
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

Department of Mechanical and Nuclear Engineering

Autonomous Wheelchair Control

Matt Barnes

May 2013

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved * by the following:

Dr. Sean Brennan

Assistant Professor of Mechanical Engineering

Thesis Supervisor

Dr. Hosam Fathy

Assistant Professor of Mechanical Engineering

Faculty Reader

Dr. HJ Sommer III

Professor of Mechanical Engineering

Honors Advisor

* Signatures are on file in the Schreyer Honors College

Abstract

People with disabilities are increasingly reliant on technology to provide freedom of mobility.
However, current technology requires extensive direct user joystick input, which limits function-
ality and creates error between desired and actual system output. This project aims to create
an autonomous system for an electric wheelchair, resulting in improved freedom of mobility for
people with disabilities.

In an ideal system, the user’s desired end location would be reached using advanced control
algorithms, such that the device could implement all motor commands along the path. Con-
ventional electric wheelchairs rely on users to manually direct the electric wheelchair through a
series of cumbersome joystick maneuvers. In order to automate this process, the computer will
need encoder feedback for motor control, LIDAR data for environment information, and path
planning algorithms to achieve the desired end state. The project develops a robotic wheelchair
testbed from the ground up with sensors, computers, and a power management system to con-
duct autonomous wheelchair experiments. Capabilities of the testbed are demonstrated with
implementation of environment mapping and basic control algorithms, including closed-loop PID
velocity control, and kinematic pose-following laws.

i

Table of Contents

List of Figures iv

Chapter 1
Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Outline of Remaining Chapters . 2

Chapter 2
Literature Review 3
2.1 Introduction . 3
2.2 Existing Autonomous Wheelchairs Platforms . 3

2.2.1 NavChair . 3
2.2.2 The Bremen Autonomous Wheelchair . 4
2.2.3 Dr. Benjamin Kuipers’ Research . 5

2.3 Trends in Autonomy . 5
2.4 Path Planning Algorithms . 6

Chapter 3
Hardware Design 7
3.1 Wheelchair . 7
3.2 Mounting Hardware . 8
3.3 Sensors . 8
3.4 xPC . 9
3.5 Arduino . 9
3.6 ROS . 10
3.7 Power Management System . 10

Chapter 4
Control Architecture 13
4.1 Introduction . 13

Chapter 5
Low Level Closed-Loop Velocity Control 15
5.1 Introduction . 15
5.2 Kinematics . 16
5.3 PID Control . 18

ii

5.3.1 Gain tuning . 19
5.4 Joystick Emulator . 20

Chapter 6
High Level Planning 21
6.1 Introduction . 21
6.2 Smooth Local Control Law . 21

Chapter 7
Environment Mapping and Remote Operation in ROS 24
7.1 Introduction . 24
7.2 Integration with ROS . 24

Chapter 8
Results and Conclusions 26
8.1 PID Results . 27
8.2 Kinematic Control Law Results . 27
8.3 Environment Mapping . 27
8.4 Future Research . 27

Appendix A
Simulink Diagrams 29

Appendix B
ROS Source Code 38
B.1 Introduction . 38
B.2 Launch File . 39
B.3 Vel Broadcaster . 40
B.4 TF Broadcaster . 44
B.5 Joy Broadcaster . 45
B.6 Arduino Node . 47

B.6.1 Arduino ROS . 47
B.6.2 Hardware . 52

iii

List of Figures

3.1 Invacare Ranger-X Electric Wheelchair . 7
3.2 Hardware architecture overview. Dashed lines represent a temporary connection. 8
3.3 Hardware rack shown with xPC Target computer, ROS, and power architecture . 11
3.4 Encoder mounting system (only left wheel shown 11
3.5 Breakout boards for the xPC Target computer 12

4.1 Control Architecture Overview . 13

5.1 Low level control overview . 15
5.2 Kinematic Model . 16
5.3 Ziegler-Nichols tuning of the angular PID controller 19
5.4 Joystick Control Emulator . 20

6.1 Low level control overview . 22

7.1 Topic graph . 24
7.2 Environment mapping visualization in rviz . 25

8.1 Step response of the angular and longitudinal velocity PID controllers 26
8.2 Laser point cloud from mapping an office hallway 27

A.1 Closed Loop Velocity Control Overview . 30
A.2 Controller . 31
A.3 Heading wrapping bounded by (−π, π] . 31
A.4 Joystick emulator . 32
A.5 Black box plant model . 32
A.6 Analog write for joystick commands . 33
A.7 Encoder read . 33
A.8 Kinematics overview . 34
A.9 Local kinematics . 35
A.10 16-bit overflow protection . 36
A.11 Vehicle to global coordinate transformation . 37

B.1 Topic graph . 38

iv

Chapter 1
Introduction

1.1 Motivation

Research on mobile robotics in the last fifty years has contributed to widespread success in

fields ranging from terrestrial planet exploration to advanced bomb disposal. Emerging areas

– including autonomous vehicles – show significant promise both in academia and industry.

Furthermore, Dr. Sean Brennan’s lab needed a fully instrumented and easy to use platform

useful for studying indoor robotics in future projects.

This project uses a previously donated electric wheelchair not only for cost and convenience

reasons, but also in an attempt to improve mobility of disabled users. There are over 200,000

electric-powered wheelchairs users in the United States [1]. However, quadriplegics and other

severely disabled users either have trouble or cannot control electric wheelchairs. Automating

navigation processes using environment information and path planning algorithms would greatly

improve the life-style of these disabled users.

1.2 Goals

The primary goal of this project is to create a platform for testing indoor mobile robotic applica-

tions. Significant hardware development is required to test and validate control algorithms. The

construction of an autonomous wheelchair testbed requires designing and mounting sensors, com-

puters, and power supply systems to a conventional electric wheelchair. Success of this objective

is measured by demonstration of a robotic wheelchair controlled using both onboard and remote

computers. Hardware development constitutes a majority of the time spent on the project.

Upon completing the test platform, several basic control algorithms were employed to demon-

strate its capabilities. Potential challenges for autonomous wheelchairs include similar challenges

in other mobile robotics applications, including localization, environment mapping, path plan-

ning, and closed-loop velocity or position control. Unique challenges exist regarding control

algorithms specific for wheelchairs which will feel smooth or ‘natural’ to the human passenger.

2

Thus, a second major goal of this project is to demonstrate basic algorithms in the areas of

localization, closed-loop velocity control, environment mapping and path planning which create

‘natural’ movements.

1.3 Outline of Remaining Chapters

Chapter 2 begins with a broad overview of autonomous wheelchair literature and related areas,

including mobile robotics. After identifying topics of interest, the appropriate hardware is se-

lected, interfaced, and installed in Chapter 3. Overall control architecture setup is devised in

Chapter 4 and broken down into low-level control in Chapter 5 and high-level control in Chapter

6. Lastly, environment mapping in ROS is demonstrated in Chapter 7.

Chapter 2
Literature Review

2.1 Introduction

This chapter describes major topics of research on autonomous and semi-autonomous wheelchairs

including navigation, velocity control, suspension control, stability control, and stair-climbing

functionality [2]. Ultimately, navigation and velocity control are chosen as areas for further

exploration with hardware development because affordable and high-performance navigation is a

formidable challenge for commercial autonomous wheelchairs, and velocity control is an integral

component of implementing navigation algorithms.

The chapter begins in Section 2.2 with an overview of existing platforms, including hardware

specifications and experimental success of navigation algorithms on wheelchairs. Trends on the

degree of autonomy are observed in Section 2.3 from the selected platforms and other publications.

Section 2.4 conducts a more detailed analysis of path planning and obstacle avoidance algorithms

used on wheelchairs and mobile robots.

2.2 Existing Autonomous Wheelchairs Platforms

Research on autonomous wheelchairs emerged during the 1980s and gained traction with com-

puter advancements during the 1990s. Several platforms developed from the ground-up are cho-

sen to demonstrate various approaches to tackle the aforementioned problems – and ultimately

used to select an approach for this project. The following descriptions are listed in approximate

chronological order.

2.2.1 NavChair

‘NavChair,’ developed at The University of Michigan, was one of the original semi-autonomous

wheelchairs, with ‘modes’ for tackling commonly encountered problems.

4

• Hardware includes:

– DOS-based 33 MHz 80486 computer

– 12 ultrasonic sensors

• NavChair’s three operating modes have varying levels of autonomy based on the users’

needs, including general obstacle avoidance, door entry, and wall following.

• Vector field histogram (VFH) and vector force field (VFF) are employed for global navi-

gation and obstacle avoidance. The wheelchair is ‘pulled’ towards the target and avoids

obstacles by virtual forces, which vary inversely to object proximity. These algorithms are

easily modified to include the irregular shape of the wheelchair.

• Results show algorithms are significantly slower than human users, and the VFH and VFF

struggle with door passage due to the close proximity to the doorframe.

