estimate the position of the vehicle in the initial phase, during

which it could be present anywhere within a map. Once the vehicle has been lo-

calized on a global scale, the second phase, i.e. local tracking, is usually initiated.

In local tracking [48, 49] the current position estimate of the vehicle must be de-

termined from previous, nearby position estimates and current sensor information.

Popular approaches to local tracking include Particle Filtering (PF) and variants

of Kalman Filtering [50], both of which have been implemented by the authors

for vehicle localization using pitch information[51, 52]. Global localization tends

to be a harder problem to solve than local tracking because maps create a large

search space. This requires tremendous computational resources to implement a

particle-filter or multiple Kalman Filter solution when the initial vehicle position

is completely unknown, thus these “standard” solutions are not practical. The

methods for non-GPS global localization methods can be classified into categories

based on the type of sensor that is utilized.

3.1.1 Global Localization Using LIDAR

Fox et al [53] pioneered a particle filter approach to global localization and local

tracking with the aid of LIDAR sensors in indoor environments. Adaptive tech-

niques for controlling the population of particles [54] were later introduced to make

the method more efficient in terms of computation and memory requirements. A

37

feature-based approach to global localization utilizing LIDAR data was proposed

by Bosse et al in the past few years [55, 56]. This LIDAR feature approach has

enabled localization in large outdoor environments covering a roadway network of

164 Km.

3.1.2 Global Localization Using Vision Sensors

A wide range of approaches have been proposed for localization using vision sen-

sors, primarily due to their low cost. Dellaert et al [56] used a particle filter to

perform global localization and local tracking on an indoor robot using a cam-

era looking at the ceiling. The invention of SIFT features by Lowe [30] greatly

simplified matching images taken from different viewpoints. Se et al applied these

SIFT features for localization of indoor mobile robots [25]. The SIFT features were

then used to perform outdoor localization for an area of 20 km by Schindler et al.

Murillo et al [57] proposed the use of the global ‘gist descriptor’ for localization

and demonstrated accurate performance over a stretch of 21 km of an urban area.

David et al [58] have proposed the use of satellite images to create the map by

encoding ‘orientation descriptors’ that can then be used to perform matches with

images taken from the ground view.

38

3.1.3 Global Localization Using Other Sensors

Recent research has focused on the developing adhoc vehicular networks (VANETs)

[59] and Drawil et al have demonstrated the possibility of improving localization

by using those networks [60]. Such wireless communication approaches could be

used for global localization in case of faulty sensors but depend on the presence

of other vehicles on the road network. The authors have previously demonstrated

the possibility of pitch based localization using particle filters [51, 52]. Figure 3.1

provides an illustration of the pitch angle of a road and an INS sensor installed

in a vehicle to measure it. The particle filter approach could be used for global

localization over small roadway networks but becomes computationally infeasible

for larger networks.

Figure 3.1: The schematic illustrates the pitch angle of the road and an INS sensor
installed in a vehicle to measure it.

3.2 Overview

In summation, the previous approaches to global localization have mainly involved

the use of LIDAR and vision sensors [46, 47, 50, 61]. While both the above sensors

are proven to improve the localization of a vehicle, they typically tend to fail under

39

rainy and dusty conditions; moreover, vision sensors also tend to be unreliable

during poor lighting conditions such as nighttime driving. These sensors are also

expensive and can be blocked by dirt or snow.

This work overcomes these problems by proposing the use of road grade data

measured from in-vehicle pitch or inertial navigation system (INS) sensors, which

are robust under all the above conditions assuming vehicles are operating on known

(e.g. mapped) roadways. Among the different global localization methods that

have been suggested in literature [46, 47], the proposed method is quite practicable

for implementation on roadways as it is comparably simple to compute, and is

immune to external signal jamming conditions, e.g. it is “signal free.”

The data density per unit distance traveled also affects the sensor choice for

localization. This choice is dependent on a trade-off between computation and

travel distance for localization. The previously mentioned vision and/or LIDAR

approaches [46, 47] utilize high densities of data per unit distance traveled, values

several orders of magnitude more than in this work. They hence require higher

computational resources to localize, even within a small roadway network. How-

ever, these other approaches are advantageous as they require a smaller travel dis-

tance before localization, and can simultaneously estimate multiple vehicle state

parameters (position and orientation, for example). In contrast, this paper uti-

lizes pitch data which is one dimensional in nature and lane-specific. While pitch

data requires only a moderate amount of computation and memory for localiza-

40

tion within considerably large road networks, the tradeoff is that the vehicle must

travel a larger distance before successful localization and only a single parameter

(longitudinal roadway location) can be estimated.

In order to implement a global localization scheme with pitch data, a signal re-

trieval method (based on time series subsequence matching) has been implemented.

This approach is similar to recent approaches in vision and LIDAR-based global

localization [46, 47] which have utilized techniques from image retrieval [61, 42].

This novel application of pitch information requires new time series subsequence

matching tools because of the rather unique distortions and noise typically present

in this data. Therefore, the other major contribution of this paper is the ‘Multi-

Scale Extrema Feature’ which is a feature vector that has been specially designed

to facilitate pitch data retrieval from vehicles on roads [62, 63]. The feature-based

approach that has been developed for global localization could also be applied

to local tracking problems [51, 52] to take advantage of the computational and

memory benefits that are obtained by using this method. The remainder of this

paper presents an algorithm that achieves global localization within very large road

networks, using pitch information. Section 3.3 presents the literature survey for

current signal retrieval techniques and explains the need to develop a new feature

vector that is particularly effective in handling the challenges presented by pitch

data. This section also presents the proposed ‘Multi-Scale Extrema Feature’ and

combines it with a KD-tree framework for global localization. A theoretical ap-

41

proach to selecting the right wavelet is presented in Section 3.4, and its predictions

are confirmed with simulation. Section 3.5 shows the algorithm’s results in localiz-

ing a vehicle’s position without initialization within a road network spanning 6000

km. Section Section:chap3SimulationResults demonstrates the algorithm’s immu-

nity to typical types of sensor noise. Conclusions then summarize the main results

of this work.

3.3 Multi Scale Extrema Features

3.3.1 General overview of feature vector based localization

In this paper, pitch data measured on a vehicle is compared to features stored in

a map in order to search for the locations of maximum agreement. Implementa-

tion of the localization algorithm can be divided into two phases: a preprocessing

phase and an online phase. In the preprocessing phase, mapped data is processed

to obtain feature vectors which are stored in a database. In the online phase,

data collected on the vehicle is used to create feature vectors which are used in

conjunction with the database in order to obtain the location of the vehicle. A

schematic that illustrates this process is shown in Figure 3.2. It is can be seen that

the feature vector plays a critical role in both phases.

42

Figure 3.2: The schematic illustrates the pitch angle of the road and an INS sensor
installed in a vehicle to measure it.

3.3.2 Previous methods from the literature

One can observe that this map-matching problem is quite analogous to the time se-

ries subsequence matching problem, for which a large number of different solutions

have been proposed [4, 64, 19, 16]. Unfortunately, there are several drawbacks

when applying these approaches to map-based localization. For example, all the

above methods use the Euclidean distance or a modified Euclidean distance such

as Dynamic Time Warping (DTW) to calculate the distance between the database

signals and the query signal. The Euclidean distance criterion and its variants

are ill suited for handling data with outliers. In the proposed formulation, the

extrema based features are expected to be robust to outliers and temporal distor-

tions. Further, it is difficult to implement a real-time version of many methods

proposed in the literature [4, 64, 19, 16]. To create feature vectors in the above

techniques, signals are usually sampled at regular intervals which are closely offset

43

in a technique commonly known as the sliding window method. This technique

results in information being stored redundantly across a large number of feature

vectors, which will result in unnecessarily large databases when applied to road

networks. Some methods such as Longest Common Subsequence (LCSS) [9] are

robust to outliers and can be indexed for fast retrieval purposes but still have the

drawback of using the sliding window framework like all the above methods. In the

sliding window method, the signal length that is used to generate a feature vector is

fixed, regardless of the variation within the signal. This ‘one-size-fits-all’ approach

is adequate for signals which exhibit significant variation over “small” time scales

(e.g. music). However, for map-based localization, there may be sections of road

which are very smooth and which have little variation in pitch information. Thus

a fixed length segment of the signal might not create adequately unique feature

vectors. The proposed algorithm creates features which span to an appropriate

extent based on the variation present in the underlying signal and the method is

also able to handle query signals of any length.

3.3.3 Feature Matching

The algorithm’s details are provided Once the feature vectors are created they are

used differently in the preprocessing phase and the online phase.

1. Preprocessing phase: In the pre-processing phase, the extended feature vec-

tors are used to create a KD-tree in order to be able to perform an efficient

44

search through the database of features. As the primary aim of this paper

is to explore the efficacy of the feature vectors for localization, a generic tree

was used for testing the vectors. A more detailed treatment of the various

types of tree data structures that can be used for localization is presented in

[40, 41]. An interesting new data structure called vocabulary tree [42] has

been reported to perform vision based localization very efficiently, and could

easily be extended to the proposed method as well.

2. Online phase: In the online phase, the feature vectors are tested for a match

within the database to determine their corresponding position estimate for

the vehicle. Each query signal generates multiple query feature vectors and

each of these feature vectors is matched with the KD-tree database to de-

termine their corresponding position estimates for the vehicle. The position

estimate that is obtained from each feature match is then subtracted by the

distance in the query signal at which the query feature vector was extracted

and this gives an estimate for the location in the database where the query

signal could be matched. All such position estimates are compiled into a

histogram and the position with the highest value in the histogram is output

as the best position estimate for a query signal. For applications in which

local tracking follows the global localization scheme, the histogram can be

used to output multiple position estimates which can be used to initiate a

particle filter or multiple Kalman filters.

45

3.4 Multi Scale Extrema Analysis

The purpose of this section is to present the analysis that led to the selection of the

‘DerGauss’ wavelet for generating the extrema from pitch data. In the following

experiments, a large set of pitch data (75 Km) are used to create a database. A

smaller subset of those signals are corrupted with Gaussian noise and are used to

generate features which are then evaluated, both analytically and experimentally,

to obtain the probability of them being matched correctly to the database. While

there are a wide range of noise sources that can be the basis for analyzing the

performance, this section is particularly focused on testing the performance of

the matching scheme under the condition that the query signal is corrupted by

Gaussian noise as this is a common situation. There are two approaches that

can be used to evaluate the performance: Simulation Approach and Theoretical

Approach.

3.4.1 Simulation Approach

In this approach, Gaussian noise is added to the query signal, which has been

extracted from the database, and is used to perform subsequence matching as

described in the previous section. This computation is repeated a number of times

in order to calculate the probability of match for features from each scale. The

main advantage of this technique is that it is able to simulate complex processes

that might be analytically intractable. The main drawback of this method is that

46

a large number of experiments must be performed in order to get a valid result and

that the whole procedure is essentially a ‘black box’ approach where a query signal

is input and the output result is noted, thus giving very little intuition about the

underlying process that might be benefiting or degrading the performance.

Figure 3.3: A two dimensional projection of a polytope and its corresponding lower
bound hypersphere for a given point (green).

3.4.2 Theoretical Approach

In the theoretical approach, one tries to understand the performance of the algo-

rithm from theoretical calculations. The main advantage of this method is that it

provides details about the inner workings of the algorithm and can be used to un-

47

derstand some of the underlying issues. The main disadvantage of this method is

that general closed-form solutions to the algorithms are mathematically intractable

and usually several approximations are required. Thus, the results obtained from

the theoretical method are only as good as the approximations that are made. For

example, if either of the first two point feature vectors shown in Table 2.1 in the

previous section is used, it becomes mathematically unwieldy to model the dis-

tribution of this feature vector, when Gaussian noise is introduced into the query

signal. In this case, the only recourse is to use the simulation approach. The other

two feature vectors that are given in Table 2.1 can however be modeled under

certain approximations and they provide interesting analytical results.

3.4.3 Theoretical analysis for choosing the right wavelet

In this subsection, we attempt to evaluate the relative performance of three differ-

ent wavelets for the pitch dataset using the theoretical method. The ‘Amplitude

Bias’ point feature vector is used in this analysis. In this case the probability of

matching a feature vector, for each wavelet type, depends on two factors:

1. The uniqueness of the feature vectors (or how far each feature vector is from

its neighboring features in the database)

2. The robustness of the feature vector, e.g. the immunity of the feature vectors

to the introduction of Gaussian noise into the original signal.

48

A very unique feature vector can be matched correctly in spite of being adversely

affected by noise. Similarly, a non-unique feature vector can be matched correctly

if it is very robust to noise. The theoretical approach allows us to break down the

contribution from both uniqueness and robustness as shown below.

 Wavelet Decomposition Scale

A
ve

ra
g

e
N

ea
re

st
 N

ei
g

h
b

o
u

r
D

is
ta

n
ce

(L = 410m)
L ∗ 2−1

L ∗ 2−2
L ∗ 2−3

L ∗ 2−4
L ∗ 2−5

0.0

0.4

0.8

1.2

1.6

2.0
DerGauss
Sombrero
Morlet

Figure 3.4: The average nearest neighbor distance for feature vectors obtained
from different wavelets as a function of their wavelet decomposition scale.

3.4.3.1 Uniqueness of the feature vector

The uniqueness of the feature vector can be gauged by measuring its distance from

its nearest neighbor. An exact measure for the uniqueness would be the average

‘nearest neighbor’ volume for the feature vector in a feature space containing all

the feature vectors from the dataset. The ‘Nearest Neighbor’(N.N) volume is a

49

region around a feature vector in a feature space in which the given feature vector

is the nearest neighbor for any query point present in that volume. Geometrically,

the nearest neighbor volume is expected to be a polytope surrounding each feature

as shown in Figure 3.3. As it is computationally expensive to extract the corners

of the polytope and calculate its volume, the nearest neighbor distance is used as

a measure for the uniqueness of each feature. The nearest neighbor distance can

be construed as a diameter of a certain ‘lower-bound’ hypersphere as shown in

Figure 3.3. This hypersphere is the lower bound for the nearest neighbor volume

for a point with the given nearest neighbor distance. It can also be visualized as the

largest hypersphere that can be fit into the nearest neighbor volume while being

centered on the given feature vector. Figure 3.4 shows the average nearest neighbor

distance for ‘Amplitude Bias’ features extracted from different scales for the pitch

dataset. The scale information in Figure 3.4 is denoted by length of the filter

used at each scale. A total of 5 different scales starting from 205 meters (410/2

meters) to 12.8 meters (410/32 meters) were used in all the experiments shown in

this paper. It was experimentally verified that scales below 12.8 meters did not

have enough information content to merit feature generation. The result can be

understood from an intuitive point of view where we would not expect variations

over distances smaller than 12.8 meters to contain unique pitch signatures. It can

be seen that the feature vectors generated from the ‘DerGauss’ wavelet are much

more unique than those generated from the other wavelets. One can also notice

50

that the low frequency features are much more unique than their high frequency

counterparts. This low-frequency uniqueness is a general characteristic of many

datasets as they are likely to have fewer low frequency features simply because the

low frequency features encode longer distances which make them more unique.

3.4.3.2 Robustness of the feature vector

The robustness of a feature vector is measured as the covariance of the feature

vectors when the original signal is corrupted by a certain amount of noise. This

subsection presents the derivation of the covariance for the ‘Amplitude Bias’ feature

vector. It must be noted beforehand that critical approximations and assumptions

are made in this derivation in order to make the problem mathematically tractable.

The entire derivation is broken down into four steps, each of which corresponds to

the steps described in the previous section for constructing the feature vector.

3.4.3.2.1 Wavelet decomposition Let y(t) be a given signal that is cor-

rupted by Gaussian noise nσ2(t) whose variance is z(t). The resultant corrupted

signal be denoted by z(t) and is shown below.

z(t) = y(t) + nσ2(t) (3.1)

Taking the continuous wavelet transform (CWT) on both sides of the above

51

equation

Wz(t, s) = Wy(t, s) + nkσ2(t) (3.2)

Where k = |hs(t)|2,n(kσ
2)denotes noise of variance kσ2, and hs(t) is such that

Wy(t, s) = y(t) ∗ hs(t) (3.3)

For the CWT, hs(t) is scaled such that k is a constant across all scales ‘s′.

3.4.3.2.2 Obtaining Key Points Let ti and si denote locations on Wy(t, s)

such that

|Wy(ti, si)| > |Wy(ti, si)|

|Wy(ti, si)| > |Wy(t(i− 1), si)|
(3.4)

The locations (ti, si) denote the extrema (maxima and minima) occurring on

Wy(t, s). Given the set of locations (ti, si), a smaller subset of these locations

(tk, sk) are designated as key points such that

(tk, sk) = {tk, sk |tk ∈ ti, sk ∈ si, and

|Wy(ti, si) −Wy(t(i+ 1), si)| > T ∗ k,

|Wy(ti, si) −Wy(t(i− 1), si)| > T ∗ k,

T isathresholdfactor}

(3.5)

The value of T was chosen to be 0.25 for all the experiments presented in this

paper. All the subsequent analysis is made under the assumption that the locations

52

(tk, sk) are such that they satisfy the above conditions not only for Wy(t, s) but also

for Wz(t, s). This assumption implies that the below derivation for noise present in

the feature vector is only valid in those cases in which noise has left the key point

locations intact so that they could be identified in Wz(t, s). The above thresholding

scheme for obtaining key points also ensures that the locations of the key points

are not easily susceptible to change and this further ensures the validity of this

derivation. Also, the effect of the above assumption is expected to be less at smaller

noise levels as these noise levels are unlikely to affect the position of the key points.

Finally, without the above assumption a theoretical derivation would need to study

the appearance and disappearance of extrema in the presence of noise. Modeling

this behavior might improve the exactness of the result but it would eliminate the

simplicity and the ease of understanding that the current approximate derivation

provides. It must be noted that the assumption that the key points do not undergo

any time-displacement implies that the resulting covariance understates the effect

of the Gaussian noise on the feature vector.

3.4.3.2.3 Computing the point feature vector Given the locations of the

key points (tk, sk), the ‘amplitude bias’ point feature vector for the uncorrupted

signal fy(tk, sk) is given by

fy(tk, sk) = [Wy(tk, sk) −Wy(t(k−1), s(k−1)) tk − t(k−1)...

Wy(t(k+1), s(k+1)) −Wy(tk, sk) tk − t(k+1)]
(3.6)

53

Given the above assumption that the locations of the key points are unaltered, the

feature vector corresponding to the corrupted signal fz(tk, sk) is given by

fz(tk, sk) = [Wz(tk, sk) −Wz(t(k−1), s(k−1)) tk − t(k−1)...

Wz(t(k+1), s(k+1)) −Wz(tk, sk) tk − t(k+1)]
(3.7)

The dimensions denoting the temporal terms remain the same between the

feature vectors for the original signal and the corrupted signal because of the

assumption that the locations of the key points are unaltered between both the

signals. Given Equation 3.2, we can conclude that fz(tk, sk) has a bivariate normal

distribution whose mean is given by fy(tk, sk) and whose covariance matrix is given

by











2k2 −k2

−k2 2k2











.

3.4.3.2.4 Creating the extended feature vector The extended feature vec-

tor is constructed by combining three adjacent point feature vectors and removing

the redundant dimensions as described in the previous section. Therefore, the

extended feature vector is expected to contain four non constant terms and it con-

sequently has a quarto-variate normal distribution. The distribution is denoted by

Fz(tk, sk) and its properties are given below:

Mean(Fz(tk, sk)) = [fy(tk, sk)fy(t(k+2), sk)] (3.8)

54

Cov(Fz(tk, sk)) =































2k2 −k2 0 0

−k2 2k2 k2 0

0 −k2 2k2 k2

0 0 −k2 2k2































(3.9)

Table 3.1: Value of the ‘k’ Parameter for Different Wavelets

Wavelets ‘k’ Value
Der-Gauss 0.1410
Sombrero 0.2116

Morlet 0.1410

The covariance matrix given above only pertains to the amplitude terms in

Fz(tk, sk), the expanded covariance matrix that includes the values for the temporal

terms can be obtained by inserting rows and columns of zeros at the appropriate

locations as the ‘temporal’ terms do not change between the corrupted and the

uncorrupted signal. This section concludes by noting that the above derivation

has been able to identify the distribution for the extended feature vectors under

the assumption that the key point locations remain intact.

As the key parameter in the covariance matrix is the term k one can calculate

the value of this constant for different wavelets and this result is shown in Table. 3.1.

One can see from Table. 3.1 that the DerGauss wavelet and the Morlet wavelet have

the lowest noise variance and are therefore good candidates for generating extrema.

As the DerGauss wavelet has the highest uniqueness as shown in Figure 3.4, one

could infer that the DerGauss wavelet is likely to give the best performance in the

55

pattern matching task.

3.4.3.3 Comparison of the theoretical and simulation approaches.

The purpose of this section is to compare the results obtained from using the

theoretical model to those obtained from simulation.

3.4.3.3.1 Simulation Approach The results corresponding to the simulation

approach are shown in both Figure 3.6 and Figure 3.7 and were obtained by repeat-

edly (30 times) corrupting the query signal with Gaussian noise (std dev = 0.5 deg

) and running the algorithm in order to calculate the probability of obtaining a cor-

rect match for a feature from each scale. The results from the simulation approach

constitute the true matching accuracy for a feature vector as no approximations

have been made and hence provide a complete evaluation of the techniques.

3.4.3.3.2 Theoretical Approach The theoretical approach combines the unique-

ness and the robustness calculations that were presented before to compute the

accuracy for matching a feature vector in the presence of noise. In this analytical

evaluation, the quarto-variate distribution of each extended feature vector, corre-

sponding to when the signal is corrupted by gaussian noise (std dev = 0.5 deg),

is integrated over the approximate nearest neighbor volume in order to calculate

the probability for that feature vector to be correctly matched. As it is computa-

tionally expensive to extract the corners of the nearest neighbor polytope and as

56

the integration of the quarto-variate distribution over this polytope would be hard

to perform, the nearest neighbor volume is approximated with other geometric

elements, as shown in Figure 3.5, to obtain different estimates of the probabil-

ity of obtaining a correct match. The probability estimates for all the features

from a particular wavelet decomposition scale are used to obtain the accuracy of

obtaining a correct match for a feature vector from that scale. The accuracy es-

timates at each wavelet decomposition scale were obtained for different wavelets,

using different nearest neighbor approximation volumes are shown in Figure 3.6

and Figure 3.7.

3.4.3.3.2.1 Hyperplane Approximation In order to obtain a probability

estimate that is greater than the true probability, the quarto- variate distribution

is integrated over all the space on one side of a particular hyperplane. This hy-

perplane is the perpendicular bisector of a line drawn between the given feature

vector and its nearest neighbor. The hyperplane is shown in Figure 3.5 for an

example feature vector. The underlying assumption behind using the hyperplane

is that the nearest neighbor is the only feature that is present within the region

where the probability from the quarto-variate distribution is significant. In fact,

the above defined approximate nearest neighbor volume is the true nearest neigh-

bor volume for the given point under certain conditions (ex: if the current point

and its nearest neighbor were the only two points present in the entire space).

The resulting probabilities for each wavelet scale are shown in Figure 3.6. It can

57

be seen that the probabilities obtained from this evaluation are much higher than

those obtained from simulation because of two assumptions that went into the

theoretical approach. The assumptions are:

1. The locations of the key points are unchanged due to the noise.

2. All the other feature vectors, other than the nearest neighbor, are substan-

tially far away from the given feature vector.

Both these assumptions will lead to an over estimation of the probability value.

Thus, the theoretical probability values obtained from the above calculation can

be construed as being an upper bound for the actual probability value as the cal-

culations have been made under assumptions which will lead to an over estimation

of the probability values.

Figure 3.5: An illustration of the geometric elements (Hyperplane and Hypercube)
that are used to approximate the nearest neighbor polytope.

58

3.4.3.3.2.2 Hypercube Approximation The hyperplane approximation

considered previously was the largest nearest neighbor volume that could exist for

a feature vector in a database given its nearest neighbor. The smallest nearest

neighbor volume that can exist is a hyper sphere whose radius is half the nearest

neighbor distance. In the presence of a large number of feature vectors at a near-

est neighbor distance R, the resulting polytope for the feature vector converges

to a hyper sphere. The probability density function is integrated over the largest

hypercube that resides in this hyper sphere, as shown in Figure 3.5, for the sake

of computational ease. The resulting probability estimate is very conservative as

the nearest neighbor space is always larger than the hypercube. The probability

estimates for feature vectors from each wavelet scale are shown in Figure 3.7, and

they are lower than the actual simulation results in most of the cases because of

the underestimation of the nearest neighbor space. It can be seen that at lower

frequencies the theoretical probability estimate is higher than the simulation and

this is because the conservativeness of the hypercube assumption is not enough

to offset the assumption that none of the peaks are being dislocated due to noise.

