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Abstract

This dissertation is concerned with the marriage of spatiotemporal preview as it is
known in the controls literature with map-based guidance in a simple but effective
paradigm, in the interest of making accurate environment and vehicle states acces-
sible with production-grade sensing and computing equipment. It does so without
the two-dimensional data association issues of SLAM. Specifically, ideas from lin-
ear optimal preview control theory will be employed to develop mathematically
tractable and intuitively insightful estimation frameworks that use map, inertial,
and forward-looking monocular camera information. The framework developed
is intended to provide state and path estimates to an optimal preview controller
guiding a vehicle in a static environment at highway speeds. Three variations
on preview-based estimation are considered, with experimental results for both
human-driven and self-steering vehicles.
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Chapter 1
Introduction

1.1 Background

In a world moving swiftly towards fully autonomous passenger vehicles, their abil-

ity to track a particular path using uncertain estimates of both ego-motion and

environment remains a key challenge. For feedback control to be successful, a

physical system’s states must be known, and so must its reference input. This

sounds simple enough, but in the context of driver assist and autonomous road ve-

hicle systems, knowing where the vehicle is (states) and where the vehicle is going

(reference input) are both difficult, and have been the subject of rigorous study

for several decades. For vehicles under robotic steering control, which mimics the

“pursuit”-type task shared with aircraft guidance tasks [1], it is not only neces-

sary to know where the vehicle is, but also where it must be at some lookahead or

preview distance in the future.
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In the case of active control of a vehicle’s steering to traverse a road network,

it is generally assumed that maps are available of the road geometry, which offer

an autonomous system a pre-defined reference path in a global coordinate frame.

Therefore, the vehicle “knows” where it is supposed to go. While this map infor-

mation is often assumed known for control purposes, it can also be helpful in the

estimation of vehicle states. Map information has already shown to be a useful

tool in improving vehicle localization accuracy, even with relatively sparse maps

[2]. This dissertation develops a novel way of approaching the problem of per-

ceiving a road vehicle’s reference path (the road shape) that offers a-priori error

statistics estimates given a set amount of visibility from a forward-looking camera.

The framework makes use of mapped information, and uses measurements of a

lane line to update the vehicle’s estimated states, and also updates an estimate of

the location of the road in front of the vehicle. This way, optimal preview control

strategies can be employed with knowledge of the error expectation of the vehicle’s

state and environment estimates.

The remainder of this chapter is organized as follows. After a brief introduc-

tion to the models of vehicle dynamics that permeate the literature, a background

on the history and current state of the art in road vehicle ego-state and environ-

ment perception follows suit. Then, a review of common preview-based feedback

and feed-forward control strategies that make use of environment information is

presented. This discussion is followed by an argument for decomposition of the
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requirement for knowledge of what lies ahead of the vehicle into two distinct cat-

egories: previewed information needed for effective vehicle tracking/state estima-

tion, and previewed information needed for effective vehicle guidance using optimal

preview control. An existing optimal preview control framework for vehicles is in-

troduced, and is then used as inspiration in the development of an estimation

paradigm. With the addition of a matching optimal preview control design, the

resulting stochastic guidance system fuses combinations of map, camera, and in-

ertial measurements with a methodology that has tractable theoretical links to

existing methods under reasonable assumptions.

1.2 Vehicle dynamic models

If the reader is unfamiliar with lateral vehicle chassis dynamics, excellent and

mature treatments of the subject appear in [3, 4, 5] and others. This section

is intended to provide only enough background on vehicle dynamics to assist the

reader in digesting the material that follows. It gives some context for the empirical

relevance of the bicycle model equations, which are simplistic in the age of fast

computers and multibody models, but still adequately descriptive of most driving,

and widely used in theory and practice.

First, consider a representative vehicle with assumed “lumped” left and right

tires as in Figure 1.2. In this setup, with global coordinates in the familiar East-

North-Up (ENU) frame and body-fixed vehicle coordinates in the ISO standard



4

Figure 1.1. Setup of planar vehicle dynamic equations for error-coordinate and local-
coordinate representations (negative tire forces shown, all angles positive counterclock-
wise from axis)

convention. Roll motion from the suspension is ignored, and both lumped tire

forces are assumed to act in the vehicle’s local y-direction. This is true even

though the technically correct representation of ~Ff is ~Ff = |Ff | [cos (δ) ̂− sin (δ) ı̂].

Longitudinal tire forces are not modeled for any of the work that follows, but the

derivations below hold for slight deviations from constant forward speed, as long

as braking and acceleration forces are small and do not excite suspension dynamics

or push tires into a nonlinear region of behavior.

Both the linearized global equations of motion, deemed as a set the “error-

coordinate” model of lateral vehicle dynamics, and the body-fixed coordinate rep-

resentation of the same can be derived using Figure 1.2.
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1.2.1 Tire forces

As mentioned above, tire forces are modeled for the present purposes in the lateral

direction only, since these are most important for understanding how the lateral

dynamics of a vehicle change under control by a robotic or human driver. In

general, tires produce lateral force as a response to angular misalignment between

their heading direction (direction in which they point) and their course direction

(direction in which they are moving). This angular misalignment, termed “slip

angle,” is a small signal relative to yaw rate or forward velocity, but it is also too

large at appreciable forward velocities to ignore for high-speed lateral guidance.

For the purposes of the work to follow, this tire/force relationship is assumed to

be linear, is given by:

Ff = Cfαf

Fr = Crαr

(1.1)

It is worth noting that tire dynamics are quite complex, and hard to capture com-

pletely, especially with a linear model. During the construction of Penn State’s

autonomous testbed, “Big Red,” a large amount of effort was expended character-

izing effective cornering stiffness values Cf and Cr for the vehicle in its laden and

unladen configurations, and for several different sets of tires and tire pressures [6].
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1.2.2 Derivation of body-fixed vehicle dynamics

In body-fixed coordinates, the vehicle states are all referenced to the coordinate

frame attached to the vehicle’s center of mass. Allowing the represented vehicle

to have both longitudinal (forward) velocity and lateral (sideslip) velocity at its

center of mass, the velocity of the vehicle can be written as in eq. 1.2

~vtotal = Uı̂+ V ̂ (1.2)

This obviously ignores any jounce motion of the vehicle. Ignoring also the

possible roll and pitch motions of the vehicle, the body-fixed coordinate frame has

only one component of angular velocity, given by eq. 1.3.