2.2.2 The Bremen Autonomous Wheelchair

The ‘Bremen AutonomousWheelchair’ at the Universitt Bremen was a fully autonomous wheelchair

with moderate success in environment mapping, path planning, and obstacle avoidance [3]. Im-

portant takeaways are:

• Hardware setup includes:

– A sick brand light detection and ranging (LIDAR) device on both the front and back

of the wheelchair for environment mapping.

– An omnidirectional camera, which is barely used compared to the LIDARs

– Incremental encoders attached to the drive wheels. These readings drift because of

variable wheel diameter and slippage.

• Global navigation uses A* graph search, where route segments are generated from Voronoi

diagrams.

• Local obstacle avoidance extends the ‘Dynamic Window Approach’ (DWA) to construct

safe paths from circular arcs and clothoids [4]. The DWA models the vehicle and obstacles

as dynamic systems, searching admissible trajectories (in this case constructed from circular

arcs and clothoids) under given velocity and acceleration actuator limits.

• Models environments using topological descriptions (e.g. lines), which requires significantly

less memory than metric occupancy grids. Detects features from LIDAR data using angle

histograms (i.e. assumes typical rectangular environments).

• Identifies incorporating irregular shaped wheelchair into path planning algorithms as a

major challenge

5

2.2.3 Dr. Benjamin Kuipers’ Research

Dr. Benjamin Kuipers’ ongoing research at the University of Michigan uses a path-planning

algorithms specifically developed for the unique ‘natural movement’ challenge with autonomous

wheelchairs.

• Hardware information is limited, but the setup includes at least:

– One Hokuyo LIDAR mounted on the front, recording laser scans at 20Hz

– An inertial motion unit (IMU) to measure acceleration and infer jerk

– 2.66 GHz laptop

• Environment maps are pre-generated from simultaneous localization and mapping (SLAM)

• A majority of the work focuses on generating smooth and ‘graceful’ paths for dynamic

environments [5]. A Lyapunov-based kinematic control law derived via singular perturba-

tion guarantees bounds on acceleration and jerk (thus ‘graceful’). A singular perturbation

approach essentially decomposes the control problem into a fast and slow subsystem for the

steering and forward velocity, respectively. The control law generates a velocity manifold

for a given target pose, which causes any wheelchair state to converge to the target.

• An equilibrium point model-predictive controller selects target poses to avoid obstacles

and quickly reach the end location are generated using [6]. The MPC approach allows

optimization over a finite horizon for multiple objectives. In this case, Kuipers uses two

optimization iterations – one focused more on global navigation and the other for local

obstacle avoidance.

• Results show the wheelchair is able to swiftly and smoothly navigate dynamic environments

near its maximum velocity while not exceeding the acceleration and jerk bounds. The

kinematic control law is updated at 20 Hz and paths are regenerated at 1 Hz, though the

optimal path average convergence time is less than 200 ms.

2.3 Trends in Autonomy

As evidenced by the selected platforms, various degrees of autonomy exist to meet the needs of

the user. Early research employed different ‘modes’ to complete common tasks, such as general

obstacle avoidance, door entry, and wall following [7]. However, these manually-selected operation

modes do not comprehensively cover all tasks. More recent semi-autonomous systems use basic

voice control and obstacle avoidance; however, voice commands provide a slow flow of information

and thus take significantly longer than manual operation [8]. Other interesting developments

in semi-autonomous control include force-feedback joysticks for obstacle avoidance, forecasting

user intentions, and hybrid electric/manual propulsion using pushrim-activated power-assisted

wheelchairs [9, 10, 11].

6

Most current fully autonomous systems have similar goals and employ comparable sensors (e.g.

LIDAR). Thus, the primary differentiating factors are the global path planning and local obstacle

avoidance algorithms. For example, the Bremen Autonomous Wheelchair uses the Dynamic

Window Approach and A* for the respective tasks, whereas the NavChair uses a Vector Field

Histogram for both local and global navigation. [3, 7]

2.4 Path Planning Algorithms

Kinematic global path planning algorithms are generally divided into heuristic searches, sampling

based methods, and potential fields. Heuristic searches such as A*, D*, and their variants

provide optimal paths, but are computationally intensive in dynamic environments because they

must recompute paths – including post-processing to create an admissibly smooth trajectory

[6]. Incorporating the irregular wheelchair shape would be a formidable challenge for a heuristic

approach. A* is most famous for its widespread success in the 2007 DARPA Urban Challenge.

Potential field methods (e.g. Vector Field Histogram) ‘push’ the robot from nearby obstacles

and ‘pull’ the robot towards the target. The field is a simple function of the environment, and the

control law computes the immediate action based on the location in the field. Unlike heuristic

searches and sampling based methods, it does not explicitly determine a path to the target. Thus,

it is remarkably efficient at handling dynamic environments because the potential field is updated

in real-time. The downside of not using an explicit path is most metrics cannot be optimality

guaranteed [12]. Furthermore, the control law may produce large acceleration and jerk when the

field changes with the environment, which is not only uncomfortable but also potentially outside

the motor capabilities. In practical mobile robotics, the Vector Field Histogram produces path

results close to optimal A* searches.

Sampling based methods such as the Rapidly Exploring Random Tree are making significant

progress, but thus far are not implemented on AWCs [13]. Though RRTs are an interesting area

for future research, the author decided not to begin with this method due to limited use in the

mobile robotics community.

This project chooses to use the novel approach proposed by Kuipers and Park specifically

formulated to provide ‘graceful’ robot motion with human passengers. The aforementioned re-

sults show significant promise when quickly navigating dynamic environments. A more detailed

analysis of the algorithms is presented in Chapter 6.

Chapter 3
Hardware Design

3.1 Wheelchair

The test-bed used for this project is an Invacare Ranger-X electric wheelchair, shown in Fig-

ure 3.1. The original electric wheelchair consists of two 12 V 55 Ah lead-acid batteries, individ-

ual rear-wheel drive 4-pole motors, and an on-board motor controller. Two large front caster

wheels allow for a wide range of mobility. The on-board controller is open-loop, and thus only

regulates the power to the motors – not the speed. User input is obtained through a joystick on

the armrest.

An overview of the hardware setup, including the conventional electric wheelchair and ex-

panded robotic system, is shown in Figure 3.2. The following sections explain the hardware

component choices and interfaces.

Figure 3.1. Invacare Ranger-X Electric Wheelchair

8

3.2 Mounting Hardware

The test-bed was modified to support the additional sensor and computer requirements. Most

hardware fit on a vertical rack constructed from 80/20 framing components, shown in Figure 3.3.

In order to secure the rack to the frame, custom brackets were designed and water-jetted at the

Penn State Learning Factory. Finally, shelves with mounting holes for each hardware component

were laser-cut from acrylic. The Arduino, xPC and ROS computers, breakout boards, and power

management system were secured to the shelving.

3.3 Sensors

In order to achieve closed-loop velocity control, accurate high frequency velocity estimates are

required. Rotary encoders enable highly accurate measurement of wheel position, which can

be differentiated to obtain velocity. Typical vehicle encoder mounting occurs on two or four of

the wheels. However, the wheelchair poses several unique hardware challenges. First, the front

24V DC
Power

Two 55 Ah
Lead acid
batteries

On-board
Battery
Charger

Built-in
Motor

Amplifier

Motors
Joystick

Proprietary
Interface

Raw encoder
data

Battery
Isolator

New Autonomous
Wheelchair Platform

Wall Power

120 V AC

Original Wheelchair

Analog Voltages

Remote Linux Computer

ROS on Linux

xPC Target

xPC Host

RS-232

RS-232

USBTCP/IP
Remote
Desktop

Figure 3.2. Hardware architecture overview. Dashed lines represent a temporary connection.

9

two caster wheels have rotational freedom in two directions – which would require four rotary

encoders and two slip rings. The complexity of this setup creates additional undesirable sources

of error. Secondly, the rear two wheels frequently slip or skid during rapid acceleration, as also

evidenced in [3].

To avoid these problems, the encoders were attached to separate wheels directly below the

drive axis. By assuming negligible sideslip of the wheelchair (a reasonable assumption as the

wheelchair remains at speeds below 5 mph), one can quickly show no encoder wheel sideslip

should occur since r×F = 0 along the entire drive axle plane (i.e. the drive and encoder wheels

are along the same axis, thus traveling forward or backward together). Further, quick-turn

polyurethane wheels have minimal rotational slip and are designed for easy pivoting. Industrial

grade HD25 encoders with an ample resolution of 2500 counts per revolution were used. An

encoder mounting system – including spring suspension for accurate tracking over various terrains

– was constructed at the Penn State Learning Factory, as seen in Figure 3.4.

In following with [5], a Hokuyo LIDAR was mounted in front of the passenger around knee-

level height. Though this project does not yet incorporate environment mapping, the LIDAR

will be required in future experiments.

3.4 xPC

xPC is a software environment for running Simulink models in real-time. A Simulink model is

compiled into C code on an xPC host computer, and uploaded to an xPC target computer. Using

the Embedded Option toolbox, the target computer can be separated from the host-computer

and run in a stand-alone mode.