From the comparison of the theoretical and simulation approaches, one can see that

the results from both the approaches are consistent. Both methods indicate that

the ‘DerGauss’ wavelet would give the best pattern matching performance among

the given wavelets for the pitch dataset. The above analysis also reveals the com-

plementary nature of the simulation and theoretical approaches. The theoretical

59

approach is able to provide insight into the uniqueness and the robustness of the

feature vector, while the simulation approach is able to give an estimate about the

performance of the feature vector by accounting for all aspects of the system. From

the graphs in Figure 3.6 and Figure 3.7, it is clear that the low frequency features

are more accurate than high frequency features, therefore one should preferentially

use low frequency scales when choosing between different wavelet decomposition

scales for this particular dataset. This pattern is seen in a number of different

datasets where the noise is mostly present in the higher frequencies. The theoreti-

cal and the simulation approaches show that the ‘DerGauss’ wavelet gives the best

feature matching performance for Pitch Data within the given wavelets.

3.5 Experimental Results For Pitch-Based Global

Localization

An experiment was performed on actual highways to evaluate the feasibility of this

method for global localization. For the experiment, “map” data was collected once

over 6000 km of roadway, and then “test” data was collected on a small portion

of the same road way, across just 6 km. The full roadway, shown in Figure 3.8,

was used in the map building process while the second run was used in the testing

procedure. The ‘DerGauss’ wavelet and the five wavelet scales shown in Fig 6-

Fig 10 are used to generate the features for this experiment. The ‘Amplitude

60

 Wavelet Decomposition Scale

A
cc

u
ra

cy
 (

%
)

(L = 410m)
L ∗ 2−1

L ∗ 2−2
L ∗ 2−3

L ∗ 2−4
L ∗ 2−5

0

20

40

60

80

100

DerGauss
Sombrero
Morlet
DerGauss
Sombrero
Morlet

Approximate
Theoretical Upper Bound

Simulation

Figure 3.6: A comparison of the theoretical accuracy obtained from the hyperplane
NN approximation with the simulation results.

Bias’ feature vector from Table 2.1 is used in this analysis as no significant scale

distortions were observed in the pitch data. Three point features are combined

and an extended feature vector is created by removing the redundant dimensions.

Thirty different query signals were extracted from the “test” data. To check the

accuracy of localization, the ground truth for the 6 km stretch in the datasets was

obtained from a DGPS system with a positional accuracy of 0.1 meters. It must

be noted that while the mapping phase used the GPS information for representing

the pitch information as a function of distance, the testing phase used the pitch

61

 Wavelet Decomposition Scale

A
cc

u
ra

cy
 (

%
)

(L = 410m)
L ∗ 2−1

L ∗ 2−2
L ∗ 2−3

L ∗ 2−4
L ∗ 2−5

0

20

40

60

80

100
DerGauss
Sombrero
Morlet
DerGauss
Sombrero
Morlet

Theoretical
Approximation

Simulation

Figure 3.7: A comparison of the theoretical accuracy obtained from the hypercube
NN approximation with the simulation results.

information and the wheel encoder data to do the same. The localization estimate

that is obtained from this representation of the pitch data is verified by using the

GPS data that was collected as a part of the testing phase. A threshold of ten

meters was used to determine if a certain match was accurate or not. Figure 3.9

and Figure 3.10 shows the experimental setup and Figure 3.11 shows the accuracy

curves that were obtained for the feature tree based method. The accuracy curves

illustrate the localization accuracy that was obtained as a function of query signal

length. It must be noted that for a query length of 200 meters, the correct position

estimate was amongst the first five position estimates that were obtained from the

histogram of the position estimates for ninety percent of the cases. The mean and

62

Figure 3.8: The roadway network that was used as a part of the experiments.

the standard deviation of the error in the location estimate, for a 400 m query

signal, were 2.49 meters and 2.20 meters respectively. It can be clearly seen that a

threshold value of 10m is not very critical and slight changes to the threshold will

not affect the accuracy curves in a significant manner. When tested on the 6000km

database it was found that a single feature vector match took about 0.01 seconds.

The entire matching process for a 400 meter signal took about 1.16 seconds on a

3.16GHz dual core computer and implemented by using a non-optimized MATLAB

code.

63

Figure 3.9: The vehicle setup that was used as a part of the data collection effort.

3.6 Simulation Results For Pitch-Based Global

Localization

The objective of the simulation process is to test the ability of the designed feature

vector to withstand various types of sensor noise typical of vehicle sensors and

road measurement. Each type of sensor noise is represented by a corresponding

parameter in the sensor model. In this paper, the pitch and the encoder sensors

are modeled with the sensor models taken from [65] and [52], which are given by

Eqns 3.10 and 3.11 whose terms are defined in Table 3.2. It must be noted that the

bias term for the pitch sensor error in [65] is modeled as a slow varying bias and is

approximated as a constant for the purposes of this simulation. The ‘Amplitude

64

Figure 3.10: The overview of the data acquisition setup that was used as a part of
the experiments.

Bias’ point feature vector is used in this analysis for all the distortion cases except

the scale factor distortion. In case of the scale factor error the ‘Amplitude Bias

and Amplitude Scale’ point feature vector from Table 2.1 is utilized as it provides

robustness against scale distortion.

Table 3.2: Nomenclature for Equations 3.10 and 3.11

Symbol Quantity
Pitcht True Pitch
Pitchm Measured Pitch
B Constant Bias Error
Sf Constant Scale Factor Error
νw1 Zero mean band limited pitch noise
νw2 Zero mean band limited encoder noise

Encoderm True encoder value
Encodert Measured encoder value

65

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (meters)

A
cc

u
ra

cy
 (

%
)

Accuracy Criterion: Best position estimate
Accuracy Criterion: Best of five position estimates

Figure 3.11: Accuracy curves for localization in a roadway network of 6000 Km.

Pitchm = (1 + Sf)Pitcht +B + νw1 (3.10)

Encoderm = Encodert + νw2 (3.11)

These sensor models contain a total of four different error parameters (B,Sf , νw1, νw2),

each of which represents particular types of noise. The error sources that are mod-

eled by these parameters can come from both the sensor and the data collection

process. For example, B includes the bias error in the pitch sensor and any in-

clination angle error in mounting the sensor to the vehicle. Similarly, νw1 and

νw2 represents the zero-mean band limited white noise from the pitch and encoder

66

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Bias Error in Pitch (Degrees)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 103 meters
Query Signal Length = 205 meters
Query Signal Length = 410 meters

Std Dev Pitch Noise = 0.1 Deg
Scale Factor Error = 0
Std Dev Encoder Noise = 0.075 m

Figure 3.12: The localization accuracy of the ‘amplitude bias’ feature vector is
immune to the bias noise present in the sensor.

sensors and also the noise from the vehicle chassis vibration and measurement er-

rors due to slight differences in the lateral lane position of a vehicle during data

collection. The bias and scale factor errors are expected to be mainly from the

pitch sensor and the contributions from the data collection process are expected to

be small if the sensors are properly mounted and calibrated. The standard devia-

tion of the band limited noise for pitch data is again expected to be mainly from

the sensor and the contribution from the data collection process was estimated as

0.057 degrees (std dev) for the pitch data from experiments.

For this simulation, pitch data obtained from an integrated GPS-IMU system

67

was used to generate feature vectors that were stored in a feature tree. Figure 3.8

shows the 6000 km of roadway that was used in creation of the feature tree. Small

portions of the original signal were taken and corrupted with each of the different

noise types (B,Sf , νw1, νw2) up to varying degrees to create a “query signal”. The

feature vectors obtained from this query signal were matched with the original

database to estimate the position in the database from which this query signal

was extracted. The correctness of this position estimate was decided on the ba-

sis of a threshold distance (10 m) from the true point of extraction of the signal,

e.g. any final estimate within this threshold is considered correct (local tracking

algorithms can “lock” easily within this range). For each of the four parameters,

the simulation was performed by varying the parameter of interest while keeping

others constant at their expected value for low cost sensors. The query signal was

extracted from sixty different points of the original signal. Each query signal was

corrupted and tested thirty times in order to obtain a statistical estimate of algo-

rithm performance that accounts for the random nature of the errors introduced.

The tests were performed for query signals of lengths 103, 205 and 410 meters.

Figure 3.12 shows that the estimation process is unaffected by bias (B), a result

that was expected as the feature vector was designed for bias invariance.Figure 3.13

(top) shows that the scale factor error (Sf) severely affects the performance of the

‘amplitude bias’ feature vector. The ‘Amplitude Bias and Amplitude Scale’ fea-

ture vector which has been designed to be scale invariant is completely immune to

68

scale factor error (Sf) as shown in Figure 3.13 (bottom). Figure 3.14 (top) shows

that the estimation procedure was largely invariant to distance measurement (en-

coder) noise (vw1) that one would encounter at highways speeds (60mph) which

was estimated to be 0.076m (std dev) for each encoder tick at 100 Hz [52]. The

addition of band-limited random noise in the pitch sensor (vw2) was also investi-

gated (Figure 3.14, bottom). In [65], it was found that low-cost sensors used for

pitch measurement had a standard deviation of vw2 of 0.1 degrees, so variations in

pitch noise around this deviation were considered. This noise type appears to have

a significant effect on the accuracy of the result. Both the plots in Figure 3.14

consider localization performance over several different query lengths. The results

show that the performance of a more accurate pitch sensor can be achieved by a

low-cost pitch sensor if one simply collects data over a longer period of time to

obtain a longer query signal.

3.7 Conclusions and Future Work

Firstly, the paper demonstrates the possibility of using pitch data for global local-

ization in large roadway networks. By generating feature vectors for one dimen-

sional pitch data, localization has been effectively performed for a road way network

that is an order of magnitude larger than what has been previously demonstrated

[47, 40]. Table 3.3 provides a comparison of the proposed method with localization

methods using other sensors. While pitch information has low data density and

69

hence can be utilized for localization over a large roadway network, the tradeoff is

that a vehicle needs to travel a longer distance before localization is achieved.

Table 3.3: Comparision Of Different Sensor Modalities For Localization

Sensor Map Numbers of Travel distance
Citation Size(Km) Features/Km for query signal (m)

Vision [47] 20 5 x 106 < 1
LIDAR [40] 165 9 x 103 < 20 − 60

Pitch 6000 3 x 101 < 400

This work also enables the use of other inertial measurements from vehicles,

such as roll and yaw data, for localization. Future work could be directed towards

implementing a feature vector that combines multiple sources of inertial data,

thus reducing the query length because of the higher data density. The paper also

introduces ‘Multi Scale Extrema Features’ which are designed to overcome the

expected drawbacks of using current time series subsequence matching techniques

for inertial data. These features are robust to sensor noise and future work could

involve demonstrating their capabilities by performing localization with low-cost

inertial sensors. Overall, this paper presents a promising new technique to perform

global localization in order to compensate and/or replace GPS position estimates

on roadway networks.

70

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Scale Factor Error in Pitch (Dimensionless)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 103 meters
Query Signal Length = 205 meters
Query Signal Length = 410 meters

Std Dev Pitch Noise = 0.1 Deg
Bias Error =0 Deg
Std Dev Encoder Noise = 0.075 m

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Scale Factor Error in Pitch (Dimensionless)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 103 meters
Query Signal Length = 205 meters
Query Signal Length = 410 meters

Std Dev Pitch Noise = 0.1 Deg
Bias Error =0 Deg
Std Dev Encoder Noise = 0.075 m

Figure 3.13: The plots show that the localization accuracy for the ‘amplitude bias’
feature vector (top) is severely affected by scale factor noise while the ‘amplitude
bias, amplitude scale’ feature vector (bottom) is completely immune to it.

71

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

 Std Deviation of the Pitch Measurement Noise (Degrees)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 103 meters
Query Signal Length = 205 meters
Query Signal Length = 410 meters
Error From Low−Cost Sensors

Bias Error = 0 Deg
Scale Factor Error = 0
Std Dev Encoder Noise = 0.075 m

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

 Std Deviation of the Distance Measurement Noise (Meters)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 103 meters
Query Signal Length = 205 meters
Query Signal Length = 410 meters
Error From Low−Cost Sensors

Bias Error = 0 Deg
Scale Factor Error = 0
Std Dev Pitch Noise = 0.1 Deg

Figure 3.14: The plots examine the effects of band-limited white noise in the
encoder and pitch measurements on localization accuracy.

Chapter 4
Pattern Matching of In-Vehicle

Acceleration Time Series Data

4.1 Introduction

Previous work that identified patterns in acceleration data was aimed at identify-

ing the nature of terrain that the vehicle was traveling on [66] or identifying the

driver behavior [67]. Recently, acceleration data is also being used to identify the

activity of a person [68] as many smartphones come with accelerometers built into

them. In this work we aim to extract location information by correlating patterns

from acceleration data across multiple vehicles. This problem was encountered as a

part of a broader research project where a large set of vehicle data (service records,

acceleration data, etc) were collected over many years and on a number of different

vehicles. While the acceleration data from these vehicles is known, the GPS data

73

is unavailable due to privacy reasons. For purposes of prognostics and diagnostics,

one of the tasks of the original project was to identify patterns in the data collected

from fleet vehicles that were operated as a part of convoys or which were oper-

ated in the same routes. As the GPS information was unavailable, it was deemed

necessary to explore the possibility of being able to cluster vehicles into common

locations on the basis of measured acceleration data. If this grouping can be per-

formed, then a possible application could be to pair this new information with the

service records and other information from the vehicles to identify relationships

between driving behavior patterns, positions, and repair histories. Before solving

the problem of clustering the vehicles, one must check feasibility of a signal-feature

solution approach through a preliminary test where true positions are measured

during the test. A preliminary test in this case would be to check whether the

acceleration signatures of two vehicles that have travelled on the same road can

be matched in the presence of vehicles. Also, the preliminary test data can be

used to determine the most effective variant of a feature vector that can be used to

solve the clustering problem. The main objective of this chapter is to perform this

preliminary test and identify feature vector formulations that will be effective in

matching acceleration data collected from different vehicles. The general overview

of the preliminary test is as follows. Two sets of vehicle data including both accel-

eration and GPS (for ground truth) are collected on the same set of roads with two

different vehicles. One set of acceleration data is used to create a database while

74

portions of different length are extracted from the second dataset and are used to

obtain a match to the first acceleration profile. The GPS locations from both the

datasets are used to measure the accuracy of the matching process. In its essence,

the preliminary test consists of matching a signal with a large database of signals

to find the most similar matches. This problem is often referred to as the subse-

quence matching problem [4]. The preliminary test is also similar to the map-based

Global Localization problem in robotics [46, 47, 51]. In the Global Localization

problem, a map (or database) is given to a robot, and robot must establish its

location within the map by collecting sensor data and matching it with the map.

Thus, this technique can be seen not only as a method to perform the feasibility

test for grouping vehicles based on acceleration data, but also as a feasibility test

for acceleration-based localization. A variety of sensors have been used for Global

Localization over the years. LIDAR [46] and Vision sensors [47] are the most com-

monly used in robotics to perform Global Localization. Both LIDAR and Vision

systems provide high dimensional data and the nature of these sensors is substan-

tially different from inertial sensors such as an accelerometer and so the methods

applicable cannot be directly utilized for pattern matching with acceleration data.

In recent research, Vemulapalli et al [62] have reported that global localization

can be performed using pitch data. Global Localization with pitch data [62, 63]

has many similarities with respect to the ‘preliminary test’ problem using accelera-

tions, but there are a number of key challenges that are specific to acceleration data.

75

Pitch is generally easier to use because the pitch plotted against odometry does

not change significantly with speed. The acceleration data, however, can undergo

substantial distortion based on external conditions such as traffic. Moreover, the

bias and scale factor variations in the pitch data are generally smaller than that for

acceleration data. While this technique utilizes the ‘Multi-Scale Extrema Feature’

vector framework developed for the pitch-based localization method, it evaluates

different variants of the above feature vector and provides insights into the specific

requirements and possibilities for acceleration data. This chapter also proposes a

novel ‘Multi-Scale Encoding’ method that enhances the performance of the feature

matching algorithm. While the current work presents the results in the context of

in-vehicle acceleration data matching, this feature vector could potentially be used

for other acceleration matching applications. Section 4.2 explains the challenges

in matching acceleration data from two different vehicles and presents a literature

survey of the current subsequence matching techniques and their abilities to han-

dle the above challenges. Section 4.3 presents the novel encoding method which

is a generalization of the encoding technique previously described for the case of

‘Multi-Scale Extrema Features’. Section 4.4 describes the experimental setup used

to collect the data required to test the algorithm. Section 4.5 presents the results

obtained from applying different variants of the MSE features to acceleration data.

Conclusions then summarize the main results of this work.

76

4.2 Background and Literature Survey

Before setting out to perform the ‘preliminary test’, one can visually verify whether

acceleration data collected from two different vehicles on the same route have sim-

ilar characteristics. Figure 4.1 shows the acceleration data collected on a vehicle

that has travelled on a certain public route and within normal traffic patterns. One

can clearly see the effect of the road layout on the acceleration data, wherein the

turns of the route correlate to specific acceleration features. This implies that one

can predict the acceleration of a vehicle, to a certain extent, based on the route

that the vehicle is traveling on. Or conversely, one can use acceleration features

to discern route location. The driver behavior, such as the speed at which one

is traveling, external conditions, such as the traffic on the road, and the vehicle

dynamics will also affect the acceleration data that is collected on a vehicle. This

is in contrast to pitch based localization which is largely immune to these varia-

tions. The key to acceleration-based pattern matching is the ability to extract the

Figure 4.1: The effect of the route on in-vehicle acceleration data

77

common features that can be matched irrespective of the nature of distortions that

will be experienced due to human behavior and external conditions. Figure 4.2

shows the acceleration data collected on the same route as shown in Figure 4.1 on

two different runs by different drivers. While one can definitely notice similarities

between the data, the nature of distortions that one can observe is substantial: the

five distortions that one can easily notice are shown in Figure 4.2 include temporal

distortion, outliers, bias distortion, scaling distortion, and random noise. Given

the nature of distortions in this case, a robust subsequence matching technique

must be deployed. A number of different subsequence matching techniques have

been proposed in the literature. Unfortunately, the similarity distance metrics

that are used by these techniques have certain drawbacks that preclude them from

being effective for acceleration data in particular. For example, the Euclidean dis-

tance has been reported as being brittle [19] to temporal distortions. Dynamic

Time Warping (DTW) [19, 69] has been introduced as a generalized form of Eu-

clidean distance as it is robust to temporal distortion but it fails in the presence

of outliers. This has led to ‘Edit Distance’ methods such as Edit Distance on Real

Sequence (EDR) [69] and Longest Common Subsequence (LCSS) [9], which have

drawn inspiration from methods used for matching strings in which dissimilar por-

tions between the two strings are ignored. It has been reported in the literature

that the edit distance methods are themselves sensitive to amplitude shifting and

scaling [13].The above methods [69, 9, 19] are also computationally burdensome

78

because of the long length of the query signal in this application. Researchers

have recently used local pattern based techniques [64, 39], but most of these meth-

ods have relied on a sliding window approach and perform an exhaustive search

across all window sizes and are thus computationally expensive. The‘Multi-Scale

Figure 4.2: The distortions that are exhibited by acceleration data collected on
different runs.

Extrema Features’ , which have been presented in Chapter 2, have been designed

to perform under a range of distortions without using a sliding window approach.

The success of these features in the context of pitch based localization makes them

promising candidates for the acceleration case. The following section presents a

novel ‘Multi-Scale Encoding’ method which is a generalization of the sequential

encoding method used in Chapter 2 and leads to better performance results.

79

4.3 Multi-scale Encoding

In the subsequent sections, the ‘Multi-Scale Extrema Features’ presented in Chap-

ter 2 are referred to as ‘Sequentially Encoded Multi-Scale Extrema Features’ or

‘SEMSE’ features in order to distinguish them from the ‘Multi-Scale Encoded

Multi-Scale Extrema Features’ or ‘MEMSE’ features that are described in this sec-

tion. The term ‘Multi-Scale Extrema (MSE) Features’ is used to refer to ‘SEMSE’

and ‘MEMSE’ features simultaneously. Multi-Scale Encoding is a technique to im-

prove the matching accuracy by encoding more feature vectors for a given signal

that in turn captures more information about the signal. In the Multi-Scale En-

coding method, point feature vectors from different scales are combined together to

form extended feature vectors. Figure 4.3 illustrates the encoding mechanism for

SEMSE and MEMSE feature vectors. The figure shows the features vectors that

are formed with a point feature vector (P.F.V)(shown in a red glow) in conjunction

with other P.F.Vs (shown in a yellow glow) for both the sequential encoding and

Multi-Scale Encoding methods. Multi-Scale Encoding allows encoding of feature

vectors from even those wavelet scales where there may be insufficient number of

extrema in a particular scale to form a sequentially encoded feature vector. This

leads to improved performance for shorter query signals. In this particular imple-

mentation, two point feature vectors (P.F.Vs) are combined to form a MEMSE

feature and the amplitude bias invariant feature vector encoding from Table 2.1

is used to generate the P.F.V. As a large number of combinations of point fea-

80

ture vectors across multiple scales are possible, it becomes necessary to limit the

number of combinations by setting time and scale windows in which suitable com-

binations can be found. Choosing a larger window size will lead to the creation of

a larger number of a features but this would also increase the computational effort

required for the pattern matching task. In this particular implementation, each

point feature vector (P.F.V) from a given scale was combined with point feature

vectors from two subsequent scales. Within these scales, the original P.F.V was

combined with other P.F.Vs which were within a certain time threshold interval

from the original P.F.V. This time threshold has to be adaptive, as each wavelet

scale represents the signal over different time lengths. The threshold for each scale

was chosen to be twice the compact support of the wavelet filter at that particular

scale. This allows for an adaptive threshold that adjusts itself to an appropriate

extent corresponding to the filter. It can be seen that the Multi-Scale Encoding

method is a generalization of the sequential encoding method, where the P.F.V’s

from different wavelet scales and beyond adjacent neighbors are combined. It is

also important to note that the extended feature vector will contain two addi-

tional dimensions which store information about the difference in the scales and

the temporal distance between the two combined P.F.Vs in the case of Multi-Scale

Encoding.

81

Figure 4.3: An illustration of the sequential encoding method and the multi-scale
encoding methods.

4.4 Experimental Setup

Acceleration and GPS data were collected along six predetermined routes. These

routes ranged from 15-45 minutes in duration and included diverse driving condi-

tions such as winding roads, mountainous roads, highways, downtown driving, etc.

The total distance for all the six routes combined was 135 kms and the routes are

shown in Figure 4.4. Each of the six routes was driven in two different manners to

test two particular scenarios.

1. Convoy Scenario: In the convoy situations, three cars drove the route simul-

taneously, with the cars safely following directly behind each other. The data

collected from different vehicles in the convoy scenario is expected to have

82

similar characteristics as all the vehicles were traveling at similar speeds, in

similar traffic conditions. However, there will be some variation due to the

different drivers involved.

2. Single Vehicle Scenario: In the single car situations, one car drove the route

independently with no driving restrictions other than local traffic laws. The

route was repeatedly driven under different times of the day (different traffic

conditions). This provided a less controlled test where data collected was

unique to driving style and traffic patterns.

The equipment used to collect data included a GlobalSat BU-353 GPS antenna

sampling at 10 Hz, a SparkFun, three-axis, ADXL335 accelerometer sampling at

9600 Hz, a battery pack, and a data-logging box. The data-logging box housed

the accelerometer and stored GPS and acceleration readings. The data-logging

box was positioned behind the passenger seat and was firmly fixed to floor of the

vehicle. The magnetized GPS antenna was mounted in the rear-window area of

the car to provide higher satellite visibility. Throughout the tests, the equipment

was positioned in the same orientation for data consistency. Refer to Figure 4.5 for

images of the equipment setup. The GPS and accelerometer data were collected

separately in the data-logging unit. Post-processing was used to convert the data

into MATLAB data files. To compensate for the different sampling rates, the GPS

and acceleration data were resampled to 10 Hz for further processing.

83

Figure 4.4: The routes covered as a part of the data collection effort

Figure 4.5: The sensors and data acquisition systems used in the experiments.

4.5 Experimental Results

This section presents the experimental results obtained by using Multi-Scale Ex-

trema (MSE) features on the data from the two scenarios mentioned in the previous

section. The tests are conducted using the subsequence matching procedure de-

scribed in Chapter 2. The testing procedure consists of a preprocessing phase in

84

which the data collected on one of the vehicles is used to build the KD-tree data

structure. In the testing phase, acceleration data obtained from another vehicle

is used to create feature vectors and these features are matched with the KD-

tree data structure. The position estimates from the matches are compiled into

a histogram and the match with the highest number of votes provides a position

estimate for the current vehicle. The accuracy of this estimate is compared to

the separately measured GPS information and in this implementation, a distance

threshold of 300 meters, in the database containing over 135000 meters of data, is

used to verify if a resulting location estimate is accurate. A relatively lax threshold

distance was utilized as this would be sufficient for the prognostics and diagnostics

application which is the eventual target for the preliminary acceleration pattern

matching problem. As described earlier, the acceleration data collected on a ve-

hicle depends on the route, driver behavior and external traffic conditions. Given

these variations, the convoy acceleration data matching problem is easier because

all these variations are expected to be similar as the vehicles are traveling in a

convoy formation. On the other hand, in the non-convoy acceleration data, only

the variations due to the roadways are expected to match while the variations due

to driver actions and external conditions are expected to be different and therefore

inhibit the matching process. Due to these differences in the data types, one can

notice that in all the subsequent tests, the accuracy result for the convoy dataset is

higher than the accuracy for the non-convoy dataset. Therefore, the two datasets

85

are useful to understand the behavior of the algorithms under different levels of

noise. Given the two datasets, the next subsection presents evidence to support

the parameter choices that have been made in constructing the feature vector.