~ωxyz = rk̂ (1.3)

Thus, the slip angles of the tires can be written simply using relative velocity

equations:

αf =
V + ar

U
− δ

αr =
V − br
U

(1.4)

Taking the derivative of the allowed vehicle velocity given by eq. 1.2 allows for

the first-principles derivation of the lateral equations of motion for the vehicle. In

doing this differentiation, the acceleration of the vehicle is thus given by eq. 1.5.
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~atotal =
d~V

dt
=
dU

dt
ı̂+ U

dı̂

dt
+
dV

dt
̂+ U

d̂

dt

= U̇ ı̂+ U ~ωxyz × ˙̂ı+ V̇ ̂+ V ~ωxyz × ̂

=
(
U̇ − V r

)
ı̂+
(
V̇ + Ur

)
̂

(1.5)

Because lateral dynamics of the vehicle are the focus here, this leads to a

summation of the forces in the local y-direction as shown in eq. 1.6

∑
Fy = may = m(V̇ + Ur) = Cf(

V + ar

U
− δ) + Cr

V − br
U

+ Fd (1.6)

Where the total mass of the vehicle is given by m, and the lateral disturbance force

is commonly assumed to be Fd = −g e
100

, where e is the superelevation, or tilt of the

road about the vehicle’s x-axis, and g is the gravitational constant, 9.81m
s2

. This

term comes from the definition of superelevation, which is e = 100 tan θ, where θ

is the roll angle of the road about the vehicle’s x-axis. This is shown in Figure

1.2. Superelevation angles are assumed small in the vehicle dynamic equations, so

tan θ ≈ θ to maintain linearity.

The moment balance about the yaw (z) axis of the vehicle is then given by eq.

1.7 where the yaw mass moment of inertia of the vehicle is given by I.

∑
Mz = Iṙ = a(Cf(

V + ar

U
− δ))− b(Cr

V − br
U

) (1.7)
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Figure 1.2. Definition of vehicle superelevation

Rearranging these equations results in the familiar state-space representation

of body-fixed lateral vehicle dynamics in eq. 1.8

V̇ =
Cf + Cr
mU

V + (
aCf − bCr

mU
− U)r − Cf

m
δ − g e

100

ṙ =
aCf − bCr

IU
V +

a2Cf + b2Cr
IU

− aCf
I
δ

(1.8)

This is the form in which all local-coordinate preview-filter equations inclusive

bicycle model dynamics will appear.

1.2.3 Derivation of lateral vehicle dynamics in error-coordinates

Often, when vehicle dynamics in the context of path-following or lane-keeping are

considered, it is convenient to track a vehicle’s global lateral position and yaw

angle ψ as well as its lateral velocity and yaw rate. In order to do this, consider a

situation in which the vehicle stays approximately aligned with the global X-axis

as defined in figure 1.2. In general, the transformation from local coordinates to

global coordinates for vehicle velocity rotated in-plane by the global yaw angle ψ
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is given by eq. 1.9,

Ẋ = U cos (−ψ)− V sin (−ψ)

Ẏ = U sin (−ψ) + V cos (−ψ)

(1.9)

which, when small angle ψ is assumed, leads to eq. 1.10:

Ẋ = U + V ψ

Ẏ = V − Uψ
(1.10)

As in eq. 1.5, vector derivatives of velocities are computed, as shown in eq. 1.11,

where Ĵ and Î represent unit vectors in the global coordinate frame, to differentiate

between those used in the body-fixed formulation above. However, although it is

not shown, k̂ is the same in both formulations, since it is assumed that the vehicle

only moves in-plane.

d~vtotal
dt

=
(
U̇ + V r + V̇ ψ

)
Î + (Ur + V ψr) Ĵ

+
(
V̇ − Ur − U̇ψ

)
Ĵ + (Urψ − V r) Î

(1.11)

Cancellation of assumed-zero U̇ and rearrangement to extract Y components of

acceleration only leads to a global Y -acceleration as given by eq. 1.12 when the

very small multiplicative nonlinearity V r is neglected. It is interesting to note

that the “coriolis term” Ur in the body-fixed lateral acceleration disappears as a

consequence of the small-ψ assumption and coordinate system transformation.
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aY = V̇ + V rψ ≈ V̇ (1.12)

With the approximations of eq. 1.12, the definition of lateral acceleration does not

change, but the definition of slip angles with respect to states does, because of the

transformation from V to Ẏ in eq. 1.10. Slip angles for error-coordinates are thus

given in eq. 1.13.

αf =
V + ar

U
− δ ≈ Ẏ + ar

U
− ψ

αr =
V − br
U

≈ Ẏ − br
U
− ψ

(1.13)

With this change, the force and moment balances of eqs. 1.6 and 1.7 are

trivially repeated. Traditionally, in the literature, the global “error-coordinate” Y

is replaced with a lower case y, and local yaw-rate r is replaced with the convenient

ψ̇, resulting in a state-space equation set as given in eq. 1.14

d

dt



y

ẏ

ψ

ψ̇


=



0 1 0 0

0
Cf+Cr

mU

−(Cf+Cr)
m

aCf−bCr

mU

0 0 0 1

0
aCf−bCr

IzU

bCf−aCr

I

a2Cf+b2Cr

IU





y

ẏ

ψ

ψ̇


+



0

−Cf

m

0

−aCf

Iz


δ +



0

− g
100

0

0


e

(1.14)

This form of the vehicle dynamic equations, while convenient, is not suitable

for situations where the small-ψ approximation is violated, such as constant-radius
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turns. For simulation and illustration purposes, or for control on a relatively

straight path, the error-coordinate form of the bicycle model equations is adequate.