This project uses a fully modular PC/104 RTD Intelligent Data Acquisition Node (IDAN)

system for the target computer. Two ISA boards, an Analog DAQ and an incremental encoder

counter were used for all I/O needs.

Breakout boards were stacked between in-house laser-cut acrylic with engraved labels, shown

in Figure 3.5. Multi-core wire, Molex Micro-Fit 3.0 connectors, and heat shrink were used to

create reliable electrical connections.

3.5 Arduino

After the xPC Target computer underwent a critical hardware failure, a new system was required

to read encoders, write analog voltages to the joystick, and communicate with the high-level

ROS system. Arduino, a popular micro-controller, can operate as a ROS node – subscribing and

publishing to topics just like other nodes. Thus, interfacing ROS with the Arduino’s analog and

digital I/O hardware is trivial.

Though the xPC Target computer operates extremely fast in hard real-time, the Arduino is

sufficient for the needs of this project. An encoder breakout board developed by previous student

Rich Mattes is employed to read the encoders.

10

3.6 ROS

The Ubuntu computer running Python in ROS was assembled in-house to meet design require-

ments. Due to the high processing demands, limited mounting space, and highly mobile environ-

ment, the computer used the following core hardware (accessories unmentioned):

• Small form factor motherboard with Intel i5 processor. The moderate amount of computing

power in a small space allows the computer to fit on a single hardware shelf. A rack mount

computer (comparable to a server) or laptop would have been more appropriate, but not

chosen due to cost.

• 16 GB of RAM for processing the dense laser scan data.

• 128 GB solid-state hard-drive to prevent data loss during normal operating vibrations.

3.7 Power Management System

With two computers, several sensors, and motors – each with unique voltage and amperage

requirements – providing safe and reliable power is essential to successful operation. An onboard

Samplex 24V 25A charger connections to the wall with a Neutrik PowerCon True1 connector,

which allows connection and disconnection under live load. Though the charger is capable of

safely charging the battery and powering the computers at the same time, a 24V Solid-State

Manson Battery Isolator is used to additionally protect the battery from overcharging while

under load.

At any time, the charger can be disconnected and the system will automatically switch to

battery operation without a break in computer operation. The xPC Target, motors, and onboard

controller are directly powered by the 24V source. An inverter provides up to 400W of 120V AC

power to the ROS computer, with ports for additional AC accessories in future upgrades.

11

Figure 3.3. Hardware rack shown with xPC Target computer, ROS, and power architecture

Figure 3.4. Encoder mounting system (only left wheel shown

12

Figure 3.5. Breakout boards for the xPC Target computer

Chapter 4
Control Architecture

4.1 Introduction

The control architecture used on the robotic wheelchair is designed to handle the intended tasks

while maintaing a significant degree of flexibility for future projects. Previous literature shows

each control aspect demands different levels of speed and computational power [6]. Thus, the

architecture is divided by the fundamental trade-off between fast and computationally intensive

tasks, as seen in Figure 4.1.

On a very basic level, the motor speeds need to be quickly controlled – both to follow desired

trajectories and stop in an emergency. Though the task is relatively simple, it must be executed

in hard real-time and at very fast speeds. xPC Target is specifically designed for hard real-time

control tasks, and the author chose an embedded xPC Target capable of real-time performance

of at least 100 Hz for motor speed control, which is further discussed in Chapter 5. xPC is an

extension of the MATLAB environment for implementing Simulink code on physical systems,

and is widely used in industry for control applications.

Encoder Position Estimate

Path Waypoints
Position Correction Factors

LIDAR

Encoder

High Level ROS
SLAM
Kalman Filtering
Path Planning

Low Level xPC
Motor control
Encoder Kinematics

Embedded
motor

controller

Figure 4.1. Control Architecture Overview

14

After a critical hardware failure onboard the xPC Target computer, the system was replaced

with an Arduino running a ROS node. Though xPC is noticeably faster, the lower cost and ease

of integration with ROS made Arduino a smart replacement.

On the other hand, path planning and environment mapping tasks require significantly more

processing power and memory, but can operate as slow as 1 Hz [6]. Intensive computing tasks –

including processing LIDAR data, environment mapping, and path planning – are designated to

the high-level system. A Linux computer running the Robot Operating System (ROS) software

framework was chosen for the high level systems. Widespread popularity in the robotics com-

munity, availability of a variety of libraries, and extreme flexibility make ROS a perfect choice

for this platform.

ROS to xPC communication occurs via a standard RS-232 connection (a preferable Ethernet

connection was not possible due to hardware limitations of the xPC) and the Arduino replace-

ment uses standard USB protocol. Desired longitudinal and angular vehicle velocities from the

kinematic control law are sent from the ROS computer to the xPC Target or Arduino. The xPC

or Arduino executes the desired velocities and sends the resulting global position and heading

updates back to ROS for the next kinematic control command. In this project, the xPC Target

runs at 100 Hz with a connecting RS-232 baud rate of 115200 and the Arduino node operates at

a maximum of approximately 40 Hz.

Chapter 5
Low Level Closed-Loop Velocity

Control

5.1 Introduction

The low-level system is responsible for moving the wheelchair along the planned path by control-

ling motor speeds. Since the joystick accepts inputs for angular and longitudinal motor efforts,

our model and controller are designed to control these metrics. Global position and heading are

determined from encoders and the derived kinematic model in Section 5.2. Angular and lon-

gitudinal velocities of the wheelchair are easily determined by taking the derivative of position

measurements.

Upon receiving desired velocities from the high-level system, closed-loop feedback is achieved

by comparing desired angular and longitudinal velocity to measured angular and longitudinal

velocities, respectively. Then, the error is translated into a motor control effort using two PID

controllers, which are tuned in Section 5.3. Control effort is sent to the built-in motor controller by

mimicking joystick commands using raw analog voltages in Section 5.4. The resulting estimated

global position is reported back to ROS to update the robot’s state. Figure 5.1 shows the overall

low-level control architecture.

All low-level controls are performed on an embedded xPC system or Arduino. Therefore, the

Controller Kinematics+−
Error Joystick

Emulator
Black Box
Plant Model

Desired
Velocities Global

Position

Measured
Velocities

Figure 5.1. Low level control overview

16

X

Y

∆
x

∆yψn

b

∆
ψ

(X,Y)n

dL and dR, respectively

Figure 5.2. Kinematic Model

model is built entirely in the Simulink environment. Since both the xPC Target and Arduino

operate in real-time, the model must be solved at fixed-step discrete time intervals, with rates of

100 and 40 Hz, respectively.

5.2 Kinematics

Since the wheelchair travels at low speeds, we assume there is no side-slip in our kinematics

derivation. Any minor errors due to this assumption would eventually be corrected by Kalman

filtering on the high-level ROS system. All coordinates follow the SAE convention.

We will derive the kinematics between arbitrary fixed time-step samples tn and tn+1. Fig-

ure 5.2 shows the measurements at each time-step. The variables are defined as:

αl, αr Angular distance the encoder shafts have rotated, respectively (radians)

b Wheelbase (m)

dL, dR Ground distance traveled by the left and right encoder wheels, respec-

tively (m)

∆x,∆y Change in ‘local’ position relative to previous position and heading (m)

ω Angular velocity of the wheelchair (rad/s)

17

ψ Global heading (rad)

R Turn radius (m)

renc = 0.049 Encoder wheel radius (m)

V Wheelchair longitudinal velocity (m/s)

X,Y Global position (m)

where ∆ψ �= 0. We will solve the case ∆ψ = 0 (when the wheelchair is driving perfectly straight

or not moving) later. From basic trigonometry:

d = αrenc (5.1)

Further, one can calculate R and ∆ψ by simultaneously solving the system of equations:






�
R−b /2

�
∆ψ = dR

�
R+b /2

�
∆ψ = dL

(5.2)

Resulting:

R =b /2

�
dL + dR
dL − dR

�
(5.3)

∆ψ =
dL − dR

b
(5.4)

At this point, calculating the angular and longitudinal velocities for closed-loop control is trivial:

ω =
∆ψ

tn+1 − tn
(5.5)

V =
dL + dR

2
(5.6)

Equations (5.5) and (6.7) are sufficient for velocity control, but ROS still needs the final global

position for determining the next action. The incremental changes in local position relative to

the previous heading are calculated as:

∆x = R sin(∆ψ) (5.7)

∆y = R (1− cos(∆ψ)) (5.8)

Further, the small angle approximations can be applied since the model will be running at 100

Hz.

∆x = R∆ψ (5.9)

∆y = 0.5R∆ψ2 (5.10)

18

For the case when ∆ψ = 0, the wheelchair must be stationary or traveling straight. Thus,

∆x = dL = dR (5.11)

∆y = 0 (5.12)

when ∆ψ = 0. Incremental changes in local position can be transformed to global coordinates

by:

ψn+1 = ψn +∆ψ =
n+1�

i=1

ψi (5.13)

�
∆X

∆Y

�
=

�
cos(ψn) sin(ψn)

− sin(ψn) cos(ψn)

��
∆x

∆y

�
(5.14)

By combining (5.9), (5.10), and (5.14), the final kinematics are:

ψn+1 =
n+1�

i=1

ψi (5.15)

�
Xn+1

Yn+1

�
=

�
cos(ψn) sin(ψn)

− sin(ψn) cos(ψn)

��
R∆ψ∗

0.5R∆ψ2∗∗

�
+

�
Xn

Yn

�
(5.16)

where R and ∆ψ are defined in (5.3) and (5.4), respectively, and R∆ψ∗ = dL = dR and

0.5R∆ψ2∗∗ = 0 when ∆ψ = 0, as shown in (5.11) and (5.12).