The subsequent subsection delves into the experimental results of the acceleration

matching problem using different variants of Multi-Scale Extrema Features.

4.5.1 Parameter Tuning

4.5.1.1 Selecting the Point Feature Vector

The first design choice in constructing the feature vectors is to choose a point

feature vector from among the different options presented in Table 2.1. An exper-

imental test was performed using the SEMSE features to decide the appropriate

point feature vector from among those listed in Table 2.1 and the results are pre-

sented in Figure 4.6 and Figure 4.7. The test followed the methodology described

in Chapter 2 and the two datasets described in the previous section were utilized.

The results for the convoy dataset are shown in Figure 4.6 and the Amplitude

Bias encoding from Table 2.1 results in the best performance. These results can

be intuitively explained as the convoy data is expected to matchup very well as

all the effects such as route layout, the driver behavior and external conditions are

expected to be similar for all the vehicles. This implies that because of the low

noise situation, one would not require a high degree of robustness from the fea-

ture vector. Therefore, the Amplitude Bias point feature vector which provides a

86

unique but not very robust feature vector would be very suitable for this situation.

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (Convoys)

Amplitude Bias
No Amplitude
Amplitude Bias, Time Scale
Amplitude bias, Amplitude Scale, Time scale

Figure 4.6: Accuracy curves for localization in the convoy dataset using different
types of feature vectors.

Figure 4.7 shows that the “Amp-Bias” point feature vector performs well even

in the non-convoy situation, but it must be noted that the “Amp bias, time scale”

feature vector also performs well. It is quite likely that in the case when non-convoy

data is collected with large variations in speed, then “Amp bias, time scale” feature

vector can outperform the “Amp bias” feature vector in the non-convoy scenario.

The results in Figure 4.6 and Figure 4.7 show that scale information in the feature

vector makes an overall positive contribution to matching process because of the

uniqueness it imparts in spite of the reduced robustness that might occur because

of any scale factor variations between the matched signals.

87

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (Non−Convoy)

Amplitude Bias
No Amplitude
Amplitude Bias, Time Scale
Amplitude bias, Amplitude Scale, Time scale

Figure 4.7: Accuracy curves for localization in the non-convoy dataset using dif-
ferent types of feature vectors.

4.5.1.2 Extended feature vector dimensionality

The number of point feature vectors that are utilized to construct an extended fea-

ture vector is another important design choice that determines the dimensionality

of the extended feature vector. Figure 4.8 and Figure 4.9 show the effects of the

feature vector dimension on the retrieval result for the case of SEMSE features. It

can be seen that, for both the datasets, the method in which the extended feature

vector has three point feature vectors outperforms the other cases. The perfor-

mance of the 1 point feature vector case can be attributed to the lack of adequate

uniqueness in the feature vector. On the other hand, the performance of the 5

point feature vectors case can be attributed to the decrease in robustness as an

erroneous artifact such as an outlier is encoded into a larger number of feature

88

0 200 400 600 800 1000 1200 1400 1600 1800
40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (Convoys)

5 Point Feature Vectors
3 Point Feature Vectors
1 Point Feature Vector

Figure 4.8: Effect of the feature vector dimensionality on the retrieval accuracy
for the convoy dataset.

vectors.

4.5.2 Experiments

The pattern matching experiments are divided into two cases. In the single axis

acceleration matching case, only the forward acceleration data is utilized in the

matching process. On the other hand, the three axis acceleration matching case

utilizes data from all X-Y-Z accelerations of a vehicle.

4.5.2.1 Single Axis Acceleration Matching

The pattern matching results comparing the SEMSE, MEMSE feature based match-

ing and the traditional Euclidean distance method are shown in Figure 4.10 and

89

200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (Non−Convoy)

5 Point Feature Vectors
3 Point Feature Vectors
1 Point Feature Vector

Figure 4.9: Effect of the feature vector dimensionality on the retrieval accuracy
for the non-convoy dataset.

Figure 4.11. In order to simplify the explanation, the results of SEMSE method

are first compared with the Euclidean distance method and then a comparison

between the MEMSE and SEMSE features is delineated.

1. SEMSE features vs. Euclidean distance method: The aim of this analysis

is to compare the results of a particular implementation of the MSE feature

(Sequentially encoded) with the Euclidean distance method by evaluating

them on the same dataset. The sequentially encoded feature has been de-

scribed in Chapter 2. In this particular implementation, the amplitude bias

invariant feature vector from Table 2.1 was chosen on the basis of the analysis

performed in Section 4.5.1.1. A total of three point feature vectors were used

in each extended feature vector as this gave the best performance as shown in

90

0 200 400 600 800 1000 1200 1400 1600 1800
40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (1−axis)(Convoys)

(Sequentially Enoded) MSE Features
 (Multiscale Encoded) MSE Features
 Euclidean Distance Method

Figure 4.10: Accuracy curves for localization in the convoy dataset using different
types of feature vectors.

Section 4.5.1.2. The dataset consists of acceleration data measured along a

single axis and the results corresponding to convoy and non-convoy datasets

are shown in Figure 4.10 and Figure 4.11 respectively. The low noise level

in the query data of the convoy dataset, results in the excellent performance

of both the Euclidean and the Sequentially Encoded MSE (SEMSE) feature

vector. However, one can notice that the SEMSE feature outperforms the

Euclidean method at longer query lengths and this can be attributed to the

non-robust nature of the Euclidean distance metric. It must also be noted

that the Euclidean distance method performs better than the SEMSE fea-

ture vector for shorter query lengths as there may not be adequate number

of extrema in shorter query signals in order to create unique feature vec-

91

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (1−axis)(Non−Convoy)

(Sequentially Enoded) MSE Features
 (Multiscale Encoded) MSE Features
 Euclidean Distance Method

Figure 4.11: Accuracy curves for localization in the non-convoy dataset using
different types of feature vectors.

tors. In the case of the non-convoy dataset, the SEMSE feature outperforms

the Euclidean distance based method because of its capacity to withstand

complex deformations in a signal. The performance difference is stark espe-

cially with large query lengths, because of the ability of the MSE method to

encode low frequency features which are very unique. While the DTW [8]

based methods might result in better performance than the Euclidean data,

the high computational demands of these methods makes them infeasible for

the current application. It must be noted that MSE method not only results

in better accuracy but is also computationally very efficient.

2. MEMSE features vs. SEMSE features: Figure 4.10 and Figure 4.11 also

present the results of using different types of encoding techniques to build

92

the extended feature vector. The MEMSE feature vector clearly leads to

better performance than the SEMSE feature vector, but the nature of the

Multi-Scale Encoding technique leads to large number of feature vectors and

this in turn leads to a slightly larger memory footprint and computational

effort in this case.

0 200 400 600 800 1000 1200 1400 1600 1800
90

91

92

93

94

95

96

97

98

99

100

101

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (3−axis)(Convoys)

(Sequentially Enoded) MSE Features
 (Multiscale Encoded) MSE Features
 Euclidean Distance Method

Figure 4.12: Accuracy curves for localization in the convoy dataset using different
types of feature vectors.

4.5.2.2 Three Axis Acceleration Matching

A multiple KD-tree approach is utilized to incorporate acceleration data from

different axis into the matching process. This method is similar to that presented

in Chapter 2 except that three separate KD-trees are built to handle data along

each axis. The position estimates from each KD-tree are assembled together into a

93

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (seconds)

A
cc

ur
ac

y
(%

)

Experimental Test Result (3−axis)(Non−Convoy)

(Sequentially Enoded) MSE Features
 (Multiscale Encoded) MSE Features
 Euclidean Distance Method

Figure 4.13: Accuracy curves for localization in the non-convoy dataset using
different types of feature vectors.

single histogram that is used to decide the best position estimate. Figure 4.12 and

Figure 4.13 show the results from this method for the convoy and the non-convoy

datasets. One can clearly see that including new data sources into the matching

process improves the accuracy of all the methods and that the MEMSE feature

vector gives the best performance in all the cases.

4.6 Conclusion and Future Work

Overall, the research work demonstrates the utility of Multi-Scale Extrema Fea-

tures for encoding acceleration data. The chapter also proposes the Multi-Scale

Encoding method which leads to improvements in the performance under certain

94

conditions, when compared to the sequentially encoded method. This analysis has

shown that, given long query signals, the acceleration data from a vehicle travel-

ing on a particular road can be matched in spite of differences in driver behavior

and traffic conditions. The performance advantages of using the feature vectors

are clear, especially, in the case of longer query signals. The feature vectors that

have been developed can not only be used for the originally mentioned cluster-

ing task but also be applied to other pattern recognition applications which rely

on in-vehicle acceleration data. An interesting direction of future work would be

to extract extrema from Iterative Mode Functions (IMFs) obtained from Emperi-

cal Mode Decomposition (EMD) [70] because of their ability to handle nonlinear

and non-stationary characteristics that were observed in acceleration data. Fu-

ture work could also be directed towards minimizing driver variability effects by

preprocessing or by utilizing encoder data in order to correct for rate of travel

through feature sets. Additionally, because the application of these results consid-

ers reliability of the same vehicle model in operation, all testing was done using

identical Chevy Malibus as the fleet vehicles and therefore the present study does

not account for distortions in the acceleration data due to the different dynam-

ics exhibited by different vehicle types. Work is ongoing to study the dynamic

influence of vehicle-to-vehicle differences.

Chapter 5
Optimal Extrema Features

5.1 Introduction

The task of extracting feature vectors from time series data is of fundamental

importance in accomplishing a wide range of pattern recognition tasks. Examples

include similarity-based pattern querying in time-series databases [4], classification

of time-series data [71, 68, 72], discovery of anomalous subsequences [73] in time-

series etc. The problem of representing and comparing time-series has hence seen a

variety of solutions. The various approaches may roughly be categorized into three

classes, namely: dimensionality reduction methods, distance metric methods, and

interest point methods. A brief description of each approach is provided below.

1) Dimensionality reduction methods: In these methods, given a particu-

lar time series, a window of a certain length is chosen and the window is slid across

the time series to extract all possible subsequences [4]. This initial step is often re-

96

ferred to as the sliding window method. A dimension reduction technique is then

applied to each subsequence to obtain a feature vector to describe it. Different

types of dimension reduction techniques have been proposed in literature. These

have included extracting coefficients from Discrete Fourier Transform [4] , Discrete

Wavelet Transform [6], Discrete Cosine Transform [4], and Singular Value Decom-

position [5] of the subsequence. Methods have also been developed to represent

a subsequence using piecewise constant values [17, 18], piecewise linear functions

[74], chebyshev polynomials [75], and via symbols [76]. Most of the above methods

utilize the euclidean distance between the generated feature vectors as a measure

for calculating the distance between the feature vectors.

2) Distance metric methods: While Euclidean distance is the most straight-

forward method of comparison, this metric does not exhibit robustness under tem-

poral distortion, outliers etc. which are typically incurred by time-series data.

Considerable research effort has hence been directed towards building alternate

measures of time-series comparison. One such advance is Dynamic Time Warping

methods (DTW) which can tolerate temporal distortion [77]. Euclidean and DTW

methods are further not robust to outliers, and this has lead to the development of

“edit distance” methods. The concept of edit distance was borrowed from match-

ing strings, and these methods enable matching by ignoring the dissimilar parts of

the given time series [9, 71, 10].

3)Interest point methods: The use of features developed from key loca-

97

tions or “interest points” of a signal has been presented in literature in the form

of landmarks [7]. From a retrieval standpoint, the fundamental novelty of this

method of generating features when compared to the above methods is that it is

not necessary to use the sliding window method in this case and this leads to a

significant computational benefit. The use of extrema as interest points [78] has

become increasing popular for time-series data analysis as evidenced by its recent

applications in financial time-series analysis [7], audio hashing [79] and vehicle

localization [63, 62].

Of the above time series analysis techniques, our proposed research focuses on

interest point methods, and specifically extrema methods as they possess certain

inherent capabilities that make them desirable in a variety of different pattern

recognition tasks. Some of these properties are:

1) The essential information in a time-series is captured by adapting to its

local temporal variation. Extrema features do this naturally since more extrema

are found in regions of high variation and fewer where the time series is slowly

varying.

2) Extrema methods are invariably economical in terms of signal representation

and lead to a concise feature representation. This is because, for relatively well-

behaved and structured time series, the number of extrema are much smaller than

the overall length of the signal.

3) As demonstrated in [7] extrema or landmark features can be encoded to ex-

98

hibit invariance under common transformations of shifting and scaling that time-

series incur. This, along with resilience to noise, make extrema features robust,

where robustness is the ability to survive intact in spite of distortions/transformations

being introduced into the signal.

Main contributions of this work:

The overarching goal of this chapter is to provide a principled algorithmic

framework to handle the process of extrema detection and feature creation. In

particular, our goal is to formalize the intuition provided by recent work in ex-

tracting and encoding extrema features [7, 79, 63] for various applications. More

specifically, our key contributions are:

1) Algorithmic framework for robust extrema extraction and encod-

ing: This chapter breaks down the process of generating features from raw data,

by utilizing extrema, into three distinct steps: filtering, extrema detection and

feature encoding. The proposed framework utilizes the properties of robustness,

uniqueness, and cardinality as the basis for controlling each one of the above steps.

2) Optimization of robustness: Our central contribution is an optimization

technique which extracts robust extrema, i.e. the extrema should be retained even

as the time-series goes through distortions of noise, amplitude/time scaling, and

shifts and other miscellaneous operations that may occur in capture or incidental

processing of time-series data. Note that robustness is a highly desirable prop-

erty, many practical applications involving time-series comparison/classification

99

are thwarted because the features do not withstand real-world distortions. Exist-

ing work [7] addresses this issue by a careful choice of a smoothing/pre-processing

filter applied to the time-series prior to extrema extraction. In the proposed work,

we explicitly optimize this filter using example (or training) time-series and demon-

strate that this optimization reduces to a generalized eigenvalue problem.

3) Generalized encoding method to control uniqueness and cardinal-

ity: We also develop a new feature encoding method that provides better control

over the properties of uniqueness and cardinality of the feature vectors that are

generated. The properties of uniqueness and cardinality have direct influence on

the accuracy and the computation involved with various pattern recognition prob-

lems and are therefore of central importance.

4) Application of the framework to subsequence matching: The above

framework (optimization for robustness and the generalized encoding method) is

then utilized to arrive at a solution to the problem of subsequence matching. The

use of extrema methods for subsequence matching enables one to circumvent the

need for a sliding window method [4]. Also, the extrema approach to subsequence

matching uses fewer feature vectors and does not need post processing unlike the

other sliding window methods. Moreover, the extrema methods outperform tra-

ditional sliding window methods in situations where the query signal is corrupted

with bias noise, scale factor noise, and outliers simultaneously.

The chapter is organized in the following manner. Section 5.2 outlines the pro-

100

cess of obtaining feature vectors from raw data by using extrema. This section also

defines the fundamental properties of robustness, uniqueness, and cardinality and

details how these properties can be interrelated. Section 5.3 formulates the design

of filter coefficients as a constrained optimization problem, and subsequently solves

this as a generalized eigenvalue problem. A new encoding technique is proposed

in order to provide a greater level of control over the uniqueness and cardinality of

the features created from extrema. Section 5.4 presents results from two different

set of experiments. First, we rigorously examine and validate the robustness pro-

vided by the optimization method in Section 5.3. Subsequently, an application for

the proposed framework is demonstrated where in the performance of the extrema

features obtained using the framework are compared with other techniques on both

real and simulated data. Section 5.5 summarizes our contributions and concludes

the chapter.

5.2 Extrema Features: Principal Issues

We introduce first the relatively generic process that is used to generate feature

vectors from raw time-series data while using extrema. Next, we describe prop-

erties of extrema features which have a crucial effect on the pattern recognition

tasks that utilize them.

101

5.2.1 Background

Extrema techniques create feature vectors by encoding the amplitude, relative

locations or other properties of the extrema. A block diagram illustrating the

steps involved in a generic process that seeks to encode features from extrema

is shown in Figure 5.1. The first step in the process is filtering the signal to

reduce noise and/or to enhance significant aspects of the time series data. The

second step involves extracting the ‘extrema’ from the filtered signal. The process

of extracting the extrema itself could be based on using simple thresholds or by

considering additional properties of an extrema that try to ascertain whether each

extrema is “significant” or not. Each individual significant extremum is encoded

into a ‘feature vector’ in the third step. We address the individual elements of

this feature vector as ‘extrema features’, and the collection of feature vectors that

represent a time series is called the ‘feature representation’.

The above three steps may not always be implemented in conjunction and many

pattern recognition problems utilize portions of the three steps described above.

It is very common for algorithms to use the first two steps of filtering and extrema

detection to detect interest points and subsequently either use alternate encoding

methods (that do not rely on extrema)[30][80] or no encoding techniques at all [34]

[81] [82].

102

Step 1: Filtering

Step 2: Extrema Detection

Step 3: Encoding

Raw Data

Filtered Data

Extrema

Feature Vector

Significant
Insignificant

a

b c

d

= [a,b,c,d]

Extrema

Feature

Feature Representation
 [a,b,c,d] [c,d,e,f]

 [f,g,h,i]

 [e,f,g,h]

Figure 5.1: The steps involved in creating features from extrema.

5.2.2 Properties Governing Performance

Given the benefits enabled by the use of extrema features, we discuss next the

key properties of extrema features which in turn have a critical bearing on their

application in pattern matching tasks.

1) Robustness: It is highly desirable that the extrema from a time-series signal

are robust under some typical distortions to the time-series. These distortions

may include additive noise, amplitude/time scaling and shifts, and a host of other

miscellaneous distortions. In fact, one of the key motivating factors for the use

of extrema in time-series [7] is the fact that extrema features, if well designed,

103

can enable much better robustness under a variety of distortions over classical

alternatives like using Euclidean distance to compare different time series.

2) Uniqueness: Certain pattern matching tasks require that the extrema that

are extracted lead to unique feature vectors. Intuitively, uniqueness may be inter-

preted as the feature representation of a given time-series to be considered as its

fingerprint, i.e. a compact, reduced-dimension identifier of the time-series that is

sufficiently distinct from other features.

3) Cardinality: Cardinality refers to the number of extrema that are extracted

from a signal. The cardinality of extrema is usually directly proportional to the

number of feature vectors that are encoded from those extrema. The number

of feature vectors that are extracted will in turn affect the computation that is

required to perform a given pattern recognition task.

Control over the above properties can profoundly impact the use of extrema fea-

tures in pattern matching applications. As an example, for classifying time-series,

an appropriate balance of robustness and uniqueness is needed. In particular, the

robustness should be high enough so that the classification task takes place in

spite of noise, but shouldn’t be so high as to inhibit the classification process it-

self. Likewise, a sufficiently high level of uniqueness is needed so that class-specific

discriminative information is captured by the extrema feature representation. An

alternate application where extremely high uniqueness may be needed is time-series

retrieval or subsequence matching - here, the feature representation must (ideally)

104

be uniquely tied to each time-series in a database of canonical time-series. Finally,

cardinality (proportional to the number of feature vectors/size of feature represen-

tation) of a time-series may be controlled so as to provide a desirable computation

versus performance trade-off. The next section delves into the development of tools

and techniques to either explicitly optimize or intuitively control these properties

in each of the three steps described in Figure 5.1.

5.3 Tools and Techniques for Adaptive Extrema

Feature Extraction

5.3.1 Filtering Step: Optimizing robustness via filter coef-

ficient optimization

The extrema extraction step is usually preceded by filtering in order to reduce noise

and to enhance the prominent features of the time series. The earliest approach

which introduced landmarks or interest points for time-series analysis [7] advocated

the use of a smoothing filter. More recently, applications inspired by wavelet

kernels have been utilized in various pattern recognition applications [83] [62].

Kicey et al [34] have shown that the extrema from the wavelet transform can be

used to synthesize approximations to the time-series. Extrema in a signal are often

used as candidates for generating the hash vectors. For example, the algorithm

105

behind the shazham audio identification service [37] takes the short term Fourier

transform of the music signal and utilizes extrema in the resultant transformed

data to create the hash vectors [38]. This is another situation in which linear

filtering, followed by extrema detection, is utilized in generating feature vectors.

Next, we describe the process of obtaining the filter that maximizes the robust-

ness of the extrema obtained from the filtering process. This filter is obtained by

performing an optimization routine on a training dataset, thus adapting the filter

to the particular dataset at hand.

5.3.1.1 Derivation of the optimal filter

The most desirable extrema are those that remain identifiable and unaffected when

distortions are introduced into a signal and can be referred to as robust extrema.

A filter that results in the most robust extrema from being extracted from the

filtered signal can be defined as the “optimal filter” in this context. In order to

find the optimal filter that maximizes the robustness of the extrema, it is necessary

to geometrically visualize the process that occurs when selecting an extrema. The

following derivation demonstrates that the extrema selection process is equivalent

to a geometric problem of partitioning data points in a hyperspace. It also shows

that the filtering operation can be interpreted as bounding the selected extrema

by two hyperplanes. The derivation is as follows:

For a given discrete signal x[n] and an acausal FIR filter h[n] with 2N + 1

106

coefficients, the corresponding filtered signal is denoted by

y[n] =
N
∑

i=−N

bix[n− i] (5.1)

where bi are the filter taps for the filter h[n],

As h[n] has 2N + 1 taps, bi = 0, i /∈ [−N,N] (5.2)

It is desirable to have an odd number of taps in the filter so that the filter has

an identical number of taps on either side of a particular point. This selection is

advisable for most signals unless there are any specific reasons to choose a filter

with different number of taps on either side of a point.

If y[n0] is a maxima of the filtered signal then by definition it must satisfy (5.3)

and (5.4):

y[n0] > y[n0 + 1] (5.3)

y[n0] > y[n0 − 1] (5.4)

Substituting (5.1) into equation (5.3),

N
∑

i=−N

bix[n0 − i] >
N
∑

i=−N

bix[n0 + 1 − i] (5.5)

⇐⇒
N
∑

i=−N

bix[n0 − i] >
N−1
∑

i=−N−1

bi+1x[n0 − i] (5.6)

107

⇐⇒
N+1
∑

i=−N−1

bix[n0 − i] >
N+1
∑

i=−N−1

bi+1x[n0 − i]

as b−N−1 = bN+1 = bN+2 = 0(from (5.2))

(5.7)

⇐⇒
N+1
∑

i=−N−1

(bi − bi+1)x[n0 − i] > 0 (5.8)

Performing a similar computation for equation (5.4),

y[n0] > y[n0 − 1] (5.9)

We obtain
N+1
∑

i=−N−1

(bi − bi−1)x[n0 − i] > 0 (5.10)

Let

αi = bi − bi−1 (5.11)

Then substituting i = i+ 1

αi+1 = bi+1 − bi = −(bi − bi+1) (5.12)

∴ bi − bi+1 = −αi+1 (5.13)

Substituting (5.11) into (5.10) we obtain

N+1
∑

i=−N−1

αix[n0 − i] > 0 (5.14)

108

Substituting (5.13) into (5.8) we obtain

N+1
∑

i=−N−1

−αi+1x[n0 − i] > 0 (5.15)

Given the two equations (5.14) and (5.15) that need to be satisfied for y[n0] to be

a maxima, these conditions can be interpreted in a geometric manner. Consider

the 2N + 3 long sequence of x[n] where n ∈ [n0 − N − 1, n0 + N + 1] as a point

x in a 2N + 3 dimensional space. Let the sequence αi where i ∈ [−N − 1, N + 1]

be denoted by a vector α1 and the sequence −αi+1 where i ∈ [−N − 1, N + 1]

be denoted by vector α2 in the same 2N + 3 dimensional hyperspace. Then the

conditions given by (5.14) and (5.15) are required for Y [n0] to be a maxima can

be interpreted in the following manner:

1. Imagine a hyper plane passing through the origin and perpendicular to α1.

Any point x (2N + 3 dimensional) that lies to one side of this hyperplane

will satisfy
N+1
∑

i=−N−1

αix[n0 − i] > 0 (5.16)

and all the points that lie on the other side will satisfy

N+1
∑

i=−N−1

αix[n0 − i] < 0 (5.17)

2. One can similarly imagine a hyperplane corresponding to α2 that divides the

109

entire hyperspace into two regions corresponding to each of the conditions

given in equations (5.18) and (5.19).

N+1
∑

i=−N−1

−αi+1x[n0 − i] > 0 (5.18)

N+1
∑

i=−N−1

−αi+1x[n0 − i] < 0 (5.19)

3. From the above information, the region where equations (5.20) and (5.21)

are satisfied is given by the intersection of two of the regions created by the

hyperplanes perpendicular to α1 and α2.