But when practical implementation on significantly curved roads is the goal, the

body-fixed formulation is often more appropriate.

1.2.4 Discretization of vehicle dynamic models

As the following sections and chapters will demonstrate, the implementation of

vehicle dynamic equations is readily realized in discrete time, rather than contin-

uous time. Because of this, each of the two linear vehicle representations above

is converted to discrete time using a zero-order hold such that the A and B ma-

trices become discrete-time state and input transition matrices Ad and Bd. For

the studies in optimal preview control and preview-based estimation that follow,

this discretization is accomplished using the Tustin or bilinear transform approxi-

mation of the state transition and input matrices. For a simple linear state-space

model, Eq. 1.15 describes its continuous-time dynamics:

~̇x = A~x+B~u

~y = C~x+D~u

(1.15)

In general, in order to predict a system’s states at some time t in the future, it

is necessary to solve the matrix form of the first-order continuous-time differential
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equation given by Eq. 1.15.

~x(t) = eAt~x(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (1.16)

The matrix exponential eAt is the analog of the scalar exponential for multivariable

first-order differential equations, and is given by:

eAt = L [sI− A]−1 (1.17)

Many possible approximations of the matrix exponential exist, but the most

convenient and flexible approximation for discretization of linear systems with

relatively small sample times is the bilinear or Tustin transform. Using this ap-

proximation, one can replace x(t) with a discrete representation of the system’s

state at a particular sample number, xk, and replace initial condition x(0) with

the sampled value of the system states at the previous timestep, xk−1. In doing so,

one can write the discrete-time recursive state space equations for a linear system

as in [7]:

~xk = Ad~xk−1+ Bd~uk−1

~yk = C~xk+ D~uk

(1.18)

Where the discrete-time matrices Ad and Bd are given by:
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e


A B

0 0


=

Ad Bd

0 0

 ≈
I +

dT

2

A B

0 0



I− dT

2

A B

0 0



−1

(1.19)

with dT equal to the time between samples. As derived above, the vehicle dynamic

discrete-time equations can be updated at each timestep with the appropriate

measured value of the vehicle forward velocity U for simulation, implementation

of estimation equations, and control.

1.2.5 Open-loop fidelity of the vehicle dynamic models

While much concern and effort in modern vehicle dynamics research is expended

upon high-fidelity multi-body models, which capture minute variations in vehicle

states inclusive of tire, suspension, bushing, and aerodynamic phenomena, these

effects are overshadowed by the gross variation in lateral vehicle states described

by simple, linear dynamics of the bicycle model for most driving circumstances.

When effective cornering stiffnesses for a particular vehicle are carefully calculated

from steady-state circular driving tests performed with a defense-grade position,

velocity and orientation sensor, as in the work by the author and others in [6],

and the vehicle’s yaw inertia is calculated from steering frequency response data,

the bicycle model matches measured vehicle states very well. This is important,
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because all of the estimators derived in this document rely on an accurate vehicle

model.

To illustrate the degree to which the bicycle model matches actual vehicle

behavior, consider a test in which a double lane-change maneuver was performed

with Penn State’s autonomous testbed “Big Red,” where the forward speed and

steering input are given by Figure 1.3
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Figure 1.3. Forward velocity and steering angle for a double lane-change maneuver

Data for this maneuver were collected using a defense-grade Inertial Navigation

System (INS), which does not rely on a vehicle model for measurement of lateral

velocity, yaw rate, or other rotational or linear velocities. The vehicle’s lateral

acceleration during the maneuver is shown in Figure 1.4. The lateral acceleration
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Figure 1.4. Measured lateral acceleration for a double lane-change maneuver

for the maneuver peaks at over 0.5g, which is fairly aggressive, and definitely forces

the tires to approach the nonlinear regions of their lateral force characteristics.

However, when a linear time-varying simulation of eq. 1.8 is performed using the

forward speed profile to populate the system dynamics and the steering angle as an

input, the resulting match between states measured in the field and states predicted

by the model is excellent, and shown in Figure 1.5. This level of model fidelity,

the result of repeated, redundant parameter identification tests, sets the stage for

the inclusion of bicycle model dynamics in the remainder of this document for the

purposes of state estimation and lateral vehicle control.



16

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

La
te

ra
l v

el
oc

ity
 (m

/s
)

 

 
simulated
collected

0 2 4 6 8 10 12 14 16
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Ya
w

 ra
te

 (r
ad

/s
)

Figure 1.5. Body-fixed vehicle states for a double lane-change maneuver

1.3 Estimation of lateral vehicle dynamic states

While the open-loop match between simulated and measured vehicle states as

shown in the preceding section was very good, this is usually only true when vehicle

dynamic states are estimated using a research-grade sensor suite, and only under

controlled conditions. Estimating vehicle states using production-grade sensing

equipment is hard, and forces many production driver assist systems to be quite

conservative in anticipation of sensor error [8]. The relatively low signal-to-noise

ratio of production sensors makes it challenging to measure vehicle states like

sideslip, the angle between the the vehicle orientation and the vehicle’s total veloc-

ity vector, because sideslip has extremely small magnitudes under normal driving
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conditions. For example, a typical passenger vehicle traveling at U = 20m
s

(40

mph) forward velocity around a turn with a lateral acceleration of 4m
s2

may have a

lateral velocity of only 0.5m
s

(1 mph).

This fact alone makes estimating lateral velocity difficult, and many low-cost

sensors suffer from bias instability, quantization effects, and poor resistance to

temperature or other environmental variability. As a result, the use of common

low-cost inertial sensors in traditional Kinematic Kalman Filters (KKFs) is often

out of the question, although success with vehicle sideslip estimation without a

model using GPS and yaw gyro measurements was shown in [9]. Some researchers

in the vehicle dynamics community have turned towards model-based estimators

that make use of known vehicle dynamics to improve estimator accuracy [10, 11].