Complete Simulink diagrams of the kinematics are in Appendix A. Several other subsystems

are required for practical application, such as the 16-bit overflow protection subsystem to correctly

calculate ∆α when the unsigned 16-bit encoder count integer overflows. The wrapping subsystem

is a modification of the modulo operator to keep psi bounded by (−π, π]. Implementation of the

kinematics for Arduino are in Appendix B.

5.3 PID Control

Advanced controllers (e.g. linear quadratic regulators, model predictive controllers) require an

accurate model of the ‘plant’ (i.e. the motors) to tune parameters. Without motor models, we

must use a simpler controller and tune parameters online. Thus, the most accurate choice is

undoubtedly a classic PID (proportional integral derivative) controller [14]. We implement two

PID controllers – one for angular velocity and one for longitudinal velocity – by comparing the

desired velocities to the desired velocities and translating this into a motor control effort. The

output effort is further saturated at the limits of the joystick and integration windup is prevented

using the standard clamping anti-windup method in Simulink.

19

Figure 5.3. Ziegler-Nichols tuning of the angular PID controller

5.3.1 Gain tuning

The accurate yet aggressive online Ziegler-Nichols tuning method is used to determine propor-

tional gain Kd, integral gain Ki, and derivative gain Kd values. The process can be summarized

as:

1. Set Ki = Kd = 0 and vary Kd, observing the oscillating system response.

2. Adjust Kd until oscillation magnitudes reach an equilibrium. If oscillations decay increase

Kd and vice versa.

3. Record the current proportional gain value as Ku and period as Tu. Plug these values into

the Ziegler-Nichols equations to determine Kp, Ki, and Kd.

Ziegler-Nichols Gain Angular Longitudinal

Kp = 0.6Ku

Ki = 2Kp/Ku

Kd = KpTu/8

0.72

1.08(1/s)

0.12(s)

0.90

1.03(1/s)

0.20(s)

Table 5.1. PID gain values from Ziegler-Nichols tuning

20

The results of tuning the angular PID controller are shown in Figure 5.3. Note Kp = 0.8 is

too low, as evidenced by the decaying oscillations. On the other hand, Kp = 1.5 is too high, but

a value of 1.2 is almost perfect. The values from the angular and longitudinal (not shown) PID

tests were plugged into the Ziegler-Nichols equations resulting in the values shown in Table 5.3.

Upon implementing the Ziegler-Nichols gain values, basic tests were conducted to confirm

adequate system response. Results are provided in Chapter 8.

5.4 Joystick Emulator

To interface with the built-in motor controller and amplifier, the closed-loop PID control effort

must be translated into joystick commands. For the Invacare Ranger-X wheelchair, joystick

commands are analog voltages as seen in Figure 5.4. Voltages scale linearly such that the center

stationary position is 2.5V .

Control effort C can easily be translated into raw analog voltages V with the equation:

V = 1.5C + 2.5 (5.17)

Simulink diagrams of the joystick emulator are in Appendix A.

To Move Forward

To Move Backward

To Turn
Left

To Turn
Right

Front of
Wheelchair

Rear of
Wheelchair

4V

1V

1V 4V

Joystick

Figure 5.4. Joystick Control Emulator

Chapter 6
High Level Planning

6.1 Introduction

At a higher level, the autonomous system must decide which motor velocities will optimally

achieve goals of fast, safe, and natural navigation to an end location. In following with [5] and

[6], this projects breaks the problem into two parts: (1) the development of a smooth control

law to for local navigation and (2) the development of a model-predictive controller (MPC) for

globally optimal pose selection. For this thesis, only the local control law is implemented and

the MPC algorithm is left for a future project.

6.2 Smooth Local Control Law

Unlike most field robotic applications, autonomous wheelchairs must execute comfortable and

smooth motions for the human passenger, quantified by acceleration and jerk. A heuristic search

(e.g. A*) does not hold guarantees on these values, and smoothing algorithms only further inten-

sify the computationally intensive algorithm in dynamic environments. Potential field methods,

though more appropriate for dynamic environments, are not designed to provide movements

‘natural’ to a human passenger. Thus, a kinematic control law developed by Park and Kuipers

specifically for autonomous wheelchairs is used [5].

The Lyapunov-based feedback control law generates a velocity manifold for a given target

pose. A significant advantage of planning a manifold instead of a path is no re-planning is

required when the wheelchair deviates from the original trajectory. The velocity manifold covers

the entire pose space and is only a function of the target pose – not the current wheelchair state.

Updating the velocity manifold as the target pose changes requires minimal computational power.

The results of the kinematic control law can be summarized by the egocentric coordinate sys-

tem depicted in Figure 6.1 and corresponding control law for angular velocity w and longitudinal

velocity V in (6.4) - (6.7). The coordinate system completely describes the relation between the

22

X

Y

θ

δ

r

(X,Y, φ)T

(Xt, Yt, φt)T

Figure 6.1. Low level control overview

current wheelchair pose (X,Y, φ)T and target pose (Xt, Yt, φt)T by (r, θ, δ)T where:

r =
�
(X −Xt)2 + (Y − Yt)2 (6.1)

θ = φt − arctan

�
Yt − Y

Xt −X

�
(6.2)

δ = φ− arctan

�
Yt − Y

Xt −X

�
(6.3)

For the sake of brevity, the derivation of the kinematic control law is not repeated as it is

readily available in [5]. Important results to note are the path curvature κ is described for any

target pose by:

κ = −1

r

�
k2(δ − arctan(−k1θ)) + (1 +

k1
1 + (k1θ)2 sin δ

�
(6.4)

where parameters k1 and k2 are gain values shaping the manifold. The angular and longitudinal

velocities are related by the path curvature such that:

ω = κV (6.5)

Interestingly, this means the longitudinal velocity V is free, and any positive value will cause

the wheelchair to converge to the target. The velocity is chosen by:

V (κ) =
Vmax

1 + β|κ|λ (6.6)

23

where Vmax is the maximum velocity and parameters β and λ slow the wheelchair during tight

turns. Further, the wheelchair must slow down and ultimately stop at the final target, so a

slowdown rule is imposed:

V = min

�
Vmax

rthresh
r, V (κ)

�
(6.7)

where rthresh is the distance away when the wheelchair begins slowing down. The same gain

values, maximum velocity, and thresholds are used as [5]. These values and complete Python

code for implementing the control algorithm are in Appendix B

Chapter 7
Environment Mapping and Remote

Operation in ROS

7.1 Introduction

Autonomous systems require a representation of the surrounding environment (e.g. a map) to

make an informed decision regarding path planning. Most commonly, the map is preprogrammed

or generated in real-time using a LIDAR, time-of-flight camera, or product similar to the Mi-

crosoft Kinect. For this project, a small Hokuyo LIDAR was already available and easily mounted

to the front of the wheelchair.

To test the mapping capability, the wheelchair was setup for manual operation over a local

wireless network. By connecting a laptop to the wireless network, the mapping can be observed in

real-time. Furthermore, a video-game controller connected to the laptop can be used to manually

remote control the wheelchair for mapping.

7.2 Integration with ROS

Several ROS libraries are available for interfacing with LIDAR and joystick hardware, transform-

ing coordinate spaces, and visualizing results. For demonstration purposes, the mapping simply

uses the LIDAR point cloud without any filtering, so coding requirements beyond the libraries

is minimal.

Figure 7.1. Topic graph

25

Figure 7.2. Environment mapping visualization in rviz

The 3D ROS visualization tool rviz subscribes to the laser scan, wheelchair pose, and trans-

form topics. Basically, the transforms relate the wheelchair pose to a global ‘zero’ and the LIDAR

frame of reference to the wheelchair pose. Thus, each laser scan can be visualized in the global

frame, as seen in 7.2. Joystick commands are easily integrated using the joy node library for

ROS.

The code can be summarized by graphing the flow of topics, subscribers, and publishers using

#rosrun rqt graph rqt graph, as seen in Figure 7.1. Thorough code documentation of the joystick

mapping and transforms is provided in Appendix B.

Chapter 8
Results and Conclusions

This project successfully creates a testbed for indoor robotic experiments – including full sensor

instrumentation, computing hardware, and a power-management system. Basic control algo-

rithms are applied to achieve closed-loop velocity control with adequate system response perfor-

mance.