N+1
∑

i=−N−1

αix[n0 − i] > 0 (5.20)

N+1
∑

i=−N−1

−αi+1x[n0 − i] > 0 (5.21)

The above explanation is illustrated in Figure 5.2 which shows a two dimensional

projection of the 2N + 3 dimensional space. From the above derivation, it can

be seen that the hyperspace is divided into four regions. While one of the four

regions is the maxima region the conditions that are satisfied in the other regions

will lead to a corresponding minima region, a decreasing region and an increasing

region for a particular filter as shown in Figure 5.2. For a given signal x[n], one

can extract all possible 2N + 3 long subsequences of points and populate them in

110

��������	�
��

����	�
�
�
�
�

�������������

�����
��������������	

�	�
�
�
�������
����

�����

����
������

��
���
�����
�

���������

��������	�
��

����	�
�
����	�

�
���
�����	�
�

�
��������	�

�

��

�
��
��
�
	 �

�
������	
�
�	
�

�

����
������

��
���
�����
�

���������

�
�	
�

�

Figure 5.2: A two dimensional projection of the filter hyperplanes and the regions
associated with conditions (5.16) and (5.18).

a feature space and build hyper planes corresponding to a particular filter. Then

all the subsequences that lie within the maxima region of the feature space will

correspond to maxima in the filtered signal.

5.3.1.2 Robustness

Given that noise is expected to be present within the original signal, robustness is

defined as the ability of the maxima and minima of the filtered signal to remain

intact in spite of the addition of noise. In terms of the above geometric interpreta-

tion, that would mean that, after the addition of noise, the subsequences present in

the maxima region remain in the maxima region and similarly other subsequences

111

Maxima Region

Hyperplane
perpendicular

to α2

Hyperplane
perpendicular

to α1

α1α2

Increasing Region
Decreasing Region

Minima Region

Maxima Points

Figure 5.3: The two hyperplanes corresponding to the filter will divide the hyper-
space containing the subsequences into four different regions.

from other regions (minima, decreasing, increasing) should remain in their respec-

tive regions. This would ensure that all the maxima and minima are intact and

no new extrema are formed.

Given the above interpretation, the robustness of a subsequence can now be

defined as the proximity to crossing a boundary. A particularly attractive definition

is to use the sum of the squared distances of a subsequence to both the hyper

planes of a filter. Given this definition, it should be possible to find an optimal

filter such that the sum of the squared distances to the hyperplanes of all the

subsequences corresponding to that filter is maximized. It is important to note

that this particular definition of robustness has implications on the nature of the

distortions that the signal is likely to tolerate in pattern matching. For example, if

112

one assumes that the noise to the signal is i.i.d, then the nature of distribution of a

particular subsequence in the 2N + 3 dimensional hyperspace would be spherical.

The outer radius of such a sphere would indicate the severity of the distortion,

and as long as this outer radius is less than the perpendicular distance of a given

subsequence to the filter hyperplanes, the subsequence would not change its state

from being an extrema or non-extrema. Thus, the current definition of robustness

is apt in case of an i.i.d noise whose distribution’s range is less than twice the

perpendicular distance of a point to the closest boundary hyperplane.

5.3.1.3 Derivation for the optimally robust filter

Let α1 and α2 described in the previous subsection be defined as follows:

α1 = [α−N−1 α−N α−N+1 α0 αN αN+1] (5.22)

As the filter is of length 2N + 1, α−N−1 = 0. Let

α2 = [α−N α−N+1 α−N+2 α1 αN+1 αN+2] (5.23)

Similarly, as the filter is of length 2N + 1 so α−N+2 = 0. Let the above two

vectors represent perpendicular unit vectors to the hyperplanes for a particular

filter. Therefore, the requirement that they be unit vectors imposes a constraint

113

for α1 and α2 which is given by (5.24).

N+1
∑

i=−N

α2
i = 1 (5.24)

From (5.2) and (5.11), one obtains the additional constraint

N+1
∑

i=−N

αi = 0 (5.25)

The above condition can be rewritten as

αN+1 = −(α−N + α−N+1 ++ αN) (5.26)

The sum of squared perpendicular distances of a particular point represented by a

subsequence

[x−N−1 x−N x−N+1 x0 xN−1 xN xN+1] (5.27)

to hyperplanes perpendicular to α1 and α2 is given by the square of the dot product

of the subsequence to α1 and α2 as shown in Equation (5.28).





N+1
∑

i=−N

αixi





2

+





N+1
∑

i=−N

−αixi−1





2

(5.28)

114

Therefore, the total sum of the squared perpendicular distances of all the ′M −N ′

points in the hyperspace (UR) is given by

UR =
M
∑

j=N+1











N+1
∑

i=−N

αixi+j





2

+





N+1
∑

i=−N

−αixi+j−1





2




 (5.29)

where x0, x1, x2, x3, x4,, xM+N+1 represents the time series for which an opti-

mal filter is being sought. Substituting (5.26) into the above equation we obtain

UR =
M
∑

j=N+1











N
∑

i=−N

αi(xi+j − xj+N+1)





2

+





N+1
∑

i=−N

αi(xi+j−1 − xj+N)





2






(5.30)

Let yj denote a 2N + 1 vector whose ith element is denoted by (x−N−1+i+j −

xN+1+j). Next, let zj denote a 2N + 1 vector whose ith element is denoted by

(x−N−1+i+j−1 − xN+j). Finally, let α denote a 2N + 1 vector whose ith element is

denoted by α−N−1+i. Then the above equation can be written in the matrix form

as

UR =
M
∑

j=N+1

[

αTyjy
T
j α+ αT zjz

T
j α
]

(5.31)

⇐⇒ UR = αT





M
∑

j=N+1

[yjy
T
j + zjz

T
j]



α (5.32)

Let

XData =
M
∑

j=N+1

[yjy
T
j + zjz

T
j] (5.33)

115

Clearly XData is positive semi definite from its very definition (5.30), but for most

datasets for which N << M , the matrix XData will be positive definite. There are

a few times series which are deterministic, in which case the time series satisfies a

certain recurrence relation, and which satisfy the condition N << M but would

result in det(XData) = 0. As analysis of such ‘special’ time series is not the objective

of this chapter, further derivation is performed under the assumption N << M

and that XData is positive definite. Then, (5.32) can be expressed as

UR = αTXDataα (5.34)

In order to maximize UR under the condition (5.24) one can utilize the Lagrangian

multiplier method [84].Thus L given in (5.35) needs to be minimized

L = −αTXDataα+ ν





N+1
∑

i=−N

(αi)2 − 1



 (5.35)

Using (5.26)

L = −αTXDataα+ ν





N
∑

i=−N

(αi)2 + (
N
∑

i=−N

(αi))2 − 1



 (5.36)

Let j1,2N+1 denote a 2N + 1 unit vector, then the above equation can be simplified

to

L = −αTXDataα+ ν[αT Iα+ αT jT
1,2N+1j1,2N+1α− 1] (5.37)

116

Let J2N+1 denote a 2N + 1 by 2N + 1 unit matrix,

L = −αTXDataα+ ν[αT [I + J2N+1]α− 1] (5.38)

Given that there is one quadratic program with one quadratic inequality constraint,

this problem is often referred to as the trust region sub problem in optimization

theory literature [85][86]. Following the Lagrangian multiplier method, the sta-

tionary points are given by

OαL = 0 and OνL = 0 (5.39)

The condition OνL = 0 results in the Karush-Kuhn-Tucker condition

αT [I + J2N+1]α− 1 = 0 (5.40)

Once the α vector satisfying the condition OαL = 0 is obtained, it can be multiplied

by a constant to satisfy (5.40) provided that the modified vector can still satisfy

OαL = 0. Solving for OαL = 0

OαL = 2(−XDataα+ ν[I + J2N+1]α) = 0 (5.41)

∴ XDataα = ν[I + J2N+1]α (5.42)

117

As ν is a scalar,

[I + J2N+1]−1XDataα = να (5.43)

The above equation is the generalized eigenvalue problem. Given that XData is

positive definite, one can rewrite the above equation in the form

[I + J2N+1]−1(XData)1/2(XData)1/2α = να (5.44)

where (XData)1/2 can be obtained from eigenvalue decomposition. Multiplying

both sides of (5.44) with (XData)1/2

(XData)1/2[I + J2N+1]−1(XData)1/2(XData)1/2α

= ν(XData)1/2α

(5.45)

Substituting w = (XData)1/2α into (5.45) results in the regular eigenvalue problem

(XData)1/2[I + J2N+1]−1(XData)1/2w = νw (5.46)

Thus the eigenvalues (νk) and eigenvectors (wk) corresponding to the symmetric

positive semi definite matrix (XData)1/2[I + J2N+1]−1(XData)1/2, will lead to the

solution (XData)−1/2wk for the ′α′ vector.

Given that the following problem is a trust region sub-problem, it has been

shown that strong duality is satisfied [85] and so the Lagrangian relaxation for this

118

non-convex problem is exact [86]. Writing the Lagrange dual function

g(ν) = infa∈Domain − aTXDataa+ ν[aT [I + J2N+1]a− 1] (5.47)

As the stationary points satisfy (5.42), (5.47) can be simplified to

g(ν) = infa∈Domain − aTν[I + J2N+1]a+

ν[aT [I + J2N+1]a− 1]

(5.48)

Therefore, the Lagrange dual function is

g(ν) = infa∈Domain − ν (5.49)

Hence the optimal value for the function in (5.34) is given by the largest eigen-

value. Thus, from the different eigenvector solutions that are obtained, the optimal

solution is given by the eigenvector corresponding to the maximum eigenvalue. The

above optimization process contained no constraints on the number of extrema that

result from the filtered signal. Therefore, this procedure could theoretically result

in a filter for which no extrema are created or a situation in which each and every

point in the signal is an extrema. In case one obtains no extrema points from the

optimal filter (corresponding to the maximal eigenvalue), then one can utilize sub-

sequent eigenvalues and eigenvectors that follow the maximal eigenvalue to obtain

optimal filters that result in extrema. In case all the values or a large percentage

119

of the signal values are chosen as extrema then it is advisable to smooth the signal

and then use the optimization process to extract the filter. The above derivation

primarily pertains to situations in which extrema detection is performed by linear

filtering and subsequent extrema identification. Given the broad range of areas

and problems that involve extrema detection, it is clearly of interest to optimize

the filtering step in order to shape the properties of the extrema that are detected.

Linear filtering followed by extrema identification is not the only method of ex-

trema detection and researchers have put forward nonlinear processing techniques

such as Minimal Distance/Percentage principle based smoothing [7], Perceptually

Important Points [39] to identify extrema and while these techniques may not di-

rectly benefit from the current analysis, one could potentially utilize the proposed

framework/definitions for optimizing these techniques. It is important to note that

linear filtering can be implemented very efficiently by using the Fast-Fourier Trans-

form and most nonlinear processing techniques require considerable computation

which may make them less desirable especially for large databases.

The proposed method has certain conceptual similarities to filter optimiza-

tion methods for extracting extrema is in the context of edge detection in images.

Canny [81] setup an optimization problem for identifying a filter that would result

in an edge with desirable properties. The problem was set up in the context of

a one-dimensional signal and therefore the edge detection problem became an ex-

trema detection problem. A large body of these methods use iterative or numerical

120

optimization techniques [81] [82] [87] in order to obtain the optimal filter. This is

in contrast to the current problem which has been carefully formulated to yield

(non-iterative) closed-form solutions.

This subsection presents the process of optimizing robustness in the filtering

step of the extrema feature extraction method. The properties of uniqueness and

cardinality haven’t been dealt in this step as they do not lend themselves to math-

ematical tractability in terms of obtaining a closed form solution. The subsequent

subsections delve into methods to control all the aforementioned properties (ro-

bustness, uniqueness and cardinality) in the extrema detection and the encoding

step.

5.3.2 Extrema Detection Step: (Robustness and Unique-

ness) versus Cardinality

The most straightforward method of detecting extrema from the filtered signal is

by following the conditions given in equations (5.3) and (5.4). However, there are a

variety of other techniques to identify extrema in a signal [7, 88]. The central idea

behind the different methods of extrema detection is to cull the ‘weak extrema’

which would easily appear or disappear depending on the distortions introduced

into the signal. Thus, the extrema detection step is geared towards decreasing the

cardinality, while increasing the robustness and uniqueness of the extrema that are

selected.

121

In our implementation, a two step process was followed for extrema detection.

In the first step, potential extrema candidates were detected by using the conditions

given in equations (5.3) and (5.4). The second step consists of choosing extrema,

from among the potential candidates, based on the threshold of their amplitude

distance to each of their neighbors.

5.3.3 Encoding Step: Obtaining better control over the

properties by using a generalized encoding process

5.3.3.1 Background

The procedure for encoding feature vectors from extrema plays a critical role in

determining the performance of the corresponding feature vectors in the underly-

ing pattern recognition task. The properties that are of interest in the case of the

feature encoding step not only include the usual robustness, uniqueness and cardi-

nality but also the dimensionality of the encoded feature vectors. Unlike the other

properties (Robustness, Uniqueness and Cardinality) which are relevant in all the

three steps described in Figure 5.1, the property of dimensionality is relevant only

in the feature encoding step and is therefore dealt solely in this subsection. How-

ever, it is important to note that dimensionality of the feature vector not only has

implications on the robustness and uniqueness of the eventual feature vector but

also has a critical bearing on the computation associated with feature matching.

Higher dimensions typically imply more computational effort and this phenomenon

122

is often described as the ‘Curse of Dimensionality’[2].

�

� �

�

����	
�	
���
���
���	�
����	������
�	
�
��	�
�	�
���

�������
�����	��
��
���
	�������
��
�
�����
�
�����

��	
��
�	�����
�	
�
	����

��
�����
�	�
����
��

����	
������

�

�

����
��
�����
���	
�	��
��	��

 ����
�
!����

"	����	� #
�
�
��
��
�
�

$
��
�

��
��

#
�
�
��
��
�
�

%
��
��

��
��

�
��

�
�

�
�

%
��
��

��
��

&
��
�
�

�
��
�	
��
�
	
��
��
�

����	
�	
���
���
���	�
����	������
�	
�
��	�
�	�
���

�������
�����	��
��
���
	�������
��
�
�����
�
�����

��	
��
�	�����
�	
�
	����

��
�����
�	�
����
��

����	
������

����
��
�����
���	
�	��
��	��

#
�
�
��
��
�
�

$
��
�

��
��

#
�
�
��
��
�
�

%
��
��

��
��

�
��

�
�

�
�

%
��
��

��
��

&
��
�
�

�
��
�	
��
�
	
��
��
�

 ����
�
!����

"	����	�

Figure 5.4: Different methods for sequential encoding of extrema.

5.3.3.1.1 Trade-off between robustness and uniqueness via encoding

variants A feature vector can be created by encoding the relative distances of an

extrema to each of its neighbors [7]. Some well known and widely used techniques

[7, 79, 63, 62] of feature encoding from extrema are shown in Figure 5.4. These

methods are presented to highlight the trade off between robustness and uniqueness

that occurs amongst the different encoding techniques. Typically, an encoding that

leads to an increase in robustness to a particular type of distortion will lead to a

corresponding decrease in the uniqueness of the feature vector.

123

5.3.3.2 Proposed generalized encoding process for better control over

uniqueness and cardinality

The above encoding techniques can be described as being sequential in nature as

sequences of extrema are used to create feature vectors [7, 62]. These sequential

encoding methods have the following limitations:

1) The cardinality of the feature vectors is limited to the number of extrema in

the signal. The limited cardinality implies that the users do not have the flexibility

to increase or decrease the number of features being produced.

2) The sequential nature of the encoding technique is unable to capture certain

unique information of the underlying signal that is not sequential in nature.

In order to overcome these drawbacks, a two step generalized encoding pro-

cedure is proposed in this section. In the first step, short feature vectors called

primitives are created using methods such as those suggested in Figure 5.4. The

final feature vectors are created in the second step in which a primitive at an

extrema is combined with other primitives in its neighborhood. The total num-

ber of combinations performed with a primitive at a given extrema is called the

‘combination parameter’. In implementation, the encoding is restricted to either

the left neighborhood or the right neighborhood of each extrema in order to avoid

encoding the same information into multiple feature vectors.

Figure 5.5 provides an illustration of the two step generalized encoding process

and a combination parameter of three is used in this particular case. Therefore,

124

�

�

�

�

�

�

�

�

	

�

�
�����������	���

��	������	��

��	�	
	����
��

����
���	����

���
�������
����

�
��������	���
����
	����	�
�����

������
�����

�������
���

�������

��������

�������

����������

�

�

�

�

�

�

�

�

�

�

���

�����

�

�

���

�����

�

�

���

���

�

�

���

�

	

�
��������	���
����
	����	�
�����

������
�����

�������
���

�
��� ���!������
��	�	
	������
����

���
�����
�
����

��
���������
	���

�	�������
�������
�����"�

��������#$	����%�	�	
	���

 �
�&�	������ ��������#
����&�	������ ��������#
'���&�	������ �����	�
#

$����������������
����	�������
�������
����"

&�	������	���

%�	�	
	��

���
����

(��
����

)��������

*	�
�����

+	
�

&�	������

,���	
����

*	�
�����

+	
�

&�	������

$	����

%�	�	
	��

���
����

(��
����

$	����%�	�	
	����������

��������

�������

�����	�
��

$	����%�	�	
	���

�
��� ���!������
��	�	
	������
����

���
�����
�
����

��
���������
	���

��������#��������#��������#$	����%�	�	
	���

 �
�&�	������ ��������#��������#��������#
����&�	������ ��������#��������#��������#
'���&�	������ �����	�
#�����	�
#�����	�
#

�
�����������	���

��	������	��

��	�	
	����
��

����
���	����

���
�������
����

$����������������
����	�������
�������
����"

&�	������	���

%�	�	
	��

���
����

(��
����

)��������

*	�
�����

+	
�

&�	������

,���	
����

*	�
�����

+	
�

&�	������

$	����

%�	�	
	��

���
����

(��
����

�"
$	����%�	�	
	��� �
�&�	�������
$	����%�	�	
	��� ����&�	�������
$	����%�	�	
	��� '���&�	�������"

"
"

Figure 5.5: The steps involved in the generalized encoding method of creating
feature vectors from extrema.

the given primitive is combined with itself and with each of the three primitives

present in its immediate right neighborhood in order to obtain four separate feature

vectors. The cardinality of the feature vectors can be controlled by controlling the

combination parameter. This process of encoding is clearly a generalization of the

sequential encoding process because one would obtain sequential features in case

the combination parameter is set to zero or one.

The second step of the two stage process leads to an overall increase in the

dimensionality and cardinality of the feature vectors. The increase in dimension-

ality has the effect of increasing the uniqueness. However, an increase in the value

of the combination parameter will in turn increase the cardinality of the feature

vectors and this will lead to a decrease in uniqueness as more features are entering

125

the same higher dimensional feature space. Thus the generalized encoding pro-

cess enables design choices in the first stage corresponding to a trade off between

uniqueness and robustness and in the second stage where the control of the com-

bination provides a trade off between uniqueness and cardinality. These capacity

to control these properties can be used to obtain better performance at the cost of

extra computation as shown in the next section.

5.4 Experimental Results

5.4.1 Experimental Overview

All the datasets and MATLAB code that was utilized to obtain all the subsequent

plots (Figure 5.6-Figure 5.23) have been made available online at

www.personal.psu.edu/pkv106/robustextrema.html.

Table. 5.1 lists definitions of a few traditional filters that are typically used

for extracting extrema from raw data. While Gaussian, Derivate of Gauss (Der-

Gauss) and Sombrero filters have been used for extrema detection [81, 30] , the

sinusoidal filters are mostly used in the context of audio data [38]. The delta and

the constant filters are used as references to illustrate the effects of no filtering and

using a filter with equal taps. The traditional filters as well as the optimal filters

(obtained from utilizing the method described in Section 5.3.1) on varied data sets

are plotted in Figure 5.6.

126

5.4.1.1 Datasets used in Experiments

The main purpose of this section is to perform experiments that validate the op-

timization method presented in section ?? and also demonstrate the advantages

obtained from using the optimal filter in a given pattern matching task. The

datasets used in the above experiments are described in this subsection. The

experimental results for the validation of the optimization methodology and the

pattern matching results are presented in sections 5.4.2 and 5.4.3 respectively.

Time-series data from different domains including mechanical, electrical, finan-

cial and biomedical fields was chosen to illustrate the broad applicability of the

proposed extrema based feature extraction framework. Briefly, the data sets are:

1) Pitch Data (Real): The dataset consists of road pitch data collected from

an in-vehicle data acquisition system [62]. The data was collected as a part of the

NCHRP 22-21 median design project.

2) Music Data (Real): Music time series was obtained by concatenating music

snippets from different audio recordings. The audio data was downloaded from

the following website [38].

3) Stock Data (Real) : The data consists of price history data from various

stocks that are concatenated with each other. The data was downloaded from the

Yahoo website by using a matlab code.

4) EEG Data (Real): EEG time series data obtained from different trials on

human subjects is concatenated to obtain the time series used in this analysis. The

127

data was downloaded from the following source [89].

5) Gaussian Random Walk (GRW) (Simulated): The data was obtained from

a MATLAB simulation. The MATLAB code to obtain the simulated data is given

by Data = cumsum(randn(216, 1));

5.4.2 Results A: Validating Robustness as Imparted by Fil-

ter Optimization

This test measures the stability of the extrema created by using different filters

which are shown in Figure 5.6. The testing procedure, given a particular dataset

and a particular filter, is as follows:

1) The signal is filtered with the given filter and the locations of the extrema

in the filtered signal are identified by using the conditions given in Eqn. (5.3) and

Eqn. (5.4).

2) The signal is now corrupted with a particular level of noise (Gaussian Noise)

and the new signal is again filtered and its extrema identified.

3) A true positive (TP) is recorded if an extrema is present at the same location

in the filtered versions of both the original signal and the corrupted signal. The

True Negatives (TN), False Positives (FP) and False Negatives (FN) are calculated

in an analogous manner. The error rate is then calculated using the formula:

ErrorRate = (FP + FN)/(TP + TN + FP + FN) (5.50)

128

4) This procedure is iterated for thirty times, in order to obtain a statistical

average of the performance for that particular noise level.

5) Finally, the average error rate at different noise levels are used to create the

error rate curves that are shown in Figure 5.7 to Figure 5.11.

Table 5.1: Filter Definitions

Filter Definition
Gaussian h[i] = exp

(

−(i√
2std dev

)2
)

, i ∈ [−N,N]

Der-Gauss h[i] = i ∗ exp
(

−(i√
2std dev

)2
)

, i ∈ [−N,N]

Sombrero h[i] = (1 − (i
std dev

)2) ∗ exp
(

−(i√
2std dev

)2
)

,

i ∈ [−N,N]
Sine h[i] = sin(π ∗ i/N), i ∈ [−N,N]

Const h[i] = 1, i ∈ [−N,N]
Delta h[0] = 1;h[i] = 0, i ∈ [−N, 0) ∪ (0, N]

2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

Filter Taps

N
or

m
al

iz
ed

 A
m

pl
itu

de

Filters Used to Extract Extrema

Gauss
Der−Gauss
Sombrero
Sine
Const
Delta

Optimal(EEG)
Optimal(Music)
Optimal(GRW)
Optimal(Pitch)
Optimal(Stock)

Figure 5.6: The filters used in the experimental tests.

The results presented in Figures 5.7 - 5.11 for each of the 5 datasets reveal

129

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 Pitch Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Gauss
DerGauss
Sombrero
sine
const
delta

Figure 5.7: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

that the optimal filter outperforms all the other filters in terms of its ability to

extract robust extrema which are resilient to noise. Figures 5.7 - 5.11 also show

that the closest competitor for the optimal filter for all the datasets is the Gaussian

filter. To investigate this further, we separately compare the extrema stability as

provided by the Gaussian filter vs. the one optimized using training time-series.

As the standard deviation of the Gaussian is critically tied to its performance, it

is of interest to obtain the accuracy performance (or equivalently error rates) as a

function of standard deviation as well. Plotting the accuracy vs. both noise level

(or SNR) and the standard deviation parameter gives rise to surface plots as shown

in Figures 5.12 - 5.16. It is observed that our proposed filter optimization procedure

130

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 Music Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Gauss
DerGauss
Sombrero
sine
const
delta

Figure 5.8: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

leads to greater accuracy in the low to medium noise level (or equivalently high

SNR) scenarios - which are in fact representative of real-world corruption of time

series. As Figures 5.12 - 5.16 reveal, Gaussian filters with some particular choices

of the standard deviation parameter do mildly better than the optimized filter

in the high noise regime, and for particular data sets (pitch data, stock data

and Gaussian Randomwalk data). This is because the optimal filter has been

optimized to maximize the distance of data points to partitioning hyperplanes and

this does not guarantee that all points exist beyond an epsilon bound from the

partition. For certain noise types (ex: i.i.d Gaussian noise) the epsilon bound may

be the more appropriate measure for robustness but a closed form solution for

131

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 Stock Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Gauss
DerGauss
Sombrero
sine
const
delta

Figure 5.9: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

such a formulation is not evident. However, the definition of robustness based on

perpendicular distance, is intuitive, provides a closed form solution for the optimal

filter and gives the best results in a number of situations as shown in Figures 5.12

- 5.16.