Some have even found success using model-based estimation techniques to esti-

mate vehicle parameters and/or tire-pavement friction in real time [12, 13, 8]. In

an application aimed at predicting lane departure, Mudaliar used a model-based

Kalman filter in the design of a lane departure warning system [14].

To provide a brief, basic introduction to the Kalman filter, in the form carried

through the remainder of this dissertation, consider the form of the state estimator

as given in [15] in eq. 1.20, where Qk is the covariance matrix of a modeled white

noise perturbing system inputs, and Rk is the covariance matrix of the assumed

Gaussian white noise perturbing sensor measurements. If the system is linear and

observable, and the process and measurement noise are actually white and random
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with the modeled covariances, then this is an optimal minimum-variance estimator.

x̂k|k−1 = Ad,k−1x̂k−1|k−1 +Bd,k−1uk−1

Pk|k−1 = Ad,k−1Pk−1|k−1A
T
d,k−1 +Qk

ỹk = zk −Hkx̂k|k−1

Lk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1

x̂k|k = x̂k|k−1 + Lkỹk

Pk|k = (I− LkHk)Pk|k−1

(1.20)

While these assumptions are never exactly satisfied for a physical system, vari-

ations on the Kalman filter are often used to estimate vehicle states by fusing

measurements of steer angle δ and other disturbances with measurements from

sensors like yaw rate gyroscopes and accelerometers. When the described system

dynamics are nonlinear, or system parameters in a linear system are to be esti-

mated as augmented states as in [12, 13], the so-called “extended Kalman filter”

can be used, where the system dynamics are linearized at each time step, and the

estimation process proceeds as in eq. 1.20. While this is no longer a truly optimal

estimation framework, and can introduce biases through linearization, it is exper-

imentally mature. The Kalman filter methodology employed in this dissertation

appears as a linear time-varying (LTV) Kalman filter as in eq. 1.20.

Using maps to enhance vehicle localization and state estimation is becoming

more and more popular to improve state estimates, and allow a vehicle to register
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within a map so that the static pieces of its environment can be perceived without

direct measurement. Recent work in[16, 17, 2, 18] makes use of extremely compact

maps of roads to localize a vehicle by using a measurement of its pitch angle alone.

Additionally, many have turned to the more recent trend of map-based localization

using sensors like Light Detection and Ranging (LIDAR) sensors [19] and cameras

[20, 21, 22]. Vishisht Gupta was successful in 2008 with global localization and

tracking tasks using a GPS, forward-looking camera, and an IMU in [20]. His

method used an EKF to track mapped road signs and other features in a video

stream, along with horizon shapes (mountains) to aid in localization. Also in

2008, Oliver Pink used a map of road markings generated from an aerial image

to match forward-looking camera images using an iterative matching method in

[21], achieving good localization and tracking performance. Other uses of aerial

imagery and forward-looking cameras for map-based localization include [23], in

which the authors use an EKF similar to the one proposed in [20] and using sensors

and map sources similar to [21] to achieve localization and tracking. Other similar

approaches include the work by Noda in [22]. A review of matching and registration

techniques for image-based localization using aerial images is given in [24].

These methods are effective, but make use of either iterative methods or com-

plex mathematical structures to achieve position and velocity state tracking, and

treat the map of road features with an eye towards map registration only, rather

than tracking them as additional vehicle states with their own statistical confi-
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dence levels. This is not a large problem if the environment to be traveled in is

fully static, but does present an issue if filter estimates diverge. In this case, a

vehicle would have no idea where it is or where it must go, even with attempts at

environment measurement. The two filters in this dissertation developed for use

with a forward-looking camera address some of these issues, and allow for chang-

ing road markings to be updated as previewed states, and readily available to a

preview or predictive steering controller. The methodology derived in the chapters

that follow, able to function with or without map information, will prove to be

a simplification of the famous Simultaneous Localization and Mapping problem,

which allows a “robot” to explore its environment, discovering features and local-

izing both those features and the robot’s state relative to them. In this way, the

methodology is more flexible than methods that offer map registration only.

1.4 Simultaneous localization and mapping

Simultaneous Localization and Mapping (SLAM) is a problem statement rather

than an algorithm. In an unknown environment, a robot wishes to create a map of

what lies ahead of and around it, and also wishes to localize itself within that map

with the highest degree of accuracy and precision possible [25]. To visualize the

meaning of the SLAM problem, consider Figure 1.6, and consider that the vehicle

pictured is a generic ground robot, without making assumptions about its dynamic

equations.
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Figure 1.6. Definition of the SLAM problem

Here, note that the vehicle’s sensor, which could be a camera, laser, sonar, or

something else entirely, is able to measure the two dimensional location of certain

features within the scope of its sensors. If no absolute positioning sensor (such

as a GPS) is available, the vehicle can only build a local map initialized with a

zero position at the start of the procedure, and cannot recover globally referenced

position. If, at first, the vehicle can see no features, suppose it maintains estimates

of its own states through propagation of the system dynamic equations shown in

eq. 1.21.

~Xr,k = Ad ~Xr,k−1 +Bd~uk−1 (1.21)

Once the robot is able to observe landmarks in its environment, it tracks those in

an estimation framework as well, using measurements of the landmarks relative to

the vehicle in combination with vehicle state propagation equations to maintain
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estimates of both the environment and the vehicle itself. To do this, Cheeseman,

Smith, and Self proposed an Extended Kalman Filter (EKF) solution to the SLAM

problem in 1987 [26]. Their solution augments the Kalman-filtered robot state es-

timate vector with measured landmark positions as they are discovered. While

it has been extended and improved vastly since its original inception, this basic

methodology is still in wide use today [25]. In this framework, as the robot mea-

sures landmarks, and augments its system state vector. This state vector is often

set to either grow boundlessly as the vehicle explores its environment, or “forget”

map segments whose measurements are corrupted or far away.

x̃ =

 ~Xr

~M


k

=



~Xr

~L1

~L2

~L3

...