Figure 8.1. Step response of the angular and longitudinal velocity PID controllers

27

8.1 PID Results

Upon calculating the closed-loop velocity PID gain values determined in Chapter 5, basic tests

were conducted to observe the controlled system response. Velocity and longitudinal velocity step

impulses were chosen to quickly determine whether the Ziegler-Nichols method was correctly

implemented. Figure 8.1 shows rise time is very fast, though overshoot is somewhat large –

confirming the aggressiveness of the Ziegler-Nichols method.

8.2 Kinematic Control Law Results

Initial qualitative tests of the kinematic control law showed natural motion to target poses. Some

problems arose regarding oscillations about the theoretical trajectory through the velocity man-

ifold. Unfortunately, parameter tuning and data collection were not finished at the time of this

submission. In the future, the author intends to finish implementing the smooth kinematic con-

trol law. Python code used for demonstrating the kinematic control law is available in Appendix

B.

8.3 Environment Mapping

Environment mapping capabilities are demonstrated on an office hallway, as shown in Figure

8.2. Drift from encoders is extremely small, as evident by the straightness of the hallway walls

and strong overlap during multiple traversals of dead-end areas. The Hokuyo LIDAR does not

provide intensity values, so colors simply reflect the distance in front of the wheelchair.

8.4 Future Research

As previously mentioned in Chapter 2, several novel developments in semi-autonomous control

have emerged in recent years. Wheelchair users are, like any human, a ‘creature of habit’ and

Figure 8.2. Laser point cloud from mapping an office hallway

28

have a finite set of goals (e.g. the bathroom, refrigerator, bedroom). To increase autonomy,

these intentions can be predicted using a Partially Observable Markov Decision Process, which

gradually learns users’ behavior. Only broad gestures (e.g. a couple joystick sweeps or head

motions) may be necessary to move a user to their destination [10].

Second, pushrim-activated power-assisted wheelchairs measure users’ manual torque to the

wheel and magnify the force using electric hub motors [11]. This enables any combination of

electric and manual operation, thus gradually and safely transitioning users from a sedentary to

active lifestyle. Interesting control problems exist with push-rim wheelchairs regarding mimicking

natural movements.

Appendix A
Simulink Diagrams

The following Simulink diagrams are used for low-level velocity control on the xPC Target com-

puter. Using the embedded option toolbox, the xPC Target can be disconnected from the host

computer and run in standalone mode, thus enabling these Simulink programs to be run in

real-time in a completely mobile environment.

30

O
u

tp
u

ts

E
rr

o
r

D
e
si

re
d
 V

e
lo

ci
ty

C
u
rr

e
n
t
V

e
lo

ci
ty

C
lo

se
d
 L

o
o
p
 W

h
e
e
lc

h
a
ir
 V

e
lo

ci
ty

 C
o
n
tr

o
l

M
a
tt
 B

a
rn

e
s

M
a
rc

h
 2

0
 2

0
1
2

R
O

SF
e
e
d
b
a
ck

V
o
lta

g
e
s

T
a
rg

e
t

S
co

p
e

Id
:

4

T
e
rm

in
a
to

r3

S
co

p
e
 (

xP
C

)

d
a
ta

.d
a
t

F
ile

 S
co

p
e

Id
:

3

L
o

n
g
itu

d
in

a
l V

e
lo

ci
ty

T
a
rg

e
t
S

co
p
e

Id
:
2

K
in

e
m

a
tic

s

E
n

co
d

e
r

p
h

i,
X

,
Y

d
_

p
h

i,
V

Jo
ys

tic
k

C
o

m
m

a
n

d
 −

1
 t

o
 1

V

G
ro

u
n
d
1

C
o
n
tr

o
lle

r

E
rr

o
r

C
o

m
m

a
n

d

B
la

ck
 B

o
x

P
la

n
t
M

o
d
e
l

V
E

n
co

d
e

r

B
a
se

b
o
a
rd

S
e
ri
a
l

B
a
se

b
o
a
rd

R
S

2
3
2

S
e
n
d
 R

e
ce

iv
e

X
M

T
2

R
C

V
2

A
n
g
u
la

r
V

e
lo

ci
ty

T
a
rg

e
t
S

co
p
e

Id
:
1

A
S

C
II
 E

n
co

d
e

A
S

C
II

E
n
co

d
e

D
1 2 3

A
S

C
II
 D

e
co

d
e

A
S

C
II

D
e
co

d
e

D
1 2 3

Figure A.1. Closed Loop Velocity Control Overview

31

C
o
n
tr

o
lle

r

M
a
tt
 B

a
rn

e
s

M
a
rc

h
 2

0
 2

0
1
2

C
o
m

m
a
n
d

1

V
e
lo

ci
ty

D
is

cr
e
te

 P
ID

 C
o
n
tr

o
lle

r

P
ID

(z
)

L
o
w

p
a
ss

 F
ilt

e
r

L
o
w

p
a
ss

A
n
g
u
la

r

D
is

cr
e
te

 P
ID

 C
o
n
tr

o
lle

r

P
ID

(z
)

E
rr

o
r

1

Figure A.2. Controller

W
ra

p
p
in

g

M
a
tt
 B

a
rn

e
s

O
ct

 9
 2

0
1
2

[−
p
i,

p
i]

1

 >
=

 >

−
1

2
*p

i

0

2
*p

i

0

p
h
i

1

Figure A.3. Heading wrapping bounded by (−π, π]

32

Jo
ys

tic
k

M
a
tt
 B

a
rn

e
s

A
u
g
 7

 2
0
1
2 L
R

F
B

O
ff
se

t
’D

e
a
d
’ Z

o
n
e

V1

S
w

itc
h

 >
=

 0

S
te

a
d
y

S
ta

te
 V

o
lta

g
e

2
.5

1
.5

1
.5

00

C
o
m

m
a
n
d

−
1
 t
o
 1

1

Figure A.4. Joystick emulator

B
la

ck
 B

o
x

P
la

n
t
M

o
d
e
l

M
a
tt
 B

a
rn

e
s

O
ct

 9
 2

0
1
2

E
n
co

d
e
r

1

E
n
co

d
e
r

R
e
a
d

E
n

co
d

e
r

C
o

u
n

t

A
n
a
lo

g
 W

ri
te

V

V1

Figure A.5. Black box plant model

33

D
M

6
4
3
0

D
M

6
4
3
0

R
T

D

A
n
a
lo

g
 O

u
tp

u
t

1 2
V1

Figure A.6. Analog write for joystick commands

C
o
u
n
t

C
o
u
n
t

E
n
co

d
e
r

C
o
u
n
t

1

R
ig

h
t

D
M

6
8
1
4

R
T

D

In
cr

e
m

e
n
ta

l E
n
co

d
e
r3

L
e
ft

D
M

6
8
1
4

R
T

D

In
cr

e
m

e
n
ta

l E
n
co

d
e
r1

−
1

Figure A.7. Encoder read

34

K
in

e
m

a
tic

s

M
a
tt
 B

a
rn

e
s

O
ct

 9
 2

0
1
2

d
_
p
h
i,

V

2

p
h
i,

X
,
Y

1

V
e
h
ic

le
 t
o
 G

lo
b
a
l

C
o
o
rd

in
a
te

 T
ra

n
sf

o
rm

a
tio

n

d
_

p
h

i,
d

_
x,

 d
_

y
p

h
i,

X
,

Y

L
o
ca

l K
in

e
m

a
tic

s

E
n

co
d

e
r

d
e

lta
_

p
h

i,
 d

e
lta

_
x,

d

e
lta

_
y

d
_

p
h

i,
V

E
n
co

d
e
r

1

Figure A.8. Kinematics overview

35

d
_
a
lp

h
a

d
is

t_
L

d
is

t_
R

d
e

lta
_

p
h

i

a

a
+

b
/2

d
_
x

d
_
y

L
o

ca
l K

in
e

m
a

tic
s

M
a

tt
 B

a
rn

e
s

O
ct

 9
 2

0
1

2

d
_
x

@
d
_
p
h
i=

0

d
_

y
=

 d
is

t_
L
 =

 d
is

t_
R

@
d
_
p
h
i =

 0

d
e

lta
_

t

d
_
p
h
i,

V2

d
e
lta

_
p
h
i,

d
e
lta

_
x,

d
e
lta

_
y

1

Z
e
ro

 P
ro

te
ct

io
n
1

 ~
=

 0

W
h

e
e

lb
a

se
 (

m
)

.3
6

7

W
h

e
e

l r
a

d
iu

s
(m

)