132

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 EEG Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Gauss
DerGauss
Sombrero
sine
const
delta

Figure 5.10: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

5.4.3 Results B: Application to the subsequence matching

problem

5.4.3.1 Brief review of time series subsequence matching

Time series subsequence matching is a key research area in a large number of dis-

ciplines including mechanical, electrical, financial and medical domains. Improve-

ments in sensor technology and data acquisition systems have lead to an exponen-

tial increase in the amount of signal data that is acquired in different disciplines.

Given a new time series signal, a common problem that is often encountered is that

of finding similar signals from within an existing time series repository. Specifi-

133

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 GRW Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Gauss
DerGauss
Sombrero
sine
const
delta

Figure 5.11: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

cally, the problem could be posed as finding ‘k’ time series in a dataset, which are

most similar to a given query time series. This fundamental question was posed

by Faloutsos et al in their seminal paper [4] and the proposed solution utilized the

Euclidean distance measure of similarity while operating within a sliding window

framework.

Given the fundamental nature of this problem, a wide variety of different tech-

niques have been proposed in literature [4, 19, 90, 7]. The techniques themselves

can be broken down into exact and inexact methods. The exact methods can

guarantee retrieval of all subsequences in a database which are within a certain

threshold distance from the given query sequence. Typically, these methods utilize

134

the sliding window framework for accomplishing this task [4]. On the other hand,

the inexact matches do not provide such a guarantee but they usually provide

advantages in terms of computational and memory resources needed to implement

the system. These methods could also deliver advantages in terms of their abil-

ity to handle complex distortions in the query signal. The extrema methods are

inexact methods which offer certain computational advantages and also provide

robustness against different distortions [7]. The framework proposed in Section ??

is utilized to build an ‘inexact’ extrema based subsequence matching method.

5.4.3.2 Extrema based subsequence matching method

Like all the common subsequence matching methods, extrema methods (exact

and inexact methods) also have two distinct phases in their implementations: 1)

Indexing phase, and 2) Online phase.

In the indexing phase, feature vectors are extracted by using the extrema ob-

tained from time series data and these features are used to build a data structure

that enables quick retrieval and matching. Any of the wide range of different re-

trieval techniques that are available [41] can be used for this application and a

KD-tree was used in this particular implementation. The choice of a particular

data structure will not affect the final accuracy result of the subsequence matching

method and is only expected to change the speed at which the matching task is

performed.

135

Differences from and benefits over sliding window techniques: The

online phase for the extrema method, as proposed here, is very different from the

traditional sliding window techniques. The traditional sliding window methods

employ a two step procedure in the online phase. The first step involves retrieval

of all subsequences which satisfy a lower bounding distance criterion and the second

step consists of post processing the retrieved subsequences to obtain the closest

match. In the proposed extrema method, a one step process is followed. After

extracting the features from a signal and matching them against the data structure,

each feature match results in different estimates for the position of the query time

series in the database. These position hypotheses from all the feature matches are

assembled into a histogram and the locations with a large number of votes are

considered to be good matches.

Unlike the traditional sliding window techniques, no major post processing is

required to remove the false positives after the initial index based search and so

this reduces the amount of computation that is involved. Also, as no further

post processing is required one need not store the original data and this reduces

the memory requirements for the extrema algorithm. The piecemeal nature of

the feature matching technique allows the method to handle query signals of any

length, unlike the sliding window methods which are restricted by their window

size.

As a counter balance to the advantages associated with lower computation,

136

lower memory requirements, increased robustness [7] and the ability to handle to

query signals of different lengths while using extrema, the main drawback of using

extrema based approach is that it does not utilize the uniqueness of the query signal

to the maximum possible extent as done by the sliding window based methods.

This is because this method performs matching in a piecemeal fashion while the

sliding window method can perform matching using the entire query signal at once.

This trade off will have implications (both positive and negative) for the extrema

based subsequence matching approach depending on the dataset and the nature

of distortions at hand. Also, as no post processing is performed, the results from

this method of subsequence matching depend solely on the ability of the features

to obtain a proper match and can thus be a useful comparison tool for testing

extrema based feature encoding techniques. This in turn implies that the feature

vector must have maximum robustness towards the nature of distortion that the

query signal may experience and maximum uniqueness so as to be able to obtain

a proper match. Also the extrema based methods normalize themselves based on

the bias and scale at the locations of extrema and this may give added robustness

in case the bias or scale factor change along the signal.

5.4.3.3 Experimental Process

The purpose of this section is to compare the subsequence matching results of

traditional linear-filter based extrema methods and sliding window based methods

137

Figure 5.12: Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time series datasets.

with the extrema method based on the framework presented in section 4. The

experiments are performed on real and simulated data that was described in sec-

tion 5.4.1.1.

A wide variety of solutions utilizing sliding window methods for dimension re-

duction or using different types of distance measures have been proposed [4, 19, 9]

for subsequence matching. However, extrema based methods offer certain advan-

tages while solving the subsequence matching problem because of their ability to

handle complex distortions [7]. For example, scale factor noise, bias noise and out-

liers are commonly encountered distortions in time series data. However, common

index-based subsequence matching methods based on euclidean distance [4] and

138

Figure 5.13: Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time series datasets.

DTW [19] cannot handle outliers while certain edit distance based methods like

LCSS [9] are not designed to handle scale and outlier noise simultaneously [43].

We next compare the proposed “optimally robust extrema features” against

state of the art alternatives for the problem of time-series subsequence matching.

In these experiments, we particularly look to examine how each method fares in

retrieving similar time-series even as the time-series are observed under practically

significant distortions. The entire experimental process is as follows:

1) 31 query signals of length 256 are extracted from a time series of 65536 points

obtained from the datasets in section 5.4.1.1 and are corrupted with bias noise,

scale factor noise, outliers, and Gaussian noise before being tested for subsequence

139

Figure 5.14: Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time series datasets.

matching. The bias noise for a query signal was obtained by randomly select-

ing a value from a uniform distribution in the following interval [-std dev(query

signal),+std dev(query signal)]. Similarly, the scale factor noise was obtained by

randomly selecting a value from a uniform distribution in the following interval

[0.33,3]. The outlier is simulated as a Gaussian random noise with the same mean

and standard deviation as the query signal and is multiplied by a large scale factor

(5). The query signal is also corrupted with a small amount of Gaussian noise

(approximately 14dB SNR) that is often encountered in time series data in order

to make the matching process more realistic. Figure 5.17 provides an example

of a query signal that is obtained by applying the above distortions to a given

140

Figure 5.15: Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time series datasets.

time series. Similarities between the two time-series in Figure 5.17 can be visually

ascertained but the challenges in quantitatively enabling robust comparisons are

readily apparent.

2) The spatial length of the outlier is varied from 0% to 20% of the length of

the query signal and tested. The whole process is repeated thirty times in order

to get a statistical average of the accuracy.

3) The accuracy results are presented in Figures 5.18 - 5.22 for different datasets

when using different types of subsequence matching methods.

141

Figure 5.16: Comparison of the extrema stability of the optimal filter against
Gaussian filters with different standard deviations on different time series datasets.

5.4.3.4 Implementation of well-known sliding window methods for time-

series subsequence matching

Given a query signal that is corrupted in the aforementioned manner, the sliding

window methods are implemented in the following manner. A sliding window is

used to extract each subsequence of 256 data points from the time series and its

distance is computed with respect to the given query signal. The subsequence

which gave the least distance was considered the best match and if the position

of this subsequence was within a threshold distance (+/- 25 data points = 10% of

query signal length) of the point of extraction of the query signal then the match

was deemed accurate. The sliding windows methods were deliberately implemented

142

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

A
m

pl
itu

de

Original Signal
Distorted Query Signal

Figure 5.17: The distorted query signal is obtained by adding bias, scale factor,
outlier and Gaussian noise to the original signal.

without indexing1 to allow the implementation of the above methods in a form that

is closest to the original intent of the algorithm’s authors. The euclidean distance

and dynamic time warping methods do not have any explicit parameters and were

implemented in a standard manner. The LCSS distance, however, has a parame-

ter corresponding to the amplitude change and another parameter corresponding

to temporal distortion. The amplitude parameter was chosen as the minimum of

the standard deviations of the two matching signals and the temporal parameter

was chosen as 20% of the length of the query signal as suggested in the paper [9].

1It is worth re-emphasizing that the lack of indexing does not influence the sliding-window
techniques from an accuracy of retrieval standpoint which is the focus of this chapter. State of
the art indexing techniques for these techniques are of course well researched, examples may be
found in [4] [19] [90].

143

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 Pitch Data

Extrema − Optimal Filter with
 Generalized Encoding
Extrema − Optimal Filter
Extrema − Gauss
Extrema − Der−Gauss
Sliding Window−Euclidean
Sliding Window−DTW
Sliding Window−LCSS

Figure 5.18: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

Also, as the implementation of LCSS corresponded to the D1 distance mentioned

in paper [9] rather than the more complicated D2 distance which is expected to

incorporate bias invariance, the query signal for the LCSS method was not cor-

rupted with bias noise inorder to avoid disadvantaging the LCSS method on this

count.

5.4.3.5 Implementation of extrema methods for time-series subsequence

matching

The first step (Indexing phase) in the extrema method is to generate features

from the time series as described in section 5.4.3.2. In the feature generation

144

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 Music Data

Figure 5.19: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

process, the threshold in the extrema detection step described in section 5.3.2

is adjusted such that the number of extrema from each filter are approximately

the same. This process ensures that the computational effort required for the

different filtering techniques is also identical. The features are then stored in a data

structure (KD-tree) as described before. In the online phase, the features generated

from the query signals are matched with the features present in the KD-tree.

The matches in the data structure yield different estimates of the location from

which the query signal was extracted. These locations are put into a histogram

to obtain the most agreed upon location estimate for the time series subsequence

as described in section 5.4.3.2. If the location estimate from the matching process

145

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 Stock Data

Figure 5.20: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

was within a certain threshold distance (+/- 25 data points) from the true location

of extraction then the result is deemed accurate. In the above scheme, the filters

described in Figure 5.6 are used to generate extrema which are encoded using

the sequential encoding method which results in bias and scale invariance , as

described in Figure 5.4, as these distortions are expected in the query signal. The

subsequence matching method is also performed by encoding features using the

generalized encoding technique described in section 5.3.3 while using the extrema

obtained from the optimal filter.

146

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 EEG Data

Figure 5.21: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

5.4.3.6 Results and Inferences

Accuracy Benefits in Robust Retrieval of Time-Series: Figures 5.18 - 5.22

shows the accuracy plots for time series subsequence matching when performed

using the above methods. In particular, accuracy is plotted with respect to the

size of the outlier relative to the size of the query signal (normalized spatial extent

of the outlier). The accuracy of all the methods is expected to decrease as the

normalized spatial extent of the outlier increases.

The results clearly show that the extrema methods outperform sliding window

methods because of their ability to handle complex distortions. Also, the piecemeal

nature of the feature matching technique leads to some features which are totally

147

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 GRW Data

Figure 5.22: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

unaffected by outlier data. These features lead to a correct match in spite of

the incorrect cues from the features which are affected by the presence of the

outlier. It can also be seen that the generalized encoding based optimal extrema

method outperforms all the extrema methods as it is able to favorably increase

the uniqueness of the extrema based feature representation. The inability of the

euclidean and DTW methods to handle outliers and the inability of the LCSS

method to handle scale factor noise severely affects their performance.

In summation, Euclidean, DTW and LCSS methods perform excellently in the

presence of Gaussian noise, temporal distortion, and outliers respectively as noted

in earlier literature. However, in the presence of complex distortions, such as the

148

simultaneous presence of bias, scale, and outliers, use of extrema methods leads

to improved matching accuracy and the use of the optimally robust extrema as

proposed in this chapter leads to further accuracy improvements. It is important

to note that the optimal filter need not deliver the best subsequence matching

result and it may be possible to find other linear/non-linear filters that deliver

better performance. This is mainly because the optimal filter has been obtained

by performing optimization over robustness and this may not always translate

into a better subsequence matching result. It is also important to understand

that their might be other distortions in which the other methods could potentially

outperform the extrema based methods. For example, situations in which the query

signal is corrupted by just Gaussian random noise, or just temporal distortion or

just outliers will result in the Euclidean, DTW and the LCSS method giving the

best performance. However, the extrema based methods can be useful in situations

such as the present where one encounters severe bias , scale factor and outlier noise

simultaneously.

Economy of Representation enabled by the use of Extrema Features:

The number of features utilized by each matching method is shown in Fig-

ure 5.23 and it can be seen that the extrema methods use up to 10 times fewer

number of features while delivering improved performance in this subsequence task.

It should be noted from Figure 5.23 that the generalized encoding technique nec-

essarily incurs a higher feature dimensionality its sequential encoding counterpart,

149

albeit this increase is mined into performance (accuracy) improvements as seen in

Figures 5.18 - 5.22.

0 1 2 3 4 5 6 7 8 9
4

EEG

Data

Random

-walk

Data

Stock

Data

Music

Data

Pitch

Data

D
a

ta
s
e
ts

Number of Features Utilized

Extrema Method

Optimal Filter with

Generalized Encoding

Sliding Window

Euclidean

Figure 5.23: The number of features used by the different techniques for the subse-
quence matching results presented in Figures 5.18 - 5.22. The number of features
can be used to gauge the computation involved with each method.

5.5 Conclusions

We consider the problem of extracting adaptive and robust extrema features from

time-series data. We enable the extraction of robust extrema by formulating a

novel optimization problem which optimizes the coefficients of a pre-processing

linear filter that is applied to the raw time-series data prior to extrema detec-

tion. This formalizes the intuition shared by a variety of existing methods in

the literature which use intuitively motivated smoothing filters. Remarkably, the

optimization reduces to a generalized eigenvalue problem and therefore admits a

150

simple, tractable solution. Our second contribution is a new generalized method for

encoding extrema features that can enable superior trade-offs between the proper-

ties of robustness, uniqueness and cardinality and help customize/enhance extrema

based feature extraction for different pattern recognition tasks. We evaluate the

proposed framework by comparing it against the state-of-the art for robust re-

trieval of time-series also known as subsequence matching in time series databases.

Experimental results on real as well as simulated time-series data reveal significant

practical benefits in accuracy of retrieval.

Chapter 6
Discrete Sine Transform for

Extracting Extrema From Random

Walk Data

6.1 Introduction

In the previous chapter, a filter optimization procedure that enables extraction of

robust extrema was presented. The entire derivation and the final results showing

its application to various datasets was performed in a deterministic sense. This

implies that we were able to obtain ‘a particular optimal filter’ by performing the

optimization on ‘a particular dataset’. Interestingly, the optimal filters from the

different datasets have a rather similar shape as shown in Figure 5.6. The main

aim of this chapter is to solve the above problem in a ‘stochastic sense’ and this

152

will lead to interesting theoretical results that will provide an intuitive explanation

about the similarity in shapes that was observed amongst the different filters shown

in Figure 5.6.

The derivation presented in this chapter provides a closed form solution to

the optimal filter for a Gaussian random walk time series. It is important to

gain an understanding about the usefulness of such a derivation. The stochastic

equations that describe a process provide general rules that describe its evolution as

a function of time. Because of the randomness of the process equations, a stochastic

process can lead to a large number of actual instantiations of the same process. In

order to arrive a particular instantiation, one would not only require the stochastic

rules or equations at hand but would also need enough extra information that

would specify that particular instantiation in a definite or ‘deterministic’ manner

(E.g the seed of the random number generator). The rules that govern a certain

stochastic process are usually detailed enough so that a number of global statistical

parameters (such as mean, variance etc) could be derived from such rules. In fact,

in case of certain special stochastic processes (such as random walks) the stochastic

rules can be used to easily calculate all the necessary statistics that are required to

obtain the optimal filter described in the previous chapter. The ease of calculation

is due to the properties of independence and stationarity of the increments of the

random walk process which simplify the calculation of the cross correlation terms

used in the computation of the optimal filter. It would be useful to obtain closed-

153

form solutions for the ‘optimal filter’ for various commonly used random walk

models as any potential time series that is generated from that process can use

the same filter for extrema extraction. Even if a certain signal can approximately

be modeled as a random walk (Ex: Stock data as a Gaussian Random Walk [91]),

then the above closed-form solution would still be useful as it is quite likely that

it would be close to the “real optimal filter” that could have been obtained from

performing the optimization on the original dataset.

6.2 Optimal Filter for the Case of Gaussian Ran-

dom Walk Data (Discretely Sampled Weiner

Process)

6.2.1 Setting up the matrix for eigen analysis

From equation (5.43) one can see that, if a dataset is given, the eigen vector

corresponding to the maximum eigen value of the [I + J2N+1]−1XData matrix can

be used to obtain the optimal extrema filter for that data. In this section, it is

assumed that the input data is a Gaussian random walk and a theoretical derivation

for the optimal extrema filter is presented. Though the Gaussian random walk is

a special case of a random walk process, the implications of this derivation will

be generalized to all random walk processes in the next section. This derivation

154

is important because a number of processes in the real world are modeled as a

random walk. Given the broad importance of random walk data in time series

analysis, it is useful to have a closed-form solution for the final filter in order to

avoid the computation. Starting with the assumption that the data is a Gaussian

random walk, the following procedure derives the optimal filter with ‘2N+1’ taps.

Let [xj
−N−1 x

j
−N xj

−N+1 ... x
j
0 ... x

j
N+1] be a ′2N + 3′ long time series extracted

from the jth position of the original dataset.

From equation (5.33)

XData =
M
∑

j=N+1

[yjy
T
j + zjz

T
j] (6.1)

Where yj denotes a 2N+1 vector whose ith element is denoted by (x−N−1+i+j −

xN+1+j) and zj denotes a 2N+1 vector whose ith element is denoted by (x−N−1+i+j−1−

xN+j). The element on the αth row and βth column of the yjy
T
j matrix is given by

yjy
T
j (α, β) =

M
∑

j=N+1

(xα+j−N−1 − xj+N+1) ∗ (xβ+j−N−1 − xj+N+1) (6.2)

Given a particular time series, xn, one could express it in increments wn where

xn+1 = xn + wn (6.3)

In this particular case, as the time series is from a Gaussian random walk the

155

increments wn are from a normal distribution with zero mean. The terms in

equation (6.2) can now be expressed in terms of wn as shown in the below equations.

2N+1
∑

k=α

(wk+j−(N+1)) = xα+j−N−1 − xj+N+1 (6.4)

2N+1
∑

k=β

(wk+j−(N+1)) = xβ+j−N−1 − xj+N+1 (6.5)

Substituting equations (6.4) and (6.5) into equation (6.2) we obtain

yjy
T
j (α, β) =

M
∑

j=N+1

((
2N+1
∑

k=α

wk+j−(N+1)) ∗ (
2N+1
∑

k=β

wk+j−(N+1))) (6.6)

yjy
T
j (α, β) =

M
∑

j=N+1

((
2N+1
∑

k=max(α,β)

(wk+j−(N+1))2)+(
2N+1
∑

k=α

2N+1
∑

i=β,k 6=i

wk+j−(N+1)wi+j−(N+1)))

(6.7)

yjy
T
j (α, β) =

2N+1
∑

k=max(α,β)

M
∑

j=N+1
(wk+j−(N+1))2+

2N+1
∑

k=α

2N+1
∑

i=β,k 6=i

M
∑

j=N+1
wk+j−(N+1) ∗ wi+j−(N+1)

(6.8)

yjy
T
j (α, β) = ((2N + 1) − (max(α, β) − 1)) ∗ (M −N) ∗ E(w2)+

2N+1
∑

k=α

2N+1
∑

i=β,k 6=i

(

(M −N) ∗ E(wk+j−(N+1) ∗ wi+j−(N+1))
)

(6.9)

Given the information that the increments wi are from a standard normal

distribution and are independent, the quantity E(wk+j−(N+1)wi+j−(N+1)) is zero.

156

The next section elaborates on the situation in which E(wk+j−(N+1)wi+j−(N+1)) is

a constant, which holds for all random walk processes.

yjy
T
j (α, β) = ((2N + 1) − (max(α, β) − 1)) ∗ (M −N) ∗ E(w2) (6.10)

One can derive a similar equation for zjz
T
j and it results in an identical form. This

finally leads to the following form for the Xdata matrix. The constant K in equation

(6.11) denotes 2∗ (M−N)∗E(w2) and is obtained by combining the contributions

of yjy
T
j and zjz

T
j . The constant will not be shown in further equations as it’s only

effect would be to scale the final result by K times.

Xdata = K



















































2N + 1 2N 2N − 1 ... 2 1

2N 2N 2N − 1 ... 2 1

2N − 1 2N − 1 2N − 1 ... 2 1

...

2 2 2 ... 2 1

1 1 1 ... 1 1



















































(6.11)

Given the above form for the Xdata matrix, the aim of this derivation is to find the

eigen vector corresponding to the maximum eigen value of the [I + J2N+1]−1Xdata

matrix as shown in Section 5.3.1.3. For a given filter of length ′2N + 1′, the

157

[I + J2N+1]−1 matrix is given by

[I + J2N+1]−1 = 1/(2N + 2)









































2N + 1 −1 ... −1 −1

−1 2N + 1 ... −1 −1

...

−1 −1 ... 2N + 1 −1

−1 −1 ... −1 2N + 1









































(6.12)

Let

F = [I + J2N+1]−1 ∗Xdata (6.13)

By performing straightforward algebraic manipulation one can calculate F (γ, δ)

where γ and δ denote the row and column locations.

F (γ, δ) =



























(2N + 2 − δ) ∗ (2N + 3 − δ)
2

, when γ ≤ δ

(2N + 2) ∗ (2N + 2 − γ) − (2N + 2 − δ) ∗ (2N + 1 + δ)
2

, when γ ≥ δ

(6.14)

Therefore, the F matrix has the form

F =































(2N + 1) ∗ (2N + 2)

2

(2N) ∗ (2N + 1)

2

(2N − 1) ∗ (2N)

2
... 1

(2N + 2) ∗ (2N) − (2N + 1) ∗ (2N + 2)

2

(2N) ∗ (2N + 1)

2

(2N − 1) ∗ (2N)

2
... 1

(2N + 2) ∗ (2N − 1) − (2N + 1) ∗ (2N + 2)

2
...

(2N − 1) ∗ (2N)

2
... 1

...

...

(2N + 2) ∗ (1) − (2N + 1) ∗ (2N + 2)

2
... 1































(6.15)

158

The definitions and the lemmas that are required for the proof relating to the

eigen vectors of matrix F are given below. Given the F matrix, Lemma 1 can be

gleaned from observation and Lemma 2 can be obtained from simple mathematical

manipulation.