~Ln


k

(1.22)

In Equation 1.22, each state ~Li in the map generally consists of a two-dimensional

position. Through the propagation of the robot states and repeated measurements

of landmarks (including the discovery of new ones), the vehicle uses the measure-

ments of its environment to improve its own state estimates through an estimation

framework like the EKF, a particle filter, an Unscented Kalman filter, etc. In
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many applications of SLAM, The robot’s measurements of its surroundings are

accomplished through a laser rangefinder, a camera [27, 28, 29], or other sensor

combinations and used to couple the robot’s position with that of the stationary

landmarks which surround it. SLAM is an incredibly popular field, and com-

prehensive reviews of many commonly used algorithms are available in review

papers such as [30]. Thrun and Montemerlo’s seminal 2002 paper [31] propelled

the SLAM algorithm past the computational complexity of the EKF by using a

Rao-Blackwellized factorization of the posterior probability distribution of robot

pose. Their algorithm is also now in wide use in the robotics community, as well

as on Stanford University’s autonomous road vehicle “Junior” [32].

The fundamental issue with SLAM as a generic solution for autonomous vehicle

systems needing knowledge of their surroundings is that the “landmarks” tracked as

part of the algorithm can be of ambiguous importance and/or unknown reliability.

In other words, in the general formulation of the SLAM problem, it is necessary

to define what a “landmark” feature will be. For laser-based methods, this is

relatively easy, as data association (the process of determining which landmark as

time step k − 1 is now the same landmark at time k) is easier with reliable two-

dimensional position and reflectivity measurements. For lasers, tracked landmark

features are also guaranteed to be physical objects, whether stationary or not. For

vision-based methods, however, such as [29], features in a camera framework are

much more difficult to define. Many times, the features are visual “corners,” which
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Figure 1.7. Corner feature scarcity during night driving

can provide reasonably dense feature maps even with a monocular camera as in

[27]. However, when considering the task of high-speed vehicle guidance, which

occurs in a variety of driving environments, lighting conditions, and weather, it is

nearly impossible to guarantee that such corners will be found in a vision-based

system. Therefore, it is not possible to give realistic confidence bounds on the

vehicle’s current position relative to the road, or its velocity states, which are

necessary for guidance. Consider, for instance, the night time driving scene shown

in Figure 1.7, where the only corners in the image are provided by the reflectors

far in front of the vehicle.

The absence of traditional features useful in most SLAM frameworks is also

apparent with changing weather conditions. Figure 1.8 shows an example of a

morning scene on a rural highway, where nearly all visual features are obscured by
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Figure 1.8. Corner feature scarcity during adverse weather

fog, other than the lane lines. Lane lines, in the two-dimensional SLAM context,

suffer from inadequate feature definitions. They have uniqueness as edges, but

suffer as features when data association from time step to time step is required,

since the ego-motion of a vehicle along the length of the lane is hard to pick out

using vision alone, even for a stereo system that provides three dimensional edges

to the SLAM framework. Still, lane lines are excellent and popular candidates

for defining a vehicle’s reference trajectory in autonomous systems, because they

are nearly ubiquitous on public roads, and are designed specifically to be easily

seen. Practitioners using lane lines for vehicle guidance have made and continue

to make clever assumptions to aid in the perception of the vehicle’s relationship to

its reference trajectory without the problems they pose for a SLAM framework.
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1.5 Vision systems for road scene understanding

and vehicle control

Both of the state estimation frameworks described in this dissertation rely on

camera measurements of lane position to provide information about the world

directly in front of a cruising autonomous car. Cameras are a natural choice for

vehicle control primarily because of the immense amount of information that can

be extracted from any one image or image sequence, and because lane lines, which

define a vehicle’s current reference path, are purposefully easy to see in day or

night. The problem is that often, images can contain too much information, and

the information necessary for control is often out of reach or at least difficult to

extract from an array of color pixels.

In [33], Joel McCall evaluates the performance of state-of-the-art lane detec-

tion systems before presenting his own vision-based driver assist system driven by

objectives derived from human factors research. McCall’s work in [33] gives some

perspective on recent contribution in lane detection research, including attempts

to make lane extraction robust to changing weather and lighting conditions, which

are incredibly important topics for a commercial implementation of the work de-

scribed in this dissertation as well. [34] , [35] and [36] also provide excellent reviews

of lane-detection and vision-based driver assist technologies.

In general, monocular images pose issues for 3-dimensional analysis of a road
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scene, but this limitation is often attacked through the use of either planar road

constraints [37] or stereo camera rigs [38]. Nearly all of the vision systems in the

literature designed to be coupled with a lateral controller use a geometric model of

road edge shape, to which measurements from forward-looking cameras are fitted

[37, 33, 36, 34]. A common form of this model as presented in [39] is given below

in eq. 1.23, in which C0, C1, C2 define the clothoid fit parameters for the road, ε

represents the current angular offset between the road tangent and the vehicle’s x

axis, y0 represents the vehicle’s current offset from the lane edge, ∆x is the distance

of a measured lane edge from the vehicle, and ∆ψ is a change in vehicle yaw from

time step to time step.
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(1.23)

Ernst Dickmanns, in [37], employs a similar spatiotemporal road model to

eq. 1.23 extensively in lane-keeping tasks for his team’s autonomous vehicles.

Dickmanns’ group drove autonomously on the Autobahn in Germany in the 1980s

using 16MHz microprocessors. Dickmanns’ work estimated road curvature as a

parameter in his vision-based estimator, and used a simplistic vehicle model in a

coupled estimation and control task that fused measurements of the road boundary
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at multiple lookahead distances. Here, steering and yaw rate were included in

an EKF framework, but it often used a simplified vehicle model neglecting yaw

acceleration, and could not deal with jagged or irregular road edges without fitting

them to the geometric road model.