.0
9

8
/2

si
n

R
a
d
/C

o
u
n
t

2
*p

i/1
0
0
0
0

P
re

vi
o

u
s

S
a

m
p

le
1

z1

P
re

vi
o
u
s

S
a
m

p
le

z1

u
2

1
/2

1
/2

1
/2

D
ig

ita
l C

lo
ck

1
2

:3
4

0

1
6
−

b
it

O
ve

rf
lo

w
 P

ro
te

ct
io

n

R
a

w
N

o
 O

ve
rf

lo
w

E
n
co

d
e
r

1

Figure A.9. Local kinematics

36

1
6
−

b
it

O
ve

rf
lo

w
 P

ro
te

ct
io

n

M
a
tt
 B

a
rn

e
s

O
ct

 9
 2

0
1
2

N
o
 O

ve
rf

lo
w

1

S
w

itc
h

 >
=

S
ig

n

6
5
5
3
4

|u
|

R
a
w

1

Figure A.10. 16-bit overflow protection

37

G
lo

b
a
l H

e
a
d
in

g
 p

h
i

−
p
i t

o
 p

i

V
2
G

 G
lo

b
a
l C

o
o
rd

in
a
te

 T
ra

n
sf

o
rm

a
tio

n

M
a
tt
 B

a
rn

e
s

O
ct

 9
 2

0
1
2

d
_
X

d
_
Y

X Y

p
h
i,

X
,

Y

1

W
ra

p
p
in

g

p
h

i
[−

p
i,

p
i]

U
n

it
D

e
la

y2

z1

U
n

it
D

e
la

y1

z1

U
n
it

D
e
la

y

z1

co
s

si
n

m
o
d

2
*p

i

d
_
p
h
i,

d
_
x,

 d
_
y

1

Figure A.11. Vehicle to global coordinate transformation

Appendix B
ROS Source Code

B.1 Introduction

High level controls are executed using Python code in the ROS environment, which is gaining

widespread popularity in the robotics community for its open-source development and powerful

libraries. Scripts (i.e. ‘nodes’) publish or subscribe to information (i.e. ‘topics’) within the

framework, thus enabling convenient organization and task distribution. The large number of

community supported libraries allow for rapid code development involving sensor data, SLAM,

visualization, and information playback.

In following with the organization of ROS, each subsection is the code for a particular node.

The Vel Broadcaster node in Appendix B.3 implements the smooth kinematic control law from

Chapter 6 and communicates with the xPC over the RS-232 serial port. The TF Broadcaster

and Joy Broadcaster nodes in Appendices B.4 and B.5 transform the laser scan data to the

wheelchair frame-of-reference and allow for manual control with a joystick, respectively. Lastly,

the Arduino ROS node replaces the functionality of the xPC Target, but is able to directly

publish and subscribe to ROS topics, as documented in Appendix B.6.

The code can be summarized by graphing the flow of topics, subscribers, and publishers using

#rosrun rqt graph rqt graph, as seen in Figure B.1.

The code segments for xPC and Arduino can easily be changed to work with the other

respective platform. The only difference is Arduino directly publishes and subscribes to topics,

whereas the xPC requires explicit RS-232 serial communication.

Figure B.1. Topic graph

39

B.2 Launch File

The launch file starts all nodes and is run from the command line with #roslaunch wheelchair

wheelchair.launch (where the arguments correspond to the package name and launch file name,

respectively). For controlling the wheelchair from a remote computer, the joy node would be

started from the computer connected to the Xbox controller.

1 <launch>

2 <node name="Joystick" pkg="joy" type="joy_node" args="_autorepeat_rate:=10" />

3 <node name="Joy_Broadcaster" pkg="wheelchair" type="Joy_Broadcaster.py" />

4 <node name="TF_Broadcaster" pkg="wheelchair" type="TF_Broadcaster.py" />

5 <node name="Arduino" pkg="rosserial_python" type="serial_node.py" args="/dev/ttyUSB0" />

6 <node name="hokuyo_node" pkg="hokuyo_node" type="hokuyo_node" />

7 </launch>

40

B.3 Vel Broadcaster

The Vel Broadcaster node is designed to communicate with the xPC Target and implements the

smooth kinematic control law from Chapter 6.

1 #!/usr/bin/env python

2 # Vel_Broadcaster

3 # This node communicates with the xPC and implements the smooth kinematic control law described in Chapter 6. The desired target pose is specified by ic.target(X,Y,phi) in main().

4 #

5 # Matt Barnes

6 # April 2013

7

8 import roslib

9 import sys

10 import rospy

11 from numpy import *

12 import math

13 import serial

14 from geometry_msgs.msg import TwistStamped, PoseStamped

15 from std_msgs.msg import Header

16 import tf #ROS transformation package

17

18 class xPC_Driver:

19

20 def __init__(self):

21 #ROS publishers and messages

22 self.pub_vm = rospy.Publisher(’vel_meas’, TwistStamped)

23 self.pub_vd = rospy.Publisher(’vel_des’, TwistStamped)

24 self.pub_pose = rospy.Publisher(’pose’, PoseStamped)

25 self.vm_msg = TwistStamped()

26 self.vd_msg = TwistStamped()

27 self.pose_msg = PoseStamped()

28

29 # Serial port communication (to/from xPC)

30 self.ser = serial.Serial()

31 self.ser.baudrate = 57600

32 self.ser.port = ’/dev/ttyUSB0’

33 self.ser.timeout = 1

34 self.ser.open()

35

41

36 # Constants (for control law)

37 self.k1 = 1.5

38 self.k2 = 3

39 self.B = 0.4

40 self.lam = 2

41 self.vmax = 1.2

42 self.rthres = 1.2

43

44 ## Reset the xPC ##

45 def reset(self):

46 phi = 1

47 while abs(phi)>0.05:

48 rospy.sleep(0.05)

49 data_str = self.ser.readline()

50 data = data_str.strip().split(’,’)

51 try:

52 phi = float(data[0])

53 except:

54 print "Warning: Serial reset packet lost"

55 self.ser.write("0"+"\t"+"0"+"\t"+"1"+"\r")

56

57 ## Stop the wheelchair ##

58 def stop(self):

59 V = phi = 1

60 while abs(phi)>0.05 or V>0.05:

61 rospy.sleep(0.05)

62 data_str = self.ser.readline()

63 data = data_str.strip().split(’,’)

64 try:

65 phi = float(data[0])

66 V = float(data[4])

67 except:

68 print "Warning: Serial stop packet lost"

69 self.ser.write("0"+"\t"+"0"+"\t"+"0"+"\r")

70

71 ## Move towards next target pose ##

72 def target(self, Tx, Ty, Ttheta):

73 data_str = self.ser.readline()

74 data = data_str.strip().split(’,’)

75 try:

42

76 phi = float(data[0])

77 X = float(data[1])

78 Y = -1*float(data[2])

79 w_meas = float(data[3])

80 V_meas = float(data[4])

81 t = rospy.get_time()

82 r = math.sqrt(pow(Tx - X,2) + pow(Ty - Y,2))

83 delta = math.fmod(phi - math.atan((Ty-Y)/(Tx-X))+math.pi,2*math.pi)-math.pi

84 theta = math.fmod(Ttheta - math.atan((Ty-Y)/(Tx-X))+math.pi,2*math.pi)-math.pi

85 kappa = -1/r*(self.k2*(delta - math.atan(-self.k1*theta)) + (1 + self.k1/(1 + pow((self.k1*theta),2)))*math.sin(delta))

86 V = min(self.vmax/self.rthres*r, self.vmax/(1 + self.B*pow(abs(kappa),self.lam)))

87 w = V*kappa*4

88

89 # Publish results

90 self.pose_msg.header.stamp = t

91 self.pose_msg.pose.position.x = X

92 self.pose_msg.pose.position.y = -Y #SAE->ISO

93 self.pose_msg.pose.orientation = tf.transformations.quaternion_from_euler(0,0,-phi) #SAE->ISO

94 self.pub_pose.publish(self.pose_msg)

95

96 self.vm_msg.header.stamp = t

97 self.vm_msg.twist.linear.x = V_meas

98 self.vm_msg.twist.angular.z = w_meas

99 self.pub_vm.publish(self.vm_msg)

100

101 self.vd_msg.header.stamp = t

102 self.vd_msg.twist.linear.x = V

103 self.vd_msg.twist.angular.z = w

104 self.pub_vd.publish(self.vd_msg)

105

106 # Print to serial port (to xPC)

107 self.ser.write("%.2f"%w+"\t"+"%.2f"%V+"\t"+"0"+"\r")

108 print "%.2f"%w+"\t"+"%.2f"%V+"\t"+"0"+"\r"

109 except:

110 print "Warning: Serial target packet lost"

111

112 def main(args):

113 ic = xPC_Driver()

114 rospy.init_node(’Vel_Broadcaster’, anonymous=True)

115

43

116 ic.reset()

117 ic.stop()

118 print ’xPC Reset and System Ready’

119 t0 = rospy.get_time()

120 print ’Starting in ’

121 for countdown in range(5,0,-1):

122 print ’\b’+str(countdown)+’...’

123 rospy.sleep(1)

124 print ’Go!’

125 t0 = rospy.get_time()

126 while not rospy.is_shutdown():

127 ic.target(10,0,0) #Desired pose (X,Y,phi)

128 rospy.sleep(0.01)

129 if __name__ == ’__main__’:

130 main(sys.argv)

44

B.4 TF Broadcaster

The TF Broadcaster node transforms the LIDAR frame of reference to the wheelchair frame of

reference.