Lemma 6.2.1. F (γ + 1, δ) = F (γ, δ) when γ < δ

Lemma 6.2.2. F (γ + 1, δ) = F (γ, δ) − (2N + 2) when γ ≥ δ

Definition F (i, :) denotes the ithrow of the F matrix

Definition F (:, j) denotes the jthcolumn of the F matrix

Definition F (i, j) denotes the element in the ith and the jth column of the

F matrix

Definition wm and λm represent the mth eigen vector and the corresponding

eigen value respectively

Theorem 6.2.3. Given a square matrix of size ′2N+1′, whose elements in row(γ)

and the column(δ) are given by

F (γ, δ) =



























(2N + 2 − δ) ∗ (2N + 3 − δ)
2

, when γ < δ

(2N + 2) ∗ (2N + 2 − γ) − (2N + 2 − δ) ∗ (2N + 1 + δ)
2

, when γ ≥ δ

Then the eigen vectors of such a matrix are given by

wm(a) = sin(mπ
a

2N + 2
) − sin(mπ

a− 1
2N + 2

)

159

where wm(a) is the ath element of the mth eigen vector and a ∈ [1, 2N + 1]. The

corresponding eigen values are given by

λm =
n+ 1

1 − cos(mπ
1

2N + 2
)

Proof: From the definition of the eigen value we know that

wm(1) ∗ λm = F (1, :) ∗ wm (6.16)

Similarly,

wm(2) ∗ λm = F (2, :) ∗ wm (6.17)

From Lemmas 6.2.1 and 6.2.2,

F (1, :) ∗ wm = F (2, :) ∗ wm + (2N + 2) ∗ wm(1) (6.18)

Substituting equations (6.16) and (6.17) into the above equation

wm(1) ∗ λm − wm(2) ∗ λm = (2N + 2) ∗ wm(1) (6.19)

Therefore,

λm = (2N + 2) ∗ wm(1)
wm(1) − wm(2)

(6.20)

if the eigen vectors are given by wm(a) = sin(m∗π∗ a

2N + 2
)−sin(m∗π∗ a− 1

2N + 2
),

160

then the eigen values

λm = (2N + 2) ∗
sin(m ∗ π ∗ 1

2N + 2
)

2 ∗ sin(m ∗ π ∗ 1
2N + 2

) − sin(m ∗ π ∗ 2
2N + 2

)
(6.21)

λm =
(2N + 2) ∗ sin(m ∗ π ∗ 1

2N + 2
)

2 ∗ sin(m ∗ π ∗ 1
2N + 2

) − 2 ∗ sin(m ∗ π ∗ 1
2N + 2

) ∗ cos(m ∗ π ∗ 1
2N + 2

)

(6.22)

Therefore,

λm =
N + 1

1 − cos(m ∗ π ∗ 1
2N + 2

)
(6.23)

In order to prove that wm(a) is the eigen vector for the F matrix, one must show

that the eigen value obtained from each row, using equations similar to (6.16) and

(6.17), must be the same as equation (6.23) where

wm(a) = sin(m ∗ π ∗ a

2N + 2
) − sin(m ∗ π ∗ a− 1

2N + 2
) (6.24)

From the definition of equation (6.16), starting from the first row F (1, :), it is

required to show that

F (1, :) ∗ wm = wm(1) ∗ λm (6.25)

⇐⇒
2N+1
∑

δ=1

(

(2N + 2 − δ) ∗ (2N + 3 − δ)
2

∗

161

(

sin(m ∗ π ∗ δ

2N + 2
) − sin(m ∗ π ∗ δ − 1

2N + 2
)
))

= wm(1) ∗ λm

(6.26)

Using the following mathematical identity

M
∑

i=1

(

(M + 1 − i) ∗ (M + 2 − i)
2

∗ (sin(b ∗ i) − sin(b ∗ (i− 1)))
)

=
sin(b(M + 1)) − (M + 1) ∗ sin(b)

2cos(b) − 2
(6.27)

Substituting i = δ, M = 2N + 1, and b = mπ/(2N + 2) into the above equation

2N+1
∑

δ=1

(

(2N + 2 − δ) ∗ (2N + 3 − δ)
2

∗
(

sin(m ∗ π ∗ δ

2N + 2
) − sin(m ∗ π ∗ δ − 1

2N + 2
)
))

=
sin(b(N + 1)) − (N + 1) ∗ sin(b)

2cos(b) − 2
(6.28)

The L.H.S of the above equation is same as that of equation (6.26)

R.H.S =
sin(π) − (2N + 2) ∗ sin(mπ/(2N + 2))

2cos(π/(2N + 2)) − 2
(6.29)

R.H.S = (N + 1)
sin(mπ/(2N + 2))

1 − cos(
mπ

2N + 2
)

(6.30)

R.H.S = λm ∗ w1(1) (6.31)

From the above derivation we have shown that the eigen value given in equation

162

(6.23) satisfies the condition for the first row (6.25). For all the subsequent rows,

the proof is obtained by mathematical induction. Suppose the equation wm(n) ∗

λm = F (n, :) ∗ wm is true for row ′n′ in the F-matrix, then we need to show that

wm(n+ 1) ∗ λm = F (n+ 1, :) ∗ wm (6.32)

From Lemmas 6.2.1 and 6.2.2, we obtain

F (n, :) ∗ wm = F (n+ 1, :) ∗ wm +
n
∑

i=1

(2n+ 2) ∗ wm(i) (6.33)

Substituting equation (6.33) into equation (6.32), we need to show that

λm(wm(n) − wm(n+ 1)) =
n
∑

i=1

(2n+ 2) ∗ wm(i) (6.34)

Substituting wm(a) = sin(mπ ∗ a

2N + 2
) − sin(mπ ∗ a− 1

2N + 2
), we obtain

⇐⇒ (2N + 2) ∗ 1

2 − 2cos(m ∗ π ∗ 1
2N + 2

)
=

(2n+ 2) ∗
sin(mπ ∗ n

2N + 2
)

2 ∗ sin(mπ ∗ n

2N + 2
) − sin(mπ ∗ n− 1

2N + 2
) − sin(mπ ∗ n+ 1

2N + 2
)

(6.35)

163

substituting b = mπ/(2N + 2)

⇐⇒ 1
2 − 2cos(b)

=
sin(nb)

2 ∗ sin(nb) − sin((n+ 1)b) − sin((n− 1)b)
(6.36)

⇐⇒ 1
2 − 2cos(b)

=
sin(nb)

2 ∗ sin(nb) − 2cos(b)sin(nb)
(6.37)

⇐⇒ 1
2 − 2cos(b)

=
1

2 − 2cos(b)
(6.38)

Hence the relation wm(n + 1) ∗ λm = F (n + 1, :) ∗ wm has been shown to be true

for all ′2N + 1′ rows where wm(a) and λm are given by equation (6.23) and (6.24).

6.2.2 Computing the optimal filter from the eigen vectors

Given the eigen vector wm the optimal filter is given by the cumulative sum of the

eigen vector and this implies that the filter (fm) corresponding to the mth eigen

vector is given by

fm(a) = sin(mπ ∗ a

2N + 2
) where a ∈ [1, 2N + 1] (6.39)

Equation (5.49) showed that the optimal filter is obtained from the eigen vector

corresponding to the maximum eigen value. Given the eigen values are λm = ((n+

1)/(1−cos(mπ∗ 1
2N + 2

))) where m ∈ [1, 2N+1] , we proceed to find the maximum

eigen value. One can clearly see that λm is maximum when cos(mπ ∗ 1
2N + 2

) is

closest to one. This happens when m = 1. Thus the filter corresponding to the

164

maximum eigen value is given by the below equation and the corresponding plot

of the filter is shown in Figure 6.1. In fact, the optimal filters that are obtained

for the case of the Gaussian Random Walk are identical to the filters used as a

part of the Discrete Sine Transform. This shows that the Discrete Sine Transform

could potentially be used in the context of robust extrema.

fm(a) = sin(π ∗ a

2N + 2
) where a ∈ [1, 2N + 1] (6.40)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Half−Sine Wave

a Î [1,2N+1]

si
n(

πa
/(

2N
+

2)
)

Figure 6.1: The half-sine filter.

165

6.3 Optimal Filter for the Case of General Ran-

dom Walk Data (Discretely Sampled Levy

Processes)

In the previous section, it was shown that the half sine filter is the optimal filter

for Gaussian random walk data. In this section, these results are extrapolated for

the case of all random walk data. Starting from equation (6.9) (shown below) in

the previous section until which point no assumption was made about the nature

of the time series data.

yjy
T
j (α, β) = ((2N + 1) − (max(α, β) − 1)) ∗ (M −N) ∗ E(w2)+

2N+1
∑

k=α

2N+1
∑

i=β,k 6=i

(

(M −N) ∗ E(wk+j−(N+1) ∗ wi+j−(N+1))
)

(6.41)

Given the information that the time series is a random walk, the increments must

be independent and stationary and this implies that

From the independence property

E(wk+j−(N+1)wi+j−(N+1)) = E(wk+j−(N+1)) ∗ E(wi+j−(N+1)) (6.42)

From the stationarity property

E(wk+j−(N+1)wi+j−(N+1)) = E(wk+j−(N+1))2 = Constant(σ2) (6.43)

166

For the special case of a Gaussian random walk process,E(wk+j−(N+1))2 = 0 but for

a generalized random walk process E(wk+j−(N+1))2 = Constant(σ2). Substituting

equation (6.43) into equation (6.41) we obtain

yjy
T
j (α, β) = ((2N+1)−(max(α, β)−1))∗(M−N)∗E(w2)+

2N+1
∑

k=α

2N+1
∑

i=β,k 6=i

(

(M −N) ∗ σ2
)

(6.44)

yjy
T
j (α, β) = ((2N + 1) − (max(α, β) − 1)) ∗ (M −N) ∗ E(w2)

+((M −N) ∗ E(w)2)(2N + 1 − (max(α, β) − 1))(2N + 1 − (min(α, β) − 1) − 1)

(6.45)

One can derive a similar equation for zjz
T
j and it results in an identical form. This

finally leads to the following form for the Xdata matrix which is as follows

Xdata = K1



















































2N + 1 2N 2N − 1 ... 2 1

2N 2N 2N − 1 ... 2 1

2N − 1 2N − 1 2N − 1 ... 2 1

...

2 2 2 ... 2 1

1 1 1 ... 1 1



















































167

+K2



















































(2N + 1)(2N) (2N)(2N) (2N − 1)(2N) ... (1)(2N)

(2N)(2N) (2N)(2N − 1) (2N − 1)(2N − 1) ... (1)(2N − 1)

(2N − 1)(2N) (2N − 1)(2N − 1) (2N − 1)(2N − 2) ... (1)(2N − 2)

...

(2)(2N) (2)(2N − 1) (2)(2N − 2) ... (1)(1)

(1)(2N) (1)(2N − 1) (1)(2N − 2) ... 0



















































(6.46)

where K1 & K2 are a multiplication constants such that K1 > K2. A complete

closed-form solution for the eigen vector corresponding to the maximum eigen

value for the above matrix could not be obtained. Hence a numerical analysis was

performed. In this method the parameter ratio K2/K1 was varied and the resulting

optimal filter for different values of the parameter was plotted. Figure 6.2 shows

that the optimal filter for the case of general random walk data is very similar

to that of the Gaussian random walk case and one could approximately use the

half-sine wave filter for the case of all random walk data. Note that under some

circumstances the optimal filter from the highest eigen value may not result in any

extrema and in these cases one must use eigen vectors corresponding to subsequent

eigen values. The same simulation as above was performed to obtain the filters

corresponding to the second and third eigen values and the results are shown in

Figure 6.3 and Figure 6.4. It is interesting to note that the filter corresponding to

168

the second highest eigen vector is given by Sine wave in all the cases. A formal proof

to ascertain this simulation result is shown in Appendix C. It is also interesting

to see that the optimal filter for the third eigen value tends to take the form of a

sombrero, which is a commonly used filter.

5 10 15 20 25

0.5

1

1.5

2

2.5

Index

A
m

pl
itu

de

Optimal Filter (Gaussian Random Walk)
Optimal Filter (General Random Walk)

Figure 6.2: Optimal filter (Highest Eigen Value) for Random Walk Data

6.4 A Statistical Test to Check for the Applica-

bility of the Half-Sine Filter

It is important to understand that being a random walk time series is a sufficient

condition for the applicability of the half-sine wave filter as shown in sections 5.6

but is not a necessary condition for its applicability. A more general sufficient

169

5 10 15 20 25

−1

−0.5

0

0.5

1

Index

A
m

pl
itu

de

Optimal Filter (Gaussian Random Walk)
Optimal Filter (General Random Walk)

Figure 6.3: Optimal filter (Second Highest Eigen Value) for Random Walk Data

condition for the applicability of the half-sine wave is

E(wk+j−(N+1)wi+j−(N+1)) = Constant, Where k & i ∈ [1, 2N + 1] (6.47)

Given that both k and i can take up to ′2N + 1′ values each. There are a total

of ′(2N + 1) ∗ (2N + 1)′ different combinations of terms for which equation (6.47)

needs to be verified. The task is simplified by the fact that for any particular value

of k and i , say kα and iα and a constant β, one can show that

E(wkα+j−(N+1)wiα+j−(N+1)) = E(wkα+j+β−(N+1)wiα+j+β−(N+1)) (6.48)

170

5 10 15 20 25

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Index

A
m

pl
itu

de

Optimal Filter (Gaussian Random Walk)
Optimal Filter (General Random Walk)

Figure 6.4: Optimal filter (Third Highest Eigen Value) for Random Walk Data

Substituting j
′

= j + β, we obtain

E(wkα+j−(N+1)wiα+j−(N+1)) = E(wkα+j
′ −(N+1)wiα+j

′ −(N+1)) (6.49)

Equation (6.49) is true as the expectation for the terms is computed over the

variable j or j
′

. This reduces the total number of different combinations for which

a statistical check for equality has to be performed to ′2N + 1′ values. Therefore

from equation (6.47), keeping k constant at value of 1, one has to vary i and show

that the following holds true:

E(w1+j−(N+1)w1+j−(N+1)) = E(w1+j−(N+1)w2+j−(N+1))...

...E(w1+j−(N+1)w2N+j−(N+1)) = E(w1+j−(N+1)w2N+1+j−(N+1)) (6.50)

171

The above condition can be easily verified by performing a one-way anova test

or non-parametric tests like the Kruskal-Wallis test. It is important to note that

equation (6.47) provides a more general sufficient condition but not the necessary

condition for the applicability of the half-sine filter. Through experimentation it

was found that some real time series datasets violate this sufficiency condition, but

yield an approximate half-sine filter as their optimal filter.

6.5 Experiemental Results : Extrema Stability

Test

The “Extrema Stability” test described in Section 5.4.2 was previously performed

on five different datasets and the results validated the optimization method for

robustness. The same test was repeated while using the ‘Half-Sine’ filter and the

results are compared in Figures 6.5 - 6.9. It can be seen that while the performance

of the ‘Half-Sine’ filter is close to that of the optimal filter , the optimal filter out-

performs the ‘Half-Sine’ filter in all the cases as it is specifically optimized for that

particular dataset. The ‘Half-Sine’ filter is compared to the other optimal filters

from the different datasets in Figure 6.10. The results comparing the performance

of the ‘Half-Sine’ filter with the Gaussian filter and the optimal filter using surface

plots are presented in Appendix-B.

172

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 Pitch Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Half Sine Filter
Gauss
DerGauss
Sombrero
Sine
Const

Figure 6.5: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

6.6 Experimental Results : Subsequence Match-

ing Test

The subsequence matching test that was previously described in Section 5.4.3 was

performed using the ‘Half-Sine’ filter in order to compare its performance to the

optimal filter. The results from these tests are shown in Figures 6.11 - 6.15. It can

be seen that apart from the case of the Pitch data (Figure 6.11), the optimal filter

outperforms the ‘Half-sine’ filter for all the other datasets. The better performance

of the optimal filter in those cases could be attributed to its higher robustness as

seen in Figures 6.5- 6.9 but this may be only partially true as we are not considering

the effect of these filters on the properties of uniqueness and cardinality. In the

173

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 Music Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Half Sine Filter
Gauss
DerGauss
Sombrero
Sine
Const

Figure 6.6: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

same way the better performance of the ‘Half-Sine’ filter in the case of the Pitch

dataset could be possibly attributed to improvements due to changes in uniqueness

and cardinality in spite of its reduced robustness as shown in Figure 6.5.

6.7 Conclusion

The above derivation provides a rigorous theoretical framework for evaluating fil-

ters for the purposes of extrema identification. The outcome of this theoretical

framework was a methodology for the derivation of an optimal filter for obtaining

robust extrema. This methodology led to the discovery that the half sine filter

(and the Discrete Sine Transform in general) is optimal in the case of Gaussian

174

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 Stock Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Half Sine Filter
Gauss
DerGauss
Sombrero
Sine
Const

Figure 6.7: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

random walk data and approximately optimal for general random walk data. The

two experimental tests not only verify these predictions but also provide a clear

example of the practical applicability of these theoretical derivations.

175

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 EEG Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Half Sine Filter
Gauss
DerGauss
Sombrero
Sine
Const

Figure 6.8: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

 GRW Data

SNR(dB)

E
rr

or
 R

at
e

Optimal Filter
Half Sine Filter
Gauss
DerGauss
Sombrero
Sine
Const

Figure 6.9: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

176

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Filter Taps

N
or

m
al

iz
ed

 A
m

pl
itu

de

Filters Used to Extract Extrema

Half Sine Filter
Optimal(EEG)
Optimal(Music)
Optimal(GRW)
Optimal(Pitch)
Optimal(Stock)

Figure 6.10: Accuracy curves show the stability of the extrema obtained by using
different filters on different datasets.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 Pitch Data

Extrema − Half Sine Filter
Extrema − Optimal Filter
Extrema − Gauss
Extrema − Der−Gauss
Sliding Window−Euclidean
Sliding Window−DTW
Sliding Window−LCSS

Figure 6.11: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

177

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 Music Data

Extrema − Half Sine Filter
Extrema − Optimal Filter
Extrema − Gauss
Extrema − Der−Gauss
Sliding Window−Euclidean
Sliding Window−DTW
Sliding Window−LCSS

Figure 6.12: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 Stock Data

Extrema − Half Sine Filter
Extrema − Optimal Filter
Extrema − Gauss
Extrema − Der−Gauss
Sliding Window−Euclidean
Sliding Window−DTW
Sliding Window−LCSS

Figure 6.13: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

178

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 EEG Data

Extrema − Half Sine Filter
Extrema − Optimal Filter
Extrema − Gauss
Extrema − Der−Gauss
Sliding Window−Euclidean
Sliding Window−DTW
Sliding Window−LCSS

Figure 6.14: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

Normalized spatial extent of the outlier

A
cc

ur
ac

y
(%

)

 GRW Data

Extrema − Half Sine Filter
Extrema − Optimal Filter
Extrema − Gauss
Extrema − Der−Gauss
Sliding Window−Euclidean
Sliding Window−DTW
Sliding Window−LCSS

Figure 6.15: The subsequence matching results for different time series datasets
while using different sliding window methods and extrema techniques.

Chapter 7
Conclusions and Future Work

7.1 Conclusions

The overall contributions of this dissertation can be broken down into three distinct

categories.

1. The first category consists of the application oriented research work which

focused on utilizing extrema features for performing localization using pitch

and acceleration data. In this work, the standard ‘Wavelet Modulus Max-

ima’ were used as the extrema for encoding feature vectors as described in

Chapter 2.

Chapter 3 presented an algorithm that achieved global localization within

very large road networks using pitch information. The result was a viable

alternative to GPS localization. The proposed approach was also advanta-

geous as it utilized inertial sensors that are already often utilized in intelli-

180

gent and/or autonomous systems. Theoretical analysis and simulations were

performed to analyze the performance of the Multi-Scale Extrema Features.

The algorithm’s results in localizing a vehicle’s position without initialization

within a road network spanning 6000 km were also presented.

Chapter 4 presented a novel approach to find patterns in vehicle x-y-z accel-

eration data for use in prognostics and diagnostics. In this problem, vehicles

are assumed to travel on the same routes and often times as a part of convoys

but their GPS and other position information has been removed for privacy

reasons. The goal of the pattern matching scheme was to identify the route or

convoy associations within vehicles by using the acceleration data collected

onboard those vehicles. A crucial step in solving this problem was to choose

the right feature vector, as raw matching of acceleration signals is inappro-

priate due to different velocities, driving behaviors, vehicle loading, etc. The

research work demonstrated the feasibility of using ‘Multi-Scale Extrema

Features’ for acceleration data. The work also addressed implementation

details to enhance performance for in-vehicle acceleration data, corrupted

by different sources of noise. A novel ‘Multi-Scale Encoding’ method was

also proposed for the above feature vector and it lead to a significant im-

provement in the performance over traditional pattern matching methods.

While the main focus of the chapter was towards identifying feature vectors

that effectively describe in-vehicle acceleration data, the feature vector could

181

potentially be used with acceleration data obtained from other applications.

2. The second category consists of the tools and techniques developed to control

various properties of the extrema features. Invariably, extrema methods in-

volve filtering of the time-series with an intuitively motivated filter (e.g. for

smoothing), and subsequent thresholding to identify robust extrema. Chap-

ter 5 delineated the feature generation process from raw time-series data,

while using extrema, into three different steps 1.) filtering step, 2.) extrema

detection step, and 3.) feature encoding step. Subsequently the work de-

fined and utilized the properties of robustness, uniqueness and cardinality as

a framework to identify the design choices available in each of the above steps.

Unlike most methods from existing literature which utilize filters “inspired”

from either domain knowledge or intuition, the proposed approach explicitly

optimized the filter based on training time-series to optimize robustness of

the extracted extrema features. It was demonstrated that the underlying

filter optimization problem reduces to a generalized eigenvalue problem and

has a tractable solution. An encoding technique that enhances the control

over cardinality and uniqueness was also presented. Experimental results ob-

tained for the problem of time-series subsequence matching established the

merits of the proposed framework.

3. The final category focuses on obtaining theoretical results that help bet-

ter understand the implications of the optimization technique presented in

182

Chapter 5. While Chapter 5 approached the problem of creating more ro-

bust extrema features in a ‘deterministic sense’, Chapter 6 proposed to solve

the problem in a ‘stochastic sense’. This stochastic approach was fruitful in

delivering interesting theoretical results in situations where the underlying

time-series was a Gaussian random walk or a general random walk. In case of

a Gaussian random walk, the optimal filters using our proposed framework

were proven to be the filters of the Discrete Sine Transform. In case of a

general random walk, it was shown that the filters corresponding the high-

est even eigen values (2nd, 4th, 6th, etc) remained the same as those for the

Gaussian Random Walk while the odd highest eigen vectors (1st, 3rd, 5th, etc)

resulted in a family of curves for the optimal filters. This chapter provided

closed-form solutions which could be directly utilized without having to per-

form the otpimization procedure incase certain stochastic characteristics of

the time-series are known beforehand.

In summation, the dissertation presents three interesting facets of utilizing and

developing extrema features for their application in global-localization and pattern

matching of time-series data.

7.2 Future Work

There are wide range of different avenues towards which this work could be ex-

tended and some of these directions are discussed below.

183

7.2.1 Unifying Extrema Methods and Sliding Window Meth-

ods for Feature Extraction

Chapters 3 and 4 have shown the application of extrema features for pitch and

acceleration data. However, the features that were utilized were constructed solely

out of extrema and were contrasted against the sliding window methods. While

such a constrast is definetly interesting, the work clearly showed that it might be

possible to combine these two approaches such that one is able to incorporate the

computational and memory efficiencies that extrema provide with the wide range of

encoding possibilities that have been designed for sliding window methods. In this

new technique, the window extraction is not performed by “sliding the window”

but by using the extrema as seed points for extracting windows. These windows

could now be encoded using traditional means that have been suggested for sliding

window methods. The merits and the implementation details of such a scheme

should be carefully studied to check to see if the promised advantages materialize

in real world pattern matching tasks. A schematic that compares the proposed

approach to the standard sliding window method is shown in Figure 7.1.

7.2.2 Adding the uniqueness criterion to the optimization

The optimization procedure presented in Chapter 2 found the filter that would yield

the maximum robustness to the extracted extrema. It is important to remember

that while robustness to noise is critical, another property that is highly desirable

184

[1.48 24.3 25.6]
[1.2 11.4 3.16]
[11.4 25.0 1.15]
[10.1 0.05 22.3]
[12.3 14.2 19.6]

.

.

Sliding Window Method

[14.2 25.6 78.5]

[47.2 32.5 3.56]

[25.3 15.2 1.56]

[11.6 25.2 0.15]

Proposed Idea

Extract Windows At Extrema

Identify

Extrema
Extract

windows

At

Regular

Intervals

Time Series

Figure 7.1: A comparision of the proposed extrema based window selection method
to the standard sliding window method.

is the uniqueness of the features produced from the data. It is therefore important

to optimize for both robustness and uniqueness in the optimization scheme. A

drawback of optimizing for just robustness is shown in Figure 7.2. where the

filters are optimally robust, but their variation along the direction of the filter is

small. A technique to mitigate situations such as those in Figure 7.2 is to possibly

add a uniqueness term to the optimization function in Eqn (5.34). The uniqueness

term should measure the variation in the data along the direction of the filter.

Given that α in Eqn (5.34) denotes a 2N + 1 vector whose ith element is

denoted by α−N−1+i. The filter taps are given by Tmatα where Tmat is a 2N + 1

185

Figure 7.2: An example case in which the maxima are optimally robust are far
away from the separating hyperplanes but the variation of the maxima along filter
hyperplane is small and would therefore not lead to very unique features.

lower triangular matrix with 1 for all non-zero elements as shown below

Tmat =









































1 0 0 ... 0

1 1 0 ... 0

1 1 1 ... 0

...

1 1 1 ... 1









































(7.1)

and Tmat is obtained as a consequence of Eqn (5.11). Let βj denote a 2N + 1

vector whose ith element is denoted by x−N−1+i (In a manner similar to yj and zj

as shown before Eqn (5.31)). Then the variation of the data when projected onto

186

the filter is given by Uuniqueness or Uu.

Uu =
M
∑

j=N+1

[(Tmatα)T (βj − µ)(βj − µ)T (Tmatα)] (7.2)

The term µ is the mean of all the βj vectors. Note that this measure of uniqueness

of the data is heuristic in nature and may not capture the true extent of variation

in the feature vector coefficients. A true measure would be the variation of the

filter coefficients for a particular set of maxima but creating this term would make

the problem analytically intractable and would not result in a closed form solution

to the filter. The above equation can be further simplified to

Uu = αT [
M
∑

j=N+1

[(Tmat)T (βj − µ)(βj − µ)T (Tmat)]]α (7.3)

Let Xuni = [
M
∑

j=N+1
[(Tmat)T (βj − µ)(βj − µ)T (Tmat)]]. Thus, the optimization term

for the uniqueness can be written as

Uu = αTXuniα (7.4)

The modified optimization function that included robustness and uniqueness terms

is given by

Ur + Uu = αTXDataα+ kαTXuniα (7.5)

187

where k is a weighting constant. Thus

Utotal = Ur + Uu = αT (XData + kXuni)α (7.6)

Note: (XData + kXuni) is positive definite for most time-series. The subsequent

solution follows the same pattern as that in the previous section and the final solu-

tion for the matrix can be obtained obtained from the Eigen vector corresponding

to the largest Eigen value of (XData + kXuni)1/2[I + J2N+1]−1(XData + kXuni)1/2.

The benefits of the above formulation in terms of the pattern matching results

mus tbe quanitified and a procedure to select the weighting constant ‘k’ must be

delineated.