Similarly, In [40], C.J. Taylor’s work uses vision to estimate the lateral offset

of the road at a lookahead distance, as well as the angular misalignment of the

road as viewed from the vehicle. Road curvature obtained from a lane recognition

algorithm is fed into the combined road-vehicle dynamic equations as an exoge-

nous disturbance. The authors investigate the control-specific effects of increasing

lookahead distance, finding that increasing or decreasing preview has specific ef-

fects on closed-loop controller-estimator performance and stability. But because

their vision-based estimation of lateral offset and angular misalignment are ac-

complished with a decoupled, simplified filter (neglecting lateral velocity), the full

benefits of coupling road geometry measurements with vehicle states in the process

of estimating both is not fully achieved. The same is true of similar work in [41],

which models vehicle slip angle as a noise-driven integrator, rather than incorpo-

rating lateral velocity explicitly in the estimation framework or vehicle model.

Southall and Taylor proposed a method for estimating road shape parameters

using a particle filter and a similar model of road geometry to eq. 1.23 in 2001

with [39]. This work employed a particle filter to represent a parametrized ver-

sion of road geometry similar to that in eq. 1.23. This geometric road model
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maintains a pervasive theme in vision-based road scene understanding, marked by

the assumption that lane markers are smooth and follow parametric equations.

While this is true in principle, the filters developed in subsequent chapters may

be extended to make use of jagged or otherwise “unique” lane markings or envi-

ronmental features to the benefit of the vehicle and road geometry state estimate.

Furthermore, erroneous lane detection or limited visibility have unknown effects

on this type of algorithm and its accuracy in estimating vehicle states and the

vehicle’s environment. While [40] investigates the effects of lookahead distance

on controller performance for the particular controller employed, the effects of

camera measurement noise, lookahead distance, and general lane visibility are not

discussed.

To address these issues, a temporal preview horizon framework to estimate pre-

viewed road segments assumed to have piecewise constant curvature was proposed

in [42]. This framework used a vanishing-point approach to generate a series of

estimates of vehicle sideslip β and yaw rate r by assuming that at each of the

9 preview distances in the filter, the road segment had constant curvature. The

curvature parameters at each preview distance, ρi, were estimated in each frame

using a spatial fit, and then recursively corrected at later time steps by enforcing

that the road curvature at time k, distance i in front of the vehicle must be the

same as the road curvature at time k + 1, at distance i − 1. The block diagram

representation of this approach is shown in Figure 1.5.
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Figure 1.9. A temporal preview-based road curvature and vehicle state estimation
approach (Hsu 1997)

The approach in Figure 1.5 is, at first glance, similar to the preview estima-

tion frameworks derived in this dissertation, but the filtered curvature parameters

representing road shape were not propagated or inherently corrected by a total

vehicle-road motion model, in the fashion of SLAM or as was accomplished in the

work of Dickmanns et. al. The road curvatures are maintained in a temporal shift

register and propagated using the vehicle’s forward speed U , but the total geome-

try of the road is not. This is an important distinction, because the simple, linear

frameworks derived in this dissertation offer a complete fusion of vehicle and pre-

viewed road geometry, and without any sort of assumptions about road curvature

(or lack thereof) and without the use of a clothoid fit model for road geometry.

Additionally, the filters described above had no provisions for inclusion of map



31

information, and in brief periods of false or absent measurements, it is not clear

from the work how the controllers or estimators would cope, especially on a road

with complex geometry. For instance, if a control structure relied on information

about the road out to a particular horizon, but the camera could not see far enough,

it is unclear what the general implications for a path-following controller would be

given this type of estimator, with the exception by Hsu and Tomizuka’s work in

[43], which does assess controller performance as a function of camera lookahead

distance, but only for a simplistic feedforward-feedback control architecture.

The lack of a-priori knowledge about features that haven’t been measured yet,

a drawback of all vision-based road and vehicle state perception systems without

map integration, is also a shortcoming of SLAM. This is true even though the

clothoid or curvature fit lane perception models overcome the feature detection

problems SLAM would have with lane lines. The methods developed in the fol-

lowing chapters are able to overcome the limitations of SLAM when tracking long

lane features, but do not require geometric lane fitting, and are able to use each

individual lane measurement to aid in lateral velocity estimation, as one would ex-

pect from true SLAM, as well as using all vehicle states to propagate “unseen” or

occluded lane features. Additionally, lookahead distance is explicitly linked to ex-

pected estimator performance, allowing a lateral controller to be designed a-priori

to cope with a given amount of lookahead (preview) distance, in a fashion similar

to the methodology in [43].
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1.6 Linear models for lateral vehicle control and

driver behavior

Vehicle driver modeling has been an important field of study for over 20 years,

both as a means to study vehicle dynamics under human control, and to produce

robotic systems that replicate human drivers. In fact, some modern, high-fidelity

vehicle simulation software packages still make use of driver models that are over

30 years old [14]. By contrast, the DARPA autonomous vehicle challenges have

spurred the development of vehicles that map their environments [19, 32, 44, 45,

46, 47, 48, 49, 50], and navigate in them autonomously through the use of cutting

edge ego and environment perception techniques and modern control structures.

1.6.1 Fixed-point optimal preview control

In 1980, C.C. MacAdam applied an optimal fixed-point preview controller to ve-

hicle lateral guidance in [51] and showed that the model agreed well with actual

human driver behavior. MacAdam’s single-point optimal preview controller acts

by predicting the vehicle’s states over a preview horizon assuming a constant steer

angle δ, as in eq. 1.16, and controlling the error between those predicted future

states and a previewed reference input with a fixed, optimal gain that minimizes

predicted error at the preview distance. This control law can be written quite

simply, as in eq. 1.24, where T is the system sampling time, and K is derived from
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the objective function, and appears approximately as the inverse of the vehicle

dynamic model over the preview horizon length.

δopt =
yroad,prev − ypredicted

KT
(1.24)

This controller design provides a very simple way to control a vehicle in error-

coordinates, because it can be implemented as an output feedback controller, where

future states are predicted in an output equation’s C and D-matrix with trivial

simplification. The issue with this structure, especially for longer preview horizons,

is that the controller will “cut corners,” since it has no weight in the optimality

function on the error at the current timestep.