1 #!/usr/bin/env python

2 # TF_Broadcaster

3 # This node sends transformations for:

4 # -The wheelchair pose relative to world

5 # -The laser pose relative to the chair

6 #

7 # Matt Barnes

8 # April 2013

9

10 import roslib

11 roslib.load_manifest(’wheelchair’)

12 import rospy

13 import tf

14 from geometry_msgs.msg import PoseStamped

15

16 def handle_wheelchair_pose(msg):

17 br = tf.TransformBroadcaster()

18 br.sendTransform((msg.pose.position.x, -msg.pose.position.y, -msg.pose.position.z),

19 tf.transformations.quaternion_from_euler(0, 0, -msg.pose.orientation.z),

20 rospy.Time.now(),

21 "chair",

22 "world") #changed from SAE to ISO

23 br.sendTransform((.8636, .2032, .3937), #LIDAR position relative to center of wheelchair drive axle

24 tf.transformations.quaternion_from_euler(0, 0, 0),

25 rospy.Time.now(),

26 "laser",

27 "chair") #ISO

28

29 if __name__ == ’__main__’:

30 rospy.init_node(’TF_Broadcaster’)

31 rospy.Subscriber(’/pos’,

32 PoseStamped,

33 handle_wheelchair_pose)

34 rospy.spin()

45

B.5 Joy Broadcaster

The Joy Broadcaster node converts values from an Xbox 360 controller to raw analog voltages

for the wheelchair joystick.

1 #!/usr/bin/env python

2 # Joy_Broadcaster

3 # This node translates Xbox 360 joystick commands to raw analog voltage values for the wheelchair joystick

4 #

5 # Matt Barnes

6 # April 2013

7

8 import roslib

9 import sys

10 import rospy

11 from geometry_msgs.msg import Twist, PoseStamped

12 from sensor_msgs.msg import Joy

13

14 class Joystick_Driver:

15

16 def callback(self,data):

17 #Translate Xbox 360 joystick value to wheelchair joystick voltage

18 self.vd_msg.linear.x = 2.5+1.5*data.axes[1]

19 self.vd_msg.angular.z = 2.5-1.5*data.axes[0]

20 self.pub_vd.publish(self.vd_msg)

21

22 def listener(self):

23 rospy.Subscriber("joy", Joy, self.callback)

24 rospy.spin()

25

26 def __init__(self):

27 #ROS publishers and messages

28 self.pub_vd = rospy.Publisher(’vel_des’, Twist)

29 self.vd_msg = Twist()

30

31 def main(args):

32 ic = Joystick_Driver()

33 rospy.init_node(’Joy_Broadcaster’, anonymous=True)

34

35 while not rospy.is_shutdown():

46

36 ic.listener()

37

38 if __name__ == ’__main__’:

39 main(sys.argv)

47

B.6 Arduino Node

The Arduino node reads encoder data, implements the kinematics from Chapter 5, publishes

position and velocity information, and subscribes to the ROS control output (e.g. velocity, raw

joystick voltage).

B.6.1 Arduino ROS

The main node for the Arduino.

1 /***

2 *

3 * Pennsylvania State University

4 * Protected by the GNU General Public License

5 *

6 * This source file is developed and maintained by:

7 * + Matt Barnes mjb5497@psu.edu

8 *

9 * File: PID_ROS.ino

10 * Desc: Reads encoders, implements kinematic calculations from

11 * Chapter 5, publishes pose estimate, subscribes to desired vel or

12 * joystick command, writes analog voltages to joystick

13 *

14 ***/

15

16 #include <ros.h> // declare the ros library

17 #include <geometry_msgs/PoseStamped.h> // declare the messages library

18 #include <geometry_msgs/Twist.h> // declare the messages library

19 #include <geometry_msgs/TwistStamped.h> // declare the messages library

20 #include <std_msgs/Empty.h>

21

22 ros::NodeHandle nh; // initiate the ROS handle

23

24 // Create ROS objects (messages, time, publishers, and subscribers)

25 geometry_msgs::TwistStamped vel_meas;

26 geometry_msgs::PoseStamped pos;

27

28 ros::Time current_time;

29

30 ros::Publisher pub_vel("vel_meas", &vel_meas); // initiate my publisher

31 ros::Publisher pub_pos("pos", &pos); // initiate my publisher

48

32

33 //Function called every time new desired twist message received

34 void messageCb(const geometry_msgs::Twist& msg){

35 Joystick(msg.linear.x, msg.angular.z); //send voltage commands to joystick

36 digitalWrite(13, HIGH-digitalRead(13)); // blink the led

37 }

38

39 ros::Subscriber<geometry_msgs::Twist> sub("vel_des", messageCb);

40

41 // Constants

42 #define LeftMotor 129

43 #define RightMotor 128

44

45 #define BASE .367 // The distance between wheels in meters

46 #define R_ENC .049 // The encoder wheel radius in meters

47

48 int LeftEncoderPos;

49 int RightEncoderPos;

50

51 int OldLeftEncoderPos;

52 int OldRightEncoderPos;

53

54 // Old and new times (for derivatives)

55 unsigned long OldTime;

56 unsigned long NewTime;

57

58 float roll=0, pitch=0, yaw=0;

59

60 void setup() {

61 nh.initNode(); // initiate the ROS node

62 nh.advertise(pub_vel); // advertise my message

63 nh.advertise(pub_pos); // advertise my message

64 nh.subscribe(sub); //subscribe to joystick commands

65

66 SetupHardware();

67 InitializeHardware();

68 }

69

70 void loop() {

71

49

72 UpdateTime();

73 UpdateKinematics(); //Update position and velocities

74

75 //Publish messages

76 pub_vel.publish(&vel_meas);

77 pub_pos.publish(&pos);

78 nh.spinOnce(); // handles ROS comm callbacks

79 }

80

81

82 void UpdateTime()

83 {

84 current_time = nh.now(); //same as ros::Time::now(), but for the Arduino

85 vel_meas.header.stamp = current_time;

86 pos.header.stamp = current_time;

87 }

88 void UpdateKinematics()

89 {

90 // Old Encoder Positions

91 OldLeftEncoderPos = LeftEncoderPos;

92 OldRightEncoderPos = RightEncoderPos;

93

94 // Old and new times

95 OldTime = NewTime;

96 NewTime = micros();

97

98 // Change in encoder positions

99 UpdateEncoders(); // New encoder positions

100 long DeltaLeftEncoder = -LeftEncoderPos + OldLeftEncoderPos;

101 long DeltaRightEncoder = RightEncoderPos - OldRightEncoderPos;

102

103 // Account for 16-bit overflow

104 if(abs(DeltaLeftEncoder)>32768)

105 {

106 DeltaLeftEncoder = DeltaLeftEncoder-65536*sgn(DeltaLeftEncoder);

107 }

108 if(abs(DeltaRightEncoder)>32768)

109 {

110 DeltaRightEncoder = DeltaRightEncoder-65536*sgn(DeltaRightEncoder);

111 }

50

112

113 // Calculate distances

114 float d_left = DeltaLeftEncoder*R_ENC*2*3.14159/10000; // radius * rad per count

115 float d_right = DeltaRightEncoder*R_ENC*2*3.14159/10000; // radius * rad per count

116

117 // Turn radius and travel angle

118 float R = BASE/2*(d_left+d_right)/(d_left - d_right);

119 float d_phi = (d_left - d_right)/BASE;

120

121 // Angular and linear velocities

122 vel_meas.twist.linear.x = 0.5*(d_left + d_right)/((float)(NewTime - OldTime)/1000000);

123 vel_meas.twist.angular.z = d_phi/((float)(NewTime - OldTime)/1000000);

124

125 // Kinematics

126 float Rstar1, Rstar2;

127 if(d_phi == 0)

128 {

129 Rstar1 = d_left;

130 Rstar2 = 0;

131 }

132 else

133 {

134 Rstar1 = R*d_phi;

135 Rstar2 = 0.5*R*pow(d_phi,2);

136 }

137 pos.pose.position.x = cos(yaw)*Rstar1 + sin(yaw)*Rstar2 + pos.pose.position.x;

138 pos.pose.position.y = sin(yaw)*Rstar1 - cos(yaw)*Rstar2 + pos.pose.position.y; //why are the signs backwards here?

139 pos.pose.position.z = 0;

140

141 yaw = yaw + d_phi;

142 // Yaw bounded by (-pi, pi]

143 if(abs(yaw)>3.14159)

144 {

145 yaw = yaw - 2*3.14159*sgn(yaw);

146 }

147 FromEulerAngles(roll, pitch, yaw);

148 }

149

150 static long sgn(long val) {

151 if (val < 0) return -1;

51

152 if (val==0) return 0;

153 return 1;

154 }

155

156 void FromEulerAngles(float roll, float pitch, float yaw)

157 {

158 // Assuming the angles are in radians.