7.2.3 Representation of Extrema Detection as Unsuper-

vised Clustering

The fundamental interpretation that makes the derivations in Chapter 2 possible

is the morphing of the extrema detection technique as a geometric problem of

finding two hyper planes that separate data in a higher dimensional space. The

problem of separating unlabelled data is in fact the unsupervised clustering prob-

lem. Therefore one could adapt the diverse techniques that have developed to solve

the clustering problem, to the optimal extrema detection method. This concept

of how clustering, which has often been utilized to extract bounded regions in a

188

hyperspace, be utilized for extrema detection can be further demonstrated via an

example. Instead of the conditions given in the equations (5.3) and (5.4) where

the maxima are defined in the usual manner, let us consider the situation in which

the maxima are defined as

N+1
∑

i=−N−1

(bi − bi+1)x[n0 − i] > t1 (7.7)

N+1
∑

i=−N−1

(bi − bi+1)x[n0 − i] < t2 (7.8)

N+1
∑

i=−N−1

(bi − bi−1)x[n0 − i] > t1 (7.9)

N+1
∑

i=−N−1

(bi − bi−1)x[n0 − i] < t2 (7.10)

where t1 and t2 are thresholds such that t1 > t2 > 0. While conditions (7.7)

Figure 7.3: A 2D projection of the hyperspace that illustrates the boundary of the
maxima region for conditions given in Eqns (7.7)-(7.10).

and (7.9) make intuitive sense, as one would want the extrema to be substantial

and not be artifacts of noise, conditions (5.3) and (5.4) donot have the same

189

intuitive meaning. However, the above conditions lead to the maxima regions

which are quadrilaterals when projected on to a two dimensional space are shown

in Figure 7.3. From this illustration, we can easily see that by definition any

polyhedra in higher dimensional data hyperspace can be interpreted as a set of

filters resulting from conditions such as those given in Eqns (7.7)-(7.10). In fact

from the supporting hyperplane theorem, we can conclude that any convex set

can be interpreted as being formed from a set of such filter conditions. Of course,

some of these convex regions will have infinite such filter conditions to satisfy.

Thus, the problem of extrema detection is equivalent to the unsupervised clustering

problem. It is important to note that as described before, all the infinite number of

convex regions that can be defined over the hyperspace, many not make intuitive

or make practical sense in being considered as candidates for extrema detection

and optimization routines must be used to fish out those with desirable properties

as was done in Chapter 2.

7.2.4 Closed-form Solutions to the General Random Walk

Problem

Chapter 6 and Appendix C provided only half the solution to the problem of

identifying the closed-form solution for the optimal filter in the case of random

walk time-series data. The other half of the solution which corresponds to obtain-

ing the closed-form equations for the odd highest eigen vectors (1st, 3rd, 5th, etc) is

190

very challenging and would lead to an interesting family of filters shown in Fig-

ure 6.2 and Figure 6.4. The mathematical properties of these family of filters

would be interesting to study and and may provide greater insight into the current

formulation of the optimization problem and its implications for various stochastic

time-series data.

Appendix A
Global Localization using Bias and

Scale Invariant Features

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Query Signal Length (meters)

A
cc

u
ra

cy
 (

%
)

Accuracy Criterion: Best position estimate
Accuracy Criterion: Best of five position estimates

Figure A.1: The localization accuracy of the ’amplitude bias’ feature vector is
immune to the bias noise present in the sensor.

192

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Bias Error in Pitch (Degrees)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 205 meters
Query Signal Length = 410 meters
Query Signal Length = 820 meters

Std Dev Pitch Noise = 0.1 Deg
Scale Factor Error = 0
Std Dev Encoder Noise = 0.075 m

Figure A.2: The localization accuracy of the ’Amplitude Bias Amplitude Scale
Time Scale’ feature vector is immune to the bias noise present in the sensor.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Scale Factor Error in Pitch (Dimensionless)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 205 meters
Query Signal Length = 410 meters
Query Signal Length = 820 meters

Std Dev Pitch Noise = 0.1 Deg
Bias Error =0 Deg
Std Dev Encoder Noise = 0.075 m

Figure A.3: The localization accuracy of the ’Amplitude Bias Amplitude Scale
Time Scale’ feature vector is immune to the scale noise present in the sensor.

193

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

100

 Std Deviation of the Distance Measurement Noise (Meters)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 205 meters
Query Signal Length = 410 meters
Query Signal Length = 820 meters
Error From Low−Cost Sensors

Bias Error = 0 Deg
Scale Factor Error = 0
Std Dev Pitch Noise = 0.1 Deg

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

 Std Deviation of the Pitch Measurement Noise (Degrees)

A
cc

u
ra

cy
 (

%
)

Query Signal Length = 205 meters
Query Signal Length = 410 meters
Query Signal Length = 820 meters
Error From Low−Cost Sensors

Bias Error = 0 Deg
Scale Factor Error = 0
Std Dev Encoder Noise = 0.075 m

Figure A.4: The plots examine the effects of band-limited white noise in the en-
coder and pitch measurements on localization accuracy.

Appendix B
Extrema Stability Surface Plots

The plots comparing the ‘Half-sine’ filter with the optimal filter and the Gaussian

filter while changing the variance parameter of the Gaussian filter are shown in

Figures B.1 - B.5. The procedure for conducting the tests and the datasets that

were used are described in Section 5.4.2 and Section 5.4.1.1 respectively. Analysis

of the below plots reveals that the performance of the ‘Half-Sine’ filters isvery

similar to that of the optimal filter. If one were to exclude very high SNR situations

where the results could be effected by numerical errors , one can clearly see that the

optimal filter delivers better performance than the ‘Half-Sine’ filter as it specifically

customized for that dataset.

195

Figure B.1: Comparison of the extrema stability of the optimal filter against Gaus-
sian filters with different standard deviations on different time series datasets.

Figure B.2: Comparison of the extrema stability of the optimal filter against Gaus-
sian filters with different standard deviations on different time series datasets.

196

Figure B.3: Comparison of the extrema stability of the optimal filter against Gaus-
sian filters with different standard deviations on different time series datasets.

Figure B.4: Comparison of the extrema stability of the optimal filter against Gaus-
sian filters with different standard deviations on different time series datasets.

197

Figure B.5: Comparison of the extrema stability of the optimal filter against Gaus-
sian filters with different standard deviations on different time series datasets.

Appendix C
Even Eigen Vectors for the Robust

Extrema Formulation in the Case of

General Random Walk Data

(Discretely Sampled Levy Processes)

Starting with formulation for the Xdata matrix that was given in Equation (6.46)

for the case of General Random Walk data (Discretely sampled Levy process).

Xdata = K1





























2N + 1 2N 2N − 1 ... 2 1

2N 2N 2N − 1 ... 2 1

2N − 1 2N − 1 2N − 1 ... 2 1

...

2 2 2 ... 2 1

1 1 1 ... 1 1





























199

+K2





























(2N + 1)(2N) (2N)(2N) (2N − 1)(2N) ... (1)(2N)

(2N)(2N) (2N)(2N − 1) (2N − 1)(2N − 1) ... (1)(2N − 1)

(2N − 1)(2N) (2N − 1)(2N − 1) (2N − 1)(2N − 2) ... (1)(2N − 2)

...

(2)(2N) (2)(2N − 1) (2)(2N − 2) ... (1)(1)

(1)(2N) (1)(2N − 1) (1)(2N − 2) ... 0





























(C.1)

where K1 & K2 are multiplication constants such that K1 > K2. Let

Xorg =





























2N + 1 2N 2N − 1 ... 2 1

2N 2N 2N − 1 ... 2 1

2N − 1 2N − 1 2N − 1 ... 2 1

...

2 2 2 ... 2 1

1 1 1 ... 1 1





























(C.2)

The Xdata matrix can be written as follows.

Xdata =

(K1 + 2NK2) ∗























Xorg(1, 1) Xorg(1, 2) Xorg(1, 3) ...

Xorg(2, 1) Xorg(2, 2) Xorg(2, 3) ...

Xorg(3, 1) Xorg(3, 2) Xorg(3, 3) ...

...

Xorg(2N + 1, 1) Xorg(2N + 1, 2) Xorg(2N + 1, 3) ...























−K2























0 Xorg(1, 2) 2Xorg(1, 3) 3Xorg(1, 3) ...

0 Xorg(2, 2) 2Xorg(2, 3) 3Xorg(2, 3) ...

0 Xorg(3, 2) 2Xorg(3, 3) 3Xorg(3, 4) ...

...

0 Xorg(2N + 1, 2) 2Xorg(2N + 1, 3) 3Xorg(2N + 1, 4) ...























200

+K2





























0 2N 2(2N − 1) 3(2N − 2) 4(2N − 3) ...

0 0 2N − 1 2(2N − 2) 3(2N − 3) ...

0 0 0 (2N − 2) 2(2N − 3) ...

0 0 0 0 2N − 3 ...

...

0 0 0 0 0 ...





























(C.3)

Given the above form for the Xdata matrix, the aim of this derivation is to find

the eigen vectors corresponding to even eigen values (2nd, 4th, 6th, etc) of the [I +

J2N+1]−1Xdata matrix. For a given filter of length ′2N+1′, the [I+J2N+1]−1 matrix

is given as follows.

[I + J2N+1]−1 = 1/(2N + 2)























2N + 1 −1 ... −1 −1

−1 2N + 1 ... −1 −1

...

−1 −1 ... 2N + 1 −1

−1 −1 ... −1 2N + 1























(C.4)

The matrices Fdata, Forg,Fext and Frem are defined as given below. Let

Fdata = [I + J2N+1](−1)Xdata (C.5)

Let

Forg = [I + J2N+1](−1)























Xorg(1, 1) Xorg(1, 2) Xorg(1, 3) ...

Xorg(2, 1) Xorg(2, 2) Xorg(2, 3) ...

Xorg(3, 1) Xorg(3, 2) Xorg(3, 3) ...

...

Xorg(2N + 1, 1) Xorg(2N + 1, 2) Xorg(2N + 1, 3) ...























(C.6)

201

Let

Fext = [I + J2N+1](−1)























0 Xorg(1, 2) 2Xorg(1, 3)

0 Xorg(2, 2) 2Xorg(2, 3)

0 Xorg(3, 2) 2Xorg(3, 3)

...

0 Xorg(2N + 1, 2) 2Xorg(2N + 1, 3)























(C.7)

Let

Frem = [I + J2N+1](−1)





























0 2N 2(2N − 1) 3(2N − 2) 4(2N − 3) ...

0 0 2N − 1 2(2N − 2) 3(2N − 3) ...

0 0 0 (2N − 2) 2(2N − 3) ...

0 0 0 0 2N − 3 ...

...

0 0 0 0 0 ...





























(C.8)

Therefore,

Fdata = (K1 + 2NK2)Forg −K2Fext +K2Frem (C.9)

An extended form of Fdata that highlights the relationship between Forg and Fext

is shown in equation (C.10).

Lemma C.0.1.
2N+1
∑

i=2
((2N + 1) − (i− 1)) ∗ (wm(i)) = −(2N + 1)sin(m ∗ π/(2N +

2)) where m is even and wm(a) = sin(mπ
a

2N + 2
) − sin(mπ

a− 1
2N + 2

)

Proof:

R.T.P
2N+1
∑

i=2

((2N+1)− (i−1))∗ (wm(i)) = −(2N+1)sin(m∗π/(2N+2)) (C.11)

Using the identity

2N+1
∑

i=2

((2N + 1) − (i− 1)) ∗ (cos(b ∗ (2i− 1)/2)) =

(1/4)cosec(b/2)(−2(2N + 1)sin(b) + sin((2N + 1)b)

+ (cos(b/2)(1 − cos((2N + 1)b))/sin(b/2))) (C.12)

202

Fdata = (K1 + 2NK2)

















Forg(1, 1) Forg(1, 2) Forg(1, 3) Forg(1, 4) ...
Forg(2, 1) Forg(2, 2) Forg(2, 3) Forg(2, 4) ...
Forg(3, 1) Forg(3, 2) Forg(3, 3) Forg(4, 3) ...

...
Forg(2N + 1, 1) Forg(2N + 1, 2) Forg(2N + 1, 3) Forg(2N + 1, 4) ...

















−K2

















0 Forg(1, 2) 2Forg(1, 3) 3Forg(1, 4) ...
0 Forg(2, 2) 2Forg(2, 3) 3Forg(2, 4) ...
0 Forg(3, 2) 2Forg(3, 3) 3Forg(3, 4) ...
...
0 Forg(2N + 1, 2) 2Forg(2N + 1, 3) 3Forg(2N + 1, 4) ...

















+
K2

2N + 2





















0 (2N + 1)(2N) − 2N (2N + 1)(2(2N − 1)) − (2N − 1)(3 ∗ 2/2) (2N + 1)(3(2N − 2)) − (2N − 2)(4 ∗ 3/2) ...
0 −2N (2N + 1)(1(2N − 1)) − (2N − 1)(3 ∗ 2/2) (2N + 1)(2(2N − 2)) − (2N − 2)(4 ∗ 3/2) ...
0 −2N −(2N − 1)(3 ∗ 2/2) (2N + 1)(1(2N − 2)) − (2N − 2)(4 ∗ 3/2) ...
0 −2N −(2N − 1)(3 ∗ 2/2) −(2N − 2)(4 ∗ 3/2) ...
...
0 −2N −(2N − 1)(3 ∗ 2/2) −(2N − 2)(4 ∗ 3/2) ...





















(C.10)

203

Assuming b = mπ/(2N+2) and m is even we obtain the identities sin((2N+1)b) =

−sin(b) and cos((2N + 1)b) = cos(b) . Substituting these identities into the above

identity we obtain

⇐⇒
2N+1
∑

i=2

((2N + 1) − (i− 1)) ∗ (cos(b ∗ (2i− 1)/2)) =

(1/4)cosec(b/2)(−2(2N + 1)sin(b) − sin(b) + (cos(b/2)(1 − cos(b))/sin(b/2)))

(C.13)

⇐⇒
2N+1
∑

i=2

((2N + 1) − (i− 1)) ∗ (cos(b ∗ (2i− 1)/2)) =

(1/4)cosec(b/2)(−2(2N + 1)sin(b) − sin(b) + (cos(b/2) ∗ 2 ∗ sin(b/2))) (C.14)

⇐⇒
2N+1
∑

i=2

((2N + 1) − (i− 1)) ∗ (cos(b ∗ (2i− 1)/2)) =

(−1/2)cosec(b/2)(2N + 1)sin(b) (C.15)

⇐⇒
2N+1
∑

i=2

((2N + 1) − (i− 1)) ∗ (cos(b ∗ (2i− 1)/2)) =

− (2N + 1)cos(b/2) (C.16)

Substituting b = mπ/(2N + 2) we obtain

⇐⇒
2N+1
∑

i=2

((2N + 1) − (i− 1)) ∗ (cos(m ∗ π ∗ (2i− 1)/(4N + 4))) =

− (2N + 1)cos(mπ/(4N + 4)) (C.17)

Starting with the L.H.S of equation (C.11)
2N+1
∑

i=2
((2N+1)−(i−1))∗(sin(mπ

a

2N + 2
)−

sin(mπ
a− 1

2N + 2
))

⇐⇒
2N+1
∑

i=2

((2N+1)−(i−1))∗(2∗sin(m∗π/(4N+4))cos(m∗π∗(2i−1)/(4N+4)))

(C.18)

⇐⇒ 2∗sin(m∗π/(4N+4))
2N+1
∑

i=2

((2N+1)−(i−1))∗cos(m∗π∗(2i−1)/(4N+4))

(C.19)

204

Using equation (C.17)

⇐⇒ 2 ∗ sin(m ∗ π/(4N + 4))(−(2N + 1)cos(mπ/(4N + 4))) (C.20)

⇐⇒ −(2N + 1)sin(m ∗ π/(2N + 2)) (C.21)

Hence proved.

Theorem C.0.2. Given a square matrix Fdata of size ′2N + 1′, (as shown in

equation(C.9))

The eigen vectors corresponding to the highest even eigen values (2nd, 4th, 6th, etc)

of such a matrix are given by

wm(a) = sin(mπ
a

2N + 2
) − sin(mπ

a− 1
2N + 2

)

where wm(a) is the ath element of the mth eigen vector, m is even, and a ∈ [1, 2N+

1]. The corresponding eigen values are given by

λm =
K1 −K2

2(1 − cos(mπ/(2N + 2)))

From the definition of the eigen value we know that

(K1 + 2NK2)Forg(1, :)wm − (K2)Fext(1, :)wm + (K2)Frem(1, :)wm = wm(1) ∗ λm

(C.22)

Similarly,

(K1 + 2NK2)Forg(2, :)wm − (K2)Fext(2, :)wm + (K2)Frem(2, :)wm = wm(2) ∗ λm

(C.23)

From Lemma 6.2.2,

Forg(1, :) ∗ wm = Forg(2, :) ∗ wm + (2N + 2) ∗ wm(1) (C.24)

Subtracting equations (C.22) and (C.23)

(K1+2NK2)(2N+2)∗wm(1)/(2N+2)+(2N+2)K2

2N+1
∑

i=2

((2N+1)−(i−1))∗wm(i)/(2N+2)

= (wm(1) − wm(2)) ∗ λm (C.25)

205

Using Lemma C.0.1,

(sin(m∗π/(2N +2)))(K1 +2NK2 − (2N +1)K2) = (wm(1)−wm(2))∗λm (C.26)

(sin(m ∗ π/(2N + 2)))(K1 −K2) = (wm(1) − wm(2)) ∗ λm (C.27)

(sin(m ∗ π/(2N + 2)))(K1 −K2) =

2sin(m ∗ π/(2N + 2))(1 − cos(m ∗ π/(2N + 2))) ∗ λm (C.28)

(K1 −K2) = 2(1 − cos(m ∗ π/(2N + 2))) ∗ λm (C.29)

Therefore, λm =
(K1 −K2)

2 ∗ (1 − cos(m ∗ π/(2N + 2)))
(C.30)

In order to prove that wm is the eigen vector for the Fdata matrix, one must show

that the eigen value obtained from each row, using equations similar to (C.22) and

(C.23), must be the same as equation (C.30).

Where, wm(a) = sin(m∗π∗ a

2N + 2
)−sin(m∗π∗ a− 1

2N + 2
) and m is even (C.31)

Starting from the last row Fdata(2N + 1, :), it is required to show that

2N+1
∑

δ=1

Fdata(2N + 1, δ)wm(δ) = λm ∗ wm(2N + 1) (C.32)

Using equations (6.14),(C.10),(C.31), and (C.30)

⇐⇒
2N+1
∑

δ=1

(

((2N + 2) − (2N + 2 − δ)(2N + 1 + δ)
2

)(K1 + 2NK2)

− ((2N + 2) − (2N + 2 − δ)(2N + 1 + δ)
2

)(K2)(δ − 1)

−(
(2N + 2 − δ)(δ)(δ − 1)

2
)(K2)

)

∗
(

sin(m ∗ π ∗ δ

2N + 2
) − sin(m ∗ π ∗ δ − 1

2N + 2
)
)

=
(

(2N + 2)(K1 −K2)
2 ∗ (1 − cos(m ∗ π/(2N + 2)))

(sin(
(2N + 1)mπ

2N + 2
) − sin(

(2N)mπ
2N + 2

))
)

(C.33)

206

L.H.S =
2N+1
∑

δ=1

(

(2N + 2)(K1 + 2NK2) − (
(K1 + 2NK2)(2N + 2 − δ)(2N + 1 + δ)

2
)

− ((2N + 2)(K2)(δ − 1)) +(
(2N + 2 − δ)(δ − 1)(K2)(2N + 1)

2
)
)

∗
(

sin(m ∗ π ∗ δ

2N + 2
) − sin(m ∗ π ∗ δ − 1

2N + 2
)
)

(C.34)

Using the identities given in equations (C.35),(C.36),(C.37) and (C.38) and sub-

stituting n = 2N + 1 and later substituting b = mπ/(2N + 2).

n
∑

δ=1

wm(δ) = sin(nb) (C.35)

n
∑

δ=1

(n+ δ)(n+ 1 − δ)wm(δ) = (1/(2 ∗ sin2(b/2)))((n+ 1)sin(bn) − nsin(b(n+ 1)))

(C.36)
n
∑

δ=1

(δ − 1)wm(δ) = (−sin(
bn

2
))((−2n+ 1)cos(

bn

2
) + cot(

b

2
)sin(

b ∗ n
2

)) (C.37)

n
∑

δ=1

(n+ 1 − δ)(δ − 1)wm(δ) =

(cosec(
b

2
))(−cos(b(n+ 1)

2
))((n)cos(

bn

2
) − cot(

b

2
)sin(

b ∗ n
2

))

(C.38)

L.H.S = ((2N + 2)(K1 + 2NK2)(sin((2N + 1)b)))

−
(

K1 + 2NK2

4 ∗ sin2(b/2)
((2N + 2)sin((2N + 1)b) − (2N + 1)sin(b(2N + 2)))

)

+
(

2 ∗ (2N + 2) ∗K2 ∗ sin((2n+ 1)b/2)
2

∗
(

−(4N + 1)cos(b(2n+ 1)/2) +
cos(b/2)sin(b(2N + 1)/2)

sin(b/2)

))

+
(

−(2N + 1) ∗K2 ∗ cos((2N + 2)b/2)
2sin(b/2)

∗
(

(2N + 1)cos(b(2N + 1)/2) − cos(b/2)sin(b(2N + 1)/2)
sin(b/2)

))

(C.39)

Using b = mπ/(2N + 2) and m is even we obtain the identities sin((2N + 1)b) =

207

−sin(b), sin((2N + 2)b) = 0, and cos((2N + 1)b) = cos(b) .Substituting these

identities into the above identity we obtain

L.H.S = (−(2N + 2)(K1)(sin(b)))

+
(

(K1 + 2NK2)(2N + 2)sin(b)
4sin2(b/2)

)

− ((2N + 2)(2NK2)(−sin(b)))

+
(

(4N + 1)(2N + 2)(K2)(sin(b))
2

)

+
(

(cos(b/2))(2N + 2)(K2)(1 − cos(b))
2sin(b/2)

)

+
(

(−1)((2N + 1)2)(K2)(2cos((2N + 2)b/2)cos((2N + 1)b/2))
4sin(b/2)

)

+
(

(cos(b/2))(2N + 1)(K2)(2cos((2N + 2)b/2)sin((2N + 1)b/2))
4sin2(b/2)

)

(C.40)

L.H.S =
(

−(2N + 2)(K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

+
(

(2NK2)(2N + 2)sin(b)
4sin2(b/2)

)

− ((2N + 2) ∗ (2NK2)(sin(b)))

+
(

(4N + 1)(2N + 2)(K2)(sin(b))
2

)

+
(

(2N + 2)(K2)(sin(b))
2

)

−
(

((2N + 1)2)(K2)(cos(b(4N + 3)/2) + cos(b/2))
4sin(b/2)

)

+
(

(2N + 1)(K2)(cos(b/2))(sin(b(4N + 3)/2) − sin(b/2))
4sin2(b/2)

)

(C.41)

208

L.H.S =
(

−(2N + 2)(K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

+
(

(2NK2)(2N + 2)sin(b)
4sin2(b/2)

)

− ((2N + 2) ∗ (2NK2)(sin(b)))

+
(

(4N + 1)(2N + 2)(K2)(sin(b))
2

)

+
(

(2N + 2)(K2)(sin(b))
2

)

−
(

((2N + 1)2)(K2)(cos(b(4N + 3)/2) + cos(b/2))
4sin(b/2)

)

+
(

(2N + 1)(K2)(cos(b/2))(sin(b(4N + 3)/2) − sin(b/2))
4sin2(b/2)

)

(C.42)

Using b = mπ/(2N +2) and m is even we obtain the identities cos((4N +3)b/2) =

cos(b/2), and sin((4N + 3)b/2) = −sin(b/2) . Substituting these identities into

the above identity we obtain

L.H.S =
(

−(2N + 2)(K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

+
(

K2sin(b)
2

((2N + 2) + (4N + 1)(2N + 2) − 2(2N)(2N + 2))
)

+
(

K2sin(b)
4sin2(b/2)

((2N)(2N + 2) − (2N + 1) − (2N + 1)2)
)

(C.43)

L.H.S =
(

−(2N + 2)(K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

+
(

K2sin(b)
2

(4N + 4)
)

+
(

K2sin(b)
4sin2(b/2)

(2N + 2)(−1)
)

(C.44)

L.H.S =
(

−(2N + 2)(K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

+
(

(K2sin(b))(2N + 2)(1 − 1
4sin2(b/2)

))
) (C.45)

209

L.H.S =
(

−(2N + 2)(K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

+
(

(K2sin(b))(2N + 2)(1 − 1
4sin2(b/2)

)
) (C.46)

L.H.S =
(

(2N + 2)(K2 −K1)(sin(b))(1 − 1
4sin2(b/2)

)
)

(C.47)

L.H.S = (2N + 2)(K2 −K1)(sin(b))(1 − 1
4sin2(b/2)

) (C.48)

L.H.S =
(N + 1)(K2 −K1)(sin(b))(4sin2(b/2) − 1)

(1 − cos(b))
(C.49)

L.H.S =
(N + 1)(K2 −K1)(sin(b))(1 − 2cos(b))

(1 − cos(b))
(C.50)

L.H.S =
(N + 1)(K2 −K1)(sin(b))(1 − 2cos(b))(sin((2N + 1)b) − sin((2N)b))

(sin((2N + 1)b) − sin((2N)b))(1 − cos(b))
(C.51)

L.H.S =
(N + 1)(K2 −K1)(sin(b))(1 − 2cos(b))(sin((2N + 1)b) − sin((2N)b))

2sin(b/2)cos((4N + 1)b/2)(1 − cos(b))
(C.52)

Using b = mπ/(2N + 2) and m is even we obtain the identity cos((4N + 1)b/2) =

cos(3b/2).