1.6.2 Look-ahead feedforward/feedback controllers

A decade later, as a result of the PATH program at the beginning of the 1990s, re-

searchers at U.C. Berkeley [52, 53] developed guidance laws for autonomous vehicle

control. These control strategies also used feedforward control acting on previewed

road curvature along with feedback at a lookahead distance to achieve vehicle path

tracking, but instead of focusing on matching human driver behavior, the aim was

to engineer solutions for autonomous vehicles that could be implemented on public

highways. Researchers involved in this program, along with others, continued this

vein of research through the 1990s [54, 55, 56]. A comprehensive review of vehicle

driver modeling for autonomy can be found in [57, 58].
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Whether for driver modeling or for vehicle autonomy, nearly all of such research

makes use of either previewed or feedforward information in one form or another.

In other words, autonomous driving and driver models assume knowledge of what

lies ahead of the driver. Many of the popular path-following controllers make

use of a Proportional-Integral-Derivative controller on projected (geometric, not

predicted) error from the path at a given lookahead distance, and augmented with

a feedforward term to compensate for road curvature. A classic example of this is

shown in Figure 1.10.

Figure 1.10. Lookahead PID controller setup (Taylor 1999)

In this framework, it is relatively easy to calculate robustness and stability.

This is true even given output feedback as in [40]. But although these controllers

(and similar approaches, including [37, 52, 53, 54, 55, 56]) can offer insight into the

effects of changing preview on the controller, the same concrete relationships are

not developed for the road measurement frameworks, except in [43]. These, too,

in the case of the vision-based work, were based on geometric fits of road profiles,
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rather than a true stochastic picture of the road geometry relative to the vehicle.

Knowing this, vehicle dynamicists in pursuit of vehicle path tracking and

semi-autonomous driving often rely on a defense-grade INS system and a low-

dimensional map of GPS breadcrumbs to provide the requisite path and preview

information, as in [59]. Without explicitly considering implementation beyond

the research arena, these algorithms offer excellent performance as long as vehicle

states and path (map immediately ahead of the vehicle) are known with a high

degree of accuracy.

1.6.3 Model-predictive receding horizon control

While path-tracking using the look-ahead+feedforward approach has shown posi-

tive results in the literature, it is often desirable to ensure that the vehicle follow a

path in the “best” way possible, using some form of optimal control technique, as in

[51]. A modern approach to this problem, employed in studies such as [60, 61, 44],

is often referred to as Model-Predictive Control (MPC) or receding horizon control.

The general setup of this control framework is shown in Figure 1.11.

The idea is that the grid in front of the vehicle represents a so-called “predic-

tion horizon,” where “future” reference states are available either from a map or

from SLAM. Each line in the grid represents a future time step, from k to k+Np,

where Np is the size of the control horizon. Model-predictive control is a rich and

complex field, but the general concept is to solve the finite horizon dynamic pro-
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Figure 1.11. Setup of the model-predictive receding horizon control scheme

gramming problem to obtain an optimal input sequence ~umpc, where the sequence

represents the open-loop system inputs should optimally take the system through

the prediction horizon. For linear systems, permissive of final state weighting and

unequal prediction and control horizon lengths Np and Nm, the problem formula-

tion is laid out in [62], and summarized below. The general objective function for

the unconstrained linear optimal control input is given by eq. 1.25.

JNp,Nm (x0) = inf
u(·)

[(x(p)− xr(p))TP0(x(p)− xr(p))

+

i=Np−1∑
i=0

(x(i)− xr(i))TQ(x(i)− xr(i))

+
i=Nm−1∑
i=0

uT (i)Ru(i)]

(1.25)

where Np ≥ Nm. Note that under specialized assumptions, this objective function

reduces to the objective function for a standard LQR when Nm =∞. After solving
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this objective function for an optimal input sequence ~umpc at a particular time xk,

only the first input in the sequence corresponding to the optimal control input for

time k + 1 is given to the system, after which the process is repeated recursively,

solving for the optimal sequence at each time step and providing the system with

only the first input. This methodology is shown qualitatively in Figure 1.12, which

illustrates further why the method has earned the moniker of “receding horizon

control.”

Figure 1.12. Recursive control law of receding-horizon MPC

Although this method appears to be open-loop, and does not necessarily provide

the same input sequence at each time step, remember that the optimal control

input depends on the most recent system states. Thus, there is implicit feedback

in the approach. Stability and performance are difficult to prove for all but the

simpler implementations of MPC [62], and it is not immediately clear to a control
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system designer whether there is a “best” prediction horizon length over which

to optimize. Additionally, for applications in vehicle lateral control, the reference

input (previewed road geometry) through the horizon and the vehicle’s current

states must be known, and recomputed at each time step. Nevertheless, model-

predictive control (including nonlinear and constrained variants) and SLAM have

found widespread use in modern autonomous vehicles research.

With that said, it is desirable to have bounds on lookahead distance to achieve

the best possible controller with the best possible path-following performance.

Likewise, it is desirable to know how far ahead of a vehicle a preview sensor must

see in order to provide such a controller with the best possible estimates of both

vehicle states and environment states. In particular, the question of the minimum

amount of previewed information necessary for preview control with optimal path

tracking, and the minimum amount of previewed information necessary for opti-

mal state and environment estimates is not readily solved by MPC or SLAM. The

controller presented in the next section addresses this issue with model-predictive

control, while the remainder of this dissertation addresses this issue in an estima-

tion context.