159 double c1 = cos(yaw * 0.5);

160 double s1 = sin(yaw * 0.5);

161 double c2 = cos(pitch * 0.5);

162 double s2 = sin(pitch * 0.5);

163 double c3 = cos(roll * 0.5);

164 double s3 = sin(roll * 0.5);

165 double c1c2 = c1 * c2;

166 double s1s2 = s1 * s2;

167 pos.pose.orientation.w = 0; //(float)(c1c2 * c3 - s1s2 * s3);

168 pos.pose.orientation.x = roll; //(float)(c1c2 * s3 + s1s2 * c3);

169 pos.pose.orientation.y = pitch; //(float)(s1 * c2 * c3 + c1 * s2 * s3);

170 pos.pose.orientation.z = yaw; //(float)(c1 * s2 * c3 - s1 * c2 * s3);

171 }

172

173 /*

174 To read this in ROS, use the following commands:

175 roscore

176 --Open new tab

177 rosrun rosserial_python serial_node.py /[your serial port, most likely dev/ttyUSB0]

178 --Open new tab

179 rostopic echo pos

180 */

52

B.6.2 Hardware

Hardware related functions developed by Rich Mattes.

1 /***

2 *

3 * Pennsylvania State University - Robotics Club

4 * Learn more at www.psurobotics.org

5 * Protected by the GNU General Public License

6 *

7 * This source file is developed and maintained by:

8 * + Rich Mattes rjm5066@psu.edu

9 *

10 * Modified by:

11 * + Matt Barnes mjb5497@psu.edu

12 *

13 * File: Hardware.pde

14 * Desc: Provides the hardware-related functions for the Mechbot

15 * platform.

16 *

17 ***/

18

19 // Pin Definitions

20

21 // Analog I/O for joystick

22 #define FBPin 2

23 #define LRPin 3

24

25 // Encoder specific defines.

26 #define ShiftClk 23

27 #define ShiftEnable 22

28 #define ShiftLatch 25

29

30 #define LeftEncoderData 24

31 #define RightEncoderData 29

32

33 #define EncoderSelect1 26

34 #define EncoderSelect2 27

35 #define EncoderOutputEnable 28

36

53

37 // Loop time for calculating velocity

38 #define DELAY_TIME_VELOCITY 10 // In ms

39 #define DELAY_TIME_SHIFTREG 4 // In us

40

41 // Define physical constants of the wheel for wheel encoding

42 #define WHEEL_CIRCUMFERENCE 0.314 // In meters

43 #define WHEEL_TICKS 8192 // The number of ’ticks’ for a full wheel cycle

44 #define WHEEL_DIST .235 // The distance between wheels in meters

45

46 // "Memory" for integral and derivative terms

47 double LeftIntegral = 0;

48 double RightIntegral = 0;

49 double LastLeftError = 0;

50 double LastRightError = 0;

51 double LdVal;

52 double RdVal;

53

54 // Initialize all hardware components

55 void SetupHardware()

56 {

57

58 pinMode(FBPin, OUTPUT); // sets the pin as output

59 pinMode(LRPin, OUTPUT); // sets the pin as output

60

61 // Set the correct input/output modes for the encoder pins.

62 pinMode(LeftEncoderData, INPUT);

63 pinMode(RightEncoderData, INPUT);

64

65 pinMode(ShiftEnable, OUTPUT);

66 pinMode(ShiftLatch, OUTPUT);

67 pinMode(EncoderOutputEnable, OUTPUT);

68 pinMode(ShiftClk, OUTPUT);

69 pinMode(EncoderSelect1, OUTPUT);

70 pinMode(EncoderSelect2, OUTPUT);

71

72 digitalWrite(ShiftClk, LOW);

73

74 }

75

76 void InitializeHardware()

54

77 {

78 UpdateEncoders();

79 }

80

81 void Joystick(float fb, float lr) //Input fb and lr as voltages

82 {

83 analogWrite(FBPin, fb*255/5);

84 analogWrite(LRPin, lr*255/5);

85 }

86

87 // Gets Encoder data. Pass two unsigned longs into this function

88 // and they’ll be updated with the current values.

89 void UpdateEncoders()

90 {

91 // Clear the current readings

92 LeftEncoderPos = 0;

93 RightEncoderPos = 0;

94

95 int S1, S2;

96 // Cycle through all 4 registers (for all 32 bits of information)

97 for (int i = 0; i < 4; i++)

98 {

99 // Set the register to read on the encoder chips.

100 digitalWrite(EncoderOutputEnable, HIGH);

101 delayMicroseconds(DELAY_TIME_SHIFTREG);

102 if (i == 0){

103 S1 = 1;

104 S2 = 0;

105 }

106 else if (i == 1){

107 S1 = 0;

108 S2 = 0;

109 }

110 else if (i == 2){

111 S1 = 1;

112 S2 = 1;

113 }

114 else{

115 S1 = 0;

116 S2 = 1;

55

117 }

118 digitalWrite(EncoderSelect1, S1);

119 digitalWrite(EncoderSelect2, S2);

120 delayMicroseconds(DELAY_TIME_SHIFTREG);

121 digitalWrite(EncoderOutputEnable, LOW);

122 delayMicroseconds(DELAY_TIME_SHIFTREG);

123

124 // Cycle the Shift Registers to grab a value from the Encoder chips

125 digitalWrite(ShiftLatch, LOW);

126 delayMicroseconds(DELAY_TIME_SHIFTREG);

127 digitalWrite(ShiftLatch, HIGH);

128 delayMicroseconds(DELAY_TIME_SHIFTREG);

129

130 // Read the bytes from the shift registers.

131 byte LeftTmp = 0;

132 byte RightTmp = 0;

133

134 // Write the clock enable pin low so we can clock the data out.

135 digitalWrite(ShiftEnable, LOW);

136 delayMicroseconds(DELAY_TIME_SHIFTREG);

137 // Grab all 8 bits from shift register

138 for (int j = 7; j>=0; j--)

139 {

140 LeftTmp |= digitalRead(LeftEncoderData) << j;

141 RightTmp |= digitalRead(RightEncoderData) << j;

142 digitalWrite(ShiftClk, HIGH);

143 delayMicroseconds(DELAY_TIME_SHIFTREG);

144 digitalWrite(ShiftClk, LOW);

145 }

146 // Combine the four bytes into a unsigned long

147 LeftEncoderPos |= LeftTmp << (i*8);

148 RightEncoderPos |= RightTmp << (i*8);

149 }

150 }

Bibliography

[1] M. L. Jones and J. A. Sanford, “People with mobility impairments in the United States

today and in 2010.,” Assistive technology : the official journal of RESNA, vol. 8, pp. 43–53,

Jan. 1996.

[2] D. Ding and R. Cooper, “Electric powered wheelchairs,” IEEE Control Systems Magazine,

vol. 25, pp. 22–34, Apr. 2005.

[3] C. Mandel, K. Huebner, and T. Vierhuff, “Towards an autonomous wheelchair: Cognitive

aspects in service robotics,” . . . of Towards Autonomous Robotic . . . , 2005.

[4] D. Fox, The dynamic window approach to collision avoidance. Bonn: Sekretariat fur

Forschungsberichte Inst. fur Informatik III, 1995.

[5] J. J. Park and B. Kuipers, “A smooth control law for graceful motion of differential wheeled

mobile robots in 2D environment,” in 2011 IEEE International Conference on Robotics and

Automation, pp. 4896–4902, IEEE, May 2011.

[6] J. Park, “Robot navigation with model predictive equilibrium point control,” IEEE Inter-

national Conference on Intelligent Robots and Systems, pp. 4945 – 4952, 2012.

[7] S. P. Levine, D. a. Bell, L. a. Jaros, R. C. Simpson, Y. Koren, and J. Borenstein, “The

NavChair Assistive Wheelchair Navigation System.,” IEEE transactions on rehabilitation

engineering : a publication of the IEEE Engineering in Medicine and Biology Society, vol. 7,

pp. 443–51, Dec. 1999.

[8] R. C. Simpson and S. P. Levine, “Voice control of a powered wheelchair.,” IEEE transactions

on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in

Medicine and Biology Society, vol. 10, pp. 122–5, June 2002.

[9] A. Fattouh, M. Sahnoun, and G. Bourhis, “Force feedback joystick control of a powered

wheelchair: preliminary study,” in 2004 IEEE International Conference on Systems, Man

and Cybernetics (IEEE Cat. No.04CH37583), vol. 3, pp. 2640–2645, IEEE.

57

[10] T. Taha, J. V. Miro, and G. Dissanayake, “POMDP-based long-term user intention pre-

diction for wheelchair navigation,” in 2008 IEEE International Conference on Robotics and

Automation, pp. 3920–3925, IEEE, May 2008.

[11] R. Cooper, T. Corfman, S. Fitzgerald, M. Boninger, D. Spaeth, W. Ammer, and J. Arva,

“Performance assessment of a pushrim-activated power-assisted wheelchair control system,”

IEEE Transactions on Control Systems Technology, vol. 10, no. 1, pp. 121–126, 2002.

[12] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for mobile

robots,” IEEE Transactions on Robotics and Automation, vol. 7, pp. 278–288, June 1991.

[13] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” 1998.

[14] S. Bennett, A history of control engineering, 1930-1955. Stevenage Herts. U.K.: P. Peregri-

nus on behalf of the Institution of Electrical Engineers London, 1993.