L.H.S =
(N + 1)(K2 −K1)(sin(b))(1 − 2cos(b))(sin((2N + 1)b) − sin((2N)b))

2sin(b/2)cos(3b/2)(1 − cos(b))
(C.53)

L.H.S =
(N + 1)(K2 −K1)(sin(b))(1 − 2cos(b))(sin((2N + 1)b) − sin((2N)b))

(sin(2b) − sin(b))(1 − cos(b))
(C.54)

L.H.S =
(N + 1)(K2 −K1)(sin(b))(1 − 2cos(b))(sin((2N + 1)b) − sin((2N)b))

(−sin(b))(1 − 2cos(b))(1 − cos(b))
(C.55)

L.H.S =
(N + 1)(K1 −K2)(sin((2N + 1)b) − sin((2N)b))

(1 − cos(b))
(C.56)

L.H.S =
(2N + 2)(K1 −K2)(sin((2N + 1)b) − sin((2N)b))

2(1 − cos(b))
(C.57)

210

Substituting b = mπ/(2N + 2) we obtain

L.H.S =
(2N + 2)(K1 −K2)

2 ∗ (1 − cos(m ∗ π/(2N + 2)))
(sin(

(2N + 1)mπ
2N + 2

) − sin(
(2N)mπ
2N + 2

))

(C.58)

L.H.S is equal to R.H.S in equation (C.33). From the above derivation we have

shown that the eigen value given in equation (C.30) satisfies the condition for the

(2N + 1)th row given by equation (C.32). For all the subsequent rows, the proof

is obtained by mathematical induction. Suppose the equation wm(n + 1) ∗ λm =

Fdata(n+ 1, :) ∗wm is true for row ′n+ 1′ in the Fdata matrix, we need to show that

wm(n) ∗ λm = Fdata(n, :) ∗ wm (C.59)

Substituting equation (C.9), and condition for row ′n+ 1′ into equation (C.59) we

obtain

⇐⇒ ((K1 + 2NK2)(Forg(n, :) − Forg(n+ 1, :))) ∗ wm

− ((K2)(Fext(n, :) − Fext(n+ 1, :))) ∗ wm

+ ((K2)(Frem(n, :) − Frem(n+ 1, :))) ∗ wm

= ((wm(n) − wm(n+ 1)) ∗ λm)

(C.60)

Using Lemmas (6.2.1) and (6.2.2)

⇐⇒
(

(K1 + 2NK2)(
n
∑

i=1

(2N + 2)wm(i))
)

−
(

(K2)(
n
∑

i=1

(2N + 2)(i− 1)wm(i))
)

+



(K2)(
2N+1
∑

i=n+1

(2N + 2)(2N + 1 − (i− 1))wm(i))





= ((2N + 2)(wm(n) − wm(n+ 1)) ∗ λm)

(C.61)

211

⇐⇒
(

(K1 + 2NK2)(
n
∑

i=1

wm(i))
)

−
(

(K2)(
n
∑

i=2

(2N + 1)wm(i))
)

+
(

(K2)(
2N+1
∑

i=2

(2N + 1 − (i− 1))wm(i))
)

= ((wm(n) − wm(n+ 1)) ∗ λm)

(C.62)

Let b = mπ/(2N + 2) and using Lemma C.0.1 and equation (C.31)

⇐⇒
(

(K1 + 2NK2 −K2(2N + 1))(
n
∑

i=1

wm(i))
)

+ ((K2)(2N + 1)wm(1))

+ ((K2)(−(2N + 1)sin(b)))

= ((2sin(nb) − (sin((n+ 1)b) − sin((n− 1)b))) ∗ λm)

(C.63)

Using equation (C.31)

⇐⇒ ((K1 + 2NK2 −K2(2N + 1))(sin(nb)))

+ ((K2)(2N + 1)sin(b))

+ ((K2)(−(2N + 1)sin(b)))

= ((2sin(nb) − (sin((n+ 1)b) − sin((n− 1)b))) ∗ λm)

(C.64)

⇐⇒ ((K1 + 2NK2 −K2(2N + 1))(sin(nb)))

= ((2sin(nb) − (sin((n+ 1)b) − sin((n− 1)b))) ∗ λm)
(C.65)

⇐⇒ ((K1 −K2)(sin(nb)))

= ((2sin(nb) − 2sin(nb)cos(b)) ∗ λm)
(C.66)

⇐⇒ (K1 −K2)(sin(nb)) = (2sin(nb) − 2sin(nb)cos(b)) ∗ λm (C.67)

⇐⇒ (K1 −K2)(sin(nb))
(2sin(nb) − 2sin(nb)cos(b))

= λm (C.68)

⇐⇒ (K1 −K2)
2(1 − cos(b))

= λm (C.69)

212

Using equation (C.30) and substituting b = mπ/(2N + 2) we obtain

⇐⇒ (K1 −K2)
2 ∗ (1 − cos(m ∗ π/(2N + 2)))

=
(K1 −K2)

2 ∗ (1 − cos(m ∗ π/(2N + 2)))
(C.70)

Hence Proved.

Bibliography

[1] Duda, R., P. Hart, and D. Stork (2007) “Pattern Classification,” Journal
of Classification, 24(2), pp. 305–307. 1

[2] E.Bellman, R. (1957) Dynamic Programming, Princeton University Press.
4, 29, 122

[3] Gersho, A. and R. M. Gray (1992) Vector Quantization and Signal Com-
pression, Kluwer Academic Publishers. 6

[4] Faloutsos, C., M. Ranganathan, and Y. Manolopoulos (1994) “Fast
Subsequence Matching in Time-Series Databases,” ACM SIGMOD Record,
pp. 419–429. 6, 17, 42, 74, 95, 96, 99, 133, 134, 137, 142

[5] Korn, F., H. V. Jagadish, and C. Faloutsos (1997) “Efficiently Sup-
porting Ad Hoc Queries in Large Datasets of Time Sequences,” In SIGMOD,
pp. 289–300. 6, 96

[6] Chan, K. and A. Fu (1999) “Efficient Time Series Matching by Wavelets,”
Proceedings of the 15th International Conference on Data Engineering, pp.
126–133. 6, 18, 96

[7] shing Perng, C., H. Wang, S. R. Zhang, and D. S. Parker (2000)
“Landmarks: a new model for similarity-based pattern querying in time series
databases,” In ICDE, pp. 33–42. 6, 15, 16, 22, 31, 32, 97, 98, 99, 102, 104,
119, 120, 122, 123, 133, 134, 136, 137

[8] Berndt, D. J. and J. Clifford (1996) “Advances in knowledge discovery
and data mining,” chap. Finding patterns in time series: a dynamic program-
ming approach, American Association for Artificial Intelligence, Menlo Park,
CA, USA, pp. 229–248. 13, 17, 91

[9] Vlachos, M., D. Gunopoulos, and G. Kollios (2002) “Discovering Sim-
ilar Multidimensional Trajectories,” Data Engineering, International Confer-
ence on, p. 0673. 13, 18, 43, 77, 96, 137, 138, 142, 143

214

[10] Chen, L. and R. Ng (2004) “On the marriage of Lp-norms and edit distance,”
Proceedings of the Thirtieth international conference on Very large data bases
- Volume 30, pp. 792–803. 13, 96

[11] Ding, H., G. Trajcevski, P. Scheuermann, and X. Wang (2008)
“Querying and mining of time series data: experimental comparison of repre-
sentations and distance,” Proceedings of the VLDB Endowment archive. 13

[12] Cheng, K. and M. L. Spetch (1998) Mechanisms of landmark use in mam-
mals and birds, Oxford University Press, pp. 1–17. 15, 31

[13] Chen, Y., M. A. Nascimento, B. C. Ooi, and A. K. H. Tung (2007)
“SpADe: On Shape-based Pattern Detection in Streaming Time Series,”
2007 IEEE 23rd International Conference on Data Engineering, pp. 786–795.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4221727 16, 77

[14] Kristjánsson, A. and P. U. Tse (2001) “Curvature discontinuities are cues
for rapid shape analysis.” Perception And Psychophysics, 63(3), pp. 390–403.
16, 32

[15] Shevelev, I. A., V. M. Kamenkovich, and G. A. Sharaev (2003) “The
role of lines and corners of geometric figures in recognition performance.” Acta
neurobiologiae experimentalis, 63(4), pp. 361–368.
URL http://www.ncbi.nlm.nih.gov/pubmed/15053259 16, 32

[16] Chan, K.-P. and A. W. chee Fu (1999) “Efficient Time Series Matching
by Wavelets,” In ICDE, pp. 126–133. 17, 42

[17] Keogh, E. J., K. Chakrabarti, M. J. Pazzani, and S. Mehrotra
(2001) “Dimensionality Reduction for Fast Similarity Search in Large Time
Series Databases,” Knowl. Inf. Syst, pp. 263–286. 17, 96

[18] Chakrabarti, K., E. Keogh, S. Mehrotra, and M. Pazzani (2002)
“Locally Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases,” Proc. ACM SIGMOD, pp. 151–162. 17, 18, 96

[19] Keogh, E. (2002) “Exact indexing of dynamic time warping,” Proceedings
of the 28th international conference on Very Large Data Bases, pp. 406–417.
17, 18, 42, 77, 133, 137, 138, 142

[20] Park, S., W. W. Chu, J. Yoon, and C. Hsu (2000) “Efficient searches for
similar subsequences of different lengths in sequence databases,” IEEE, pp.
23–32.
URL http://portal.acm.org/citation.cfm?id=847377&dl=GUIDE 17

215

[21] Chen, L., M. T. Zsu, and V. Oria (2004) “Symbolic representation and
retrieval of moving object trajectories,” Proceedings of the 6th ACM SIGMM
international workshop on Multimedia information retrieval MIR 04, p. 227.
URL http://portal.acm.org/citation.cfm?doid=1026711.1026749 18

[22] Goldin, D. and P. Kanellakis (1995) “On Similarity Queries for Time-
Series Data,” In Proceedings of CP 95 Cassis France. 18

[23] Chu, K. K. W. and M. H. Wong (1999) “Fast time-series searching with
scaling and shifting,” Proceedings of the eighteenth ACM SIGMODSIGACTSI-
GART symposium on Principles of database systems PODS 99, pp. 237–248.
URL http://portal.acm.org/citation.cfm?doid=303976.304000 18

[24] Das, G., D. Gunopulos, and H. Mannila (1997) “Finding similar time
series,” in Principles of Data Mining and Knowledge Discovery, vol. 1263 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 88–100.
18

[25] Se, S., D. Lowe, and J. Little (2002) “Global localization using distinctive
visual features,” IEEERSJ International Conference on Intelligent Robots
and System, 1(October), pp. 226–231.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1041393 19, 21, 37

[26] Kosecka, J. (2004) “Global localization and relative pose estimation based
on scale-invariant features,” Proceedings of the 17th International Conference
on Pattern Recognition 2004 ICPR 2004, 4, pp. 319–322.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1333767 19

[27] Monga, V. M. V., A. Banerjee, and B. L. Evans (2006), “A clustering
based approach to perceptual image hashing,” .
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1597136 19

[28] Monga, V., D. Vats, and B. Evans (2005) “Image Authentication Under
Geometric Attacks Via Structure Matching,” in Multimedia and Expo, 2005.
ICME 2005. IEEE International Conference on, pp. 229 –232. 19, 21

[29] Bhattacharjee, S. and M. Kutter (1998) “Compression tolerant image
authentication,” Proceedings 1998 International Conference on Image Pro-
cessing ICIP98 Cat No98CB36269, 1, pp. 435–439. 19, 21

[30] Lowe, D. G. (2004) “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, 60, pp. 91–110. 20, 21,
37, 101, 125

216

[31] Mikolajzyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, L. Van Gool, and L. Van Gool (2005)
“A comparison of affine region detectors,” International Journal of Computer
Vision, 65(1-2), pp. 43–72. 20

[32] Sturm, B. L. (2007) “Stéphane Mallat: A Wavelet Tour of Signal Process-
ing, 2nd Edition,” Computer Music Journal, 31(3), pp. 83–85.
URL http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.

31.3.83 21, 26, 27

[33] Mallat, S. and S. Zhong (1992) “Characterization of signals from
multiscale edges,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(7), pp. 710–732.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=142909 21

[34] Kicey, C. and C. Lennard (1997) “Unique reconstruction of band-limited
signals by a Mallat-Zhong wavelet transform algorithm,” Journal of Fourier
Analysis and Applications, 3, pp. 63–82. 21, 101, 104

[35] Baluja, S. and M. Covell (2007) “Audio fingerprinting: Combining com-
puter vision & data stream processing,” in In International Conference on
Acoustics, Speech, and Signal Processing (ICASSP, pp. 213–216. 21

[36] Haitsma, J. and T. Kalker (2002) “A Highly Robust Audio Fingerprinting
System,” in ISMIR. 21

[37] Wang, A. (2006) “The Shazam music recognition service,” Commun. ACM,
49, pp. 44–48.
URL http://doi.acm.org/10.1145/1145287.1145312 22, 105

[38] Ellis, D. (2009) “Robust Landmark-Based Audio Fingerprinting @ON-
LINE,” .
URL http://labrosa.ee.columbia.edu/˜dpwe/resources/matlab/ 22,
105, 125, 126

[39] chung Fu, T., F. lai Chung, R. Luk, and C. man Ng (2007) “Stock
time series pattern matching: Template-based vs. rule-based approaches,”
Engineering Applications of Artificial Intelligence, 20(3), pp. 347 – 364. 22,
78, 119

[40] Zlot, R. and M. Bosse (2009) “Place Recognition using Keypoint Similari-
ties in 2D Lidar Maps,” Dimension Contemporary German Arts And Letters,
54, pp. 363–372. 30, 44, 68, 69

217

[41] Indyk, P. (2001) “Algorithms for Nearest Neighbor Search,” .
URL http://dimacs.rutgers.edu/Workshops/MiningTutorial/

pindyk-slides.ppt 30, 44, 134

[42] Nister, D. and H. Stewenius (2006) “Scalable Recognition with a Vocab-
ulary Tree,” in Proceedings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06, IEEE
Computer Society, Washington, DC, USA, pp. 2161–2168. 30, 40, 44

[43] Chen, Y., M. A. Nascimento, B. C. Ooi, and A. K. H. Tung (2007)
“SpADe: On Shape-based Pattern Detection in Streaming Time Series,” Data
Engineering, International Conference on, 0, pp. 786–795. 32, 138

[44] Grant, A., P. Williams, N. Ward, and S. Basker (2009) “GPS Jam-
ming and the Impact on Maritime Navigation,” Journal of Navigation, 62(02),
p. 173. 35

[45] Li, K., H.-S. Tan, and J. K. Hedrick (2009) “Map-Aided GPS/INS
Localization Using a Low-Order Constrained Unscented Kalman Filter,”
Transform, pp. 4607–4612.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5400446 35

[46] Bosse, M. and R. Zlot (2009) “Keypoint design and evaluation for place
recognition in 2D lidar maps,” Robotics and Autonomous Systems, 57(12),
pp. 1211–1224.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0921889009000992 35, 36, 38, 39, 40, 74

[47] Schindler, G., M. Brown, and R. Szeliski (2007) “City-Scale Location
Recognition,” 2007 IEEE Conference on Computer Vision and Pattern Recog-
nition, 0, pp. 1–7.
URL http://dx.doi.org/10.1109/CVPR.2007.383150 35, 36, 38, 39, 40,
68, 69, 74

[48] Vu, A., A. Ramanandan, A. Chen, J. A. Farrell, and M. Barth
(2012) “Real-Time Computer Vision/DGPS-Aided Inertial Navigation System
for Lane-Level Vehicle Navigation,” Intelligent Transportation Systems, IEEE
Transactions on, 13(2), pp. 899 –913. 36

[49] Fang, H. F. H., C. W. C. Wang, M. Y. M. Yang, and R. Y. R. Yang,
“Ground-Texture-Based Localization for Intelligent Vehicles,” . 36

[50] Dellaert, F., D. Fox, W. Burgard, and S. Thrun (1999) “Monte
Carlo localization for mobile robots,” Proceedings 1999 IEEE International

218

Conference on Robotics and Automation Cat No99CH36288C, 2(May), pp.
1322–1328.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=772544 36, 38

[51] Dean, A., P. Vemulapalli, and S. Brennan (2008) “Highway Evaluation
of Terrain-Aided Localization Using Particle Filters,” Proceedings of the 2008
ASME Dynamic Systems and Control Conference. 36, 38, 40, 74

[52] Dean, A. (2008) “Terrain-based Road Vehicle Localization using Attitude
Measurements,” The Pennsylvania State University, State College, Pennsyl-
vania. 36, 38, 40, 63, 68

[53] Fox, D., S. Thrun, W. Burgard, and F. Dellaert (2001) Particle fil-
ters for mobile robot localization, Springer-Verlag, pp. 470–498.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.

9914 36

[54] Fox, D. (2001) “KLD-sampling: Adaptive particle filters and mobile robot
localization,” Advances in Neural Information Processing Systems NIPS, p.
26Ű32.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

21.5786&rep=rep1&type=pdf 36

[55] Dellaert, F., W. Burgard, D. Fox, and S. Thrun (1999) “Using the
condensation algorithm for robust, vision-based mobile robot localization,”
Proceedings 1999 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Cat No PR00149, 2, pp. 588–594.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=784976 37

[56] Bosse, M. and R. Zlot (2008) “Map Matching and Data Association for
Large-Scale Two-dimensional Laser Scan-based SLAM,” The International
Journal of Robotics Research, 27(6), pp. 667–691.
URL http://ijr.sagepub.com/cgi/doi/10.1177/0278364908091366 37

[57] Murillo, A. and J. Kosecka (2009) “Experiments in place recognition
using gist panoramas,” in Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on, pp. 2196 –2203. 37

[58] David, P. and S. Ho (2011), “Orientation descriptors for localization in
urban environments,” .
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6048164 37

219

[59] Tabatabaei, S. A. H., M. Fleury, N. N. Qadri, S. Member, and
M. Ghanbari (2011) “Improving Propagation Modeling in Urban Environ-
ments for Vehicular Ad Hoc Networks,” Transportation, 12(3), pp. 705–716.
38

[60] Drawil, N. M. and O. Basir (2010), “Intervehicle-Communication-
Assisted Localization,” .
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5464357 38

[61] Ledwich, L. and S. Williams (2006) “Reduced SIFT Features For Image
Retrieval and Indoor Localisation,” Australian Conference on Robotics and
Automation, 322. 38, 40

[62] Vemulapalli, P., A. Dean, and S. Brennan (2011) “Pitch Based Vehi-
cle Localization Using Time Series Subsequence Matching with Multi-Scale
Extrema Features,” American Control Conference. 40, 74, 97, 104, 122, 123,
126

[63] Kadetotad, S., P. Vemulapalli, S. Brennan, and C. Lagoa (2011)
“Terrain-Aided Localization Using Feature-Based Particle Filtering,” Proceed-
ings of the ASME DSCC. 40, 74, 97, 98, 122

[64] Ye, L. and E. Keogh (2010) “Time series shapelets: a novel technique
that allows accurate, interpretable and fast classification,” Data Mining and
Knowledge Discovery, 22(1-2).
URL http://www.springerlink.com/index/10.1007/s10618-010-0179-5

42, 78

[65] Elkaim, G. H., M. Lizarraga, and L. Pedersen (2008) “Comparison of
Low-Cost GPS / INS Sensors for Autonomous Vehicle Applications,” Sensors
Peterborough NH, pp. 1133–1144.
URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=

4570000 63, 68

[66] Sadhukhan, D., C. Moore, and E. Collins (2004) “Terrain estimation
using internal sensors,” , pp. 195–199. 72

[67] Naito, A., C. Miyajima, T. Nishino, N. Kitaoka, and K. Takeda
(2009) “Driver evaluation based on classification of rapid decelerating pat-
terns,” in Vehicular Electronics and Safety (ICVES), 2009 IEEE International
Conference on, pp. 108 –112. 72

[68] Laerhoven, K. V., E. Berlin, and B. Schiele (2009) “Enabling Efficient
Time Series Analysis for Wearable Activity Data,” , pp. 392–397.

220

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5381499 72, 95

[69] Chen, L. and M. T. Özsu (2005) “Robust and fast similarity search for
moving object trajectories,” in In SIGMOD, pp. 491–502. 77

[70] Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N. C. Yen, C. C. Tung, and H. H. Liu (1998) “The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary
time series analysis,” Proceedings of the Royal Society A Mathematical
Physical and Engineering Sciences, 454(1971), pp. 903–995.
URL http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/

rspa.1998.0193 94

[71] Marteau, P.-F. (2009) “Time Warp Edit Distance with Stiffness Adjust-
ment for Time Series Matching,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(2), pp. 306 –318. 95, 96

[72] Keogh, E. (2003) “Welcome to the UCR Time Series Classifica-
tion/Clustering Page,” .
URL http://www.cs.ucr.edu/\simeamonn/time_series_data/ 95

[73] Keogh, E., S. Lonardi, and B. Y.-c. Chiu (2002) “Finding surprising pat-
terns in a time series database in linear time and space,” 8th ACM SIGKDD,
pp. 550–556. 95

[74] Chen, Q., L. Chen, X. Lian, and Y. Liu (2007) “Indexable PLA for Effi-
cient Similarity Search,” Proc. VLDB, pp. 435–446. 96

[75] Cai, Y. (2004) “Indexing Spatio-Temporal Trajectories with Chebyshev Poly-
nomials,” Proc. ACM SIGMOD, pp. 599–610. 96

[76] Lin, J., L. Wei, and et al. (2007) “Experiencing SAX: a Novel Symbolic
Representation of Time Series,” Data Mining and Knowledge Discovery, pp.
107–144. 96

[77] Rath, T. M. and R. Manmatha (2003) “Word image matching using dy-
namic time warping,” 2003 IEEE Proceedings CVPR, 2. 96

[78] Vemulapalli, P., V. Monga, and S. Brennan (2012) “Optimally Ro-
bust Extrema Filters for Time Series Data,” to appear in American Control
Conference. 97

[79] Wang, A. (2003) “An Industrial-Strength Audio Search Algorithm,” 4th
Symposium Conference on Music Information Retrieval, pp. 7–13. 97, 98,
122

221

[80] Tuytelaars, T. and K. Mikolajczyk (2008) “Local invariant feature de-
tectors: a survey,” Found. Trends. Comput. Graph. Vis., 3, pp. 177–280. 101

[81] Canny, J. (1986) “A Computational Approach to Edge Detection,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, PAMI-8(6), pp.
679 –698. 101, 119, 120, 125

[82] Bourennane, E., P. Gouton, M. Paindavoine, and F. Truchetet
(2002) “Generalization of Canny-Deriche filter for detection of noisy exponen-
tial edge,” Signal Processing, 82(10), pp. 1317 – 1328. 101, 120

[83] McAteer, R., P. Kestener, A. Arneodo, and A. Khalil (2010) “Au-
tomated Detection of Coronal Loops Using a Wavelet Transform Modulus
Maxima Method,” Solar Physics, 262, pp. 387–397. 104

[84] Boyd, S. and L. Vandenberghe (2004) Convex Optimization, Cambridge
University Press. 115

[85] Stern, R. J. and H. Wolkowicz (1995) “Indefinite Trust Region Sub-
problems and Nonsymmetric Eigenvalue Perturbations,” SIAM J.Optim., pp.
286–313. 116, 117

[86] Anstreicher, K., X. Chen, H. Wolkowicz, and Y.-X. Yuan (1999)
“Strong duality for a trust-region type relaxation of the quadratic assignment
problem,” Linear Algebra and its Applications, 301(1-3), pp. 121 – 136. 116,
118

[87] Petrou, M. and J. Kittler (1991) “Optimal edge detectors for ramp
edges,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
13(5), pp. 483 –491. 120

[88] Fink, H. S., Eugene; Gandhi (2010) “Compression of time series by ex-
tracting major extrema,” Journal of Experimental and Theoretical Artificial
Intelligence, pp. 89–106. 120

[89] Andrzejak, R., K. Lehnertz, C. Rieke, F. Mormann, P. David, and
C. lger (2001) “Indications of nonlinear deterministic and finite dimensional
structures in time series of brain electrical activity: Dependence on recording
region and brain state,” Phys. Rev. E. 127

[90] Vlachos, M., M. Hadjieleftheriou, D. Gunopulos, and E. Keogh
(2006) “Indexing Multidimensional Time-Series,” The VLDB Journal, 15, pp.
1–20. 133, 142

[91] Fama, E. F. (1965) “Random Walks in Stock Market Prices,” Financial
Analysts Journal, 21(5), pp. pp. 55–59. 153

Vita

Pramod K. Vemulapalli