1.7 Review of an optimal preview controller

In contrast to the recursive formulation of MPC, Sharp and Prokop used previewed

road geometry in a state feedback form to drive the actions of their optimal pre-
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view steering controller in [63] by using a relative motion model of the road moving

towards the vehicle. The authors’ work along these lines continued through the fol-

lowing decade in [64, 65]. Pick and Cole examined the mathematical relationship

between model predictive control theory and Linear Quadratic preview control

theory in [58]. This study shows how, under many circumstances, the two ap-

proaches can yield similar control laws. The authors also found that there are

some instances where similar control laws are not possible. The controller outlined

X

ψ

yr,1

yr,2 yr,3 yr,4 yr,nUT

ψr

RoadCar

yr0

y

Figure 1.13. Setup of the road-vehicle coordinate systems

below is identical in structure and derivation to the one proposed in [63]. This

background is intended to be brief, and the author would like to refer the reader

to [63, 64, 66, 58] for a more detailed discussion of its derivation. This model

was chosen for its relative ease of implementation as a state feedback controller,

and its explicit use of multiple preview points. The constant state-feedback con-

trol law obtained using this methodology offers valuable insight into the necessary

horizon length for optimal control, given particular weights on output errors. In

the controls context, this tackles many of the issues that make MPC’s recursive

approach intractable for simple stability and performance analysis. As it is used
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in the rest of this dissertation, the same approach defeats the limitations of using

SLAM on road lane lines, because of the way the filter structure derived requires

feature registration in one dimension only.

To describe the road motion relative to axes that slide along the road in error-

coorinates with vehicle forward speed U , a shift register representing global road

positions ahead of the vehicle is constructed for the vehicle-road system shown in

Fig. 1.13. The road position at the preview distance is brought into this system,

which lags the previewed measurement backwards through the state space at each

time step until it corresponds with the global road position at the current time step

k. In this way, one previewed reference geometry point at np time steps in front of

the vehicle is coupled to all of the other reference geometry points tracked by the

control structure. This is in contrast with MPC, which requires propagation of all

vehicle states into the future inclusive of inputs– this motion model only assumes

that the vehicle’s forward speed U is constant, which is a fair assumption for most

driving scenarios.
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D =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

0
...

. . .
...

...

0 · · · · · · 0 1

0 · · · · · · · · · 0



E =



0

0

0

...

1


(1.26)

Upon augmenting the vehicle state vector by adding the road position shift

register dynamics into the discrete-time vehicle dynamic equations, the following

open-loop system is obtained, where ~xk is the state vector and ~yr,k is the road’s

lateral position at time k. Notice that these discrete “lane features” in the shift

register are partially dual to the landmarks in a sliding SLAM map as in eq. 1.22.

The major difference is that the longitudinal data association is assumed through

the shift register matrix.

[~zk] =

 ~xk

~yr,k

 =

 Ad 0

0 D


 ~xk−1

~yr,k−1

+

Bd

0

 δ +

 0

E

 yr,i (1.27)

Notice as well that the augmented state transition matrix is purely diagonal.

Thus, there is no coupling here between the road dynamics and the vehicle dynam-

ics, and the two systems essentially act independently of one another. In order to
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couple the systems, a discrete-time linear quadratic regulator (LQR) is employed

that acts on all of the augmented states. The states are coupled through the

quadratic cost function R1 shown in Eq. 1.28, again exactly as in [63].

J = lim
n→+∞

n∑
k=0

[
~zT (k)R1~z (k) + δ (k)R2δ (k)

]
(1.28)

with R1 defined as follows:

R1 = CTQC where C =

1 0 0 0 −1 0 0 0 · · · 0

0 0 1 0 1
UT

−1
UT

0 0 · · · 0

 (1.29)

and R2 is chosen as unity. This configuration penalizes vehicle yaw and lateral

position error in the LQR design through the diagonal matrix Q.

Q =

qy 0

0 qψ

 (1.30)

The key point here is that through the use of the cost function in Eq. 1.28,

an optimal preview gain vector can be obtained for the augmented system using

MATLAB’s DLQR function, which solves the Discrete Algebraic Riccati Equation

(DARE) automatically. The augmented system is fed into this function with the

previewed road information as the only input. Note that, because there is no way

for the controller to influence the road, there is a substantial subspace of this system

which is uncontrollable. The coupling between the road geometry and the vehicle



43

states is through the optimal state feedback control gain K. Once the control loop

is closed, its discrete-time dynamics are given by the difference equation, Eq. 1.31.

zk =


Ad 0

0 D

−
Bd

0

[K1 K2

] z (k − 1) +

0

E

 yri
and K =

[
K1 K2

] (1.31)

Consistent with common sense, the controller is unable to influence the road

position, as confirmed by the structure of the input matrix through which the

optimal controller influences the state vector. Notice, however, that closing the

loop with a driver does in fact allow the road’s absolute geometry to influence

vehicle states through the Bd

[
K1 K2

]
term. This coupling of environment and

physical system in an augmented state-feedback form is the key to using high-

fidelity global maps of road geometry and measurements of lane edges at each

preview distance to improve vehicle state estimates. This is discussed in the next

chapter.

1.8 Summary of research goals

The preceding sections identified key ideas and recent contributions in vehicle

autonomy, vehicle state estimation, road scene understanding through computer

vision, and the marriage of mapping and localization through SLAM. How are
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these four key areas coupled in the automobile driving task? During normal oper-

ation, an autonomous vehicle must be aware of its own position relative to a map,

since the goal state (usually the lane center) is directly related to the spatial infor-

mation provided by a map inclusive of lane lines and/or obstacles. In addition to

information about the vehicle’s current position, however, some information about

the road ahead of the vehicle is also needed for effective control, as emphasized

in Section 1.6. This means that an up-to-date, high-resolution knowledge of the

road geometry some finite distance in front of the vehicle, or rather a subset of the

total map, is necessary for control as well as estimation. However, based on the

preceding review, the following conclusions are evident:

1. SLAM is highly effective, but ungainly in feature-sparse environments, espe-

cially using a camera as a sensor.

2. Current coupled road-vehicle state estimators that measure only lanes make

too many approximations concerning the relationship between the vehicle

and road, precluding an optimal control design with predictable error bounds

under noisy output feedback.

3. MPC’s recursive nature does not offer the easy relationship between control

effort and lookahead distance provided by the optimal preview controller.

4. A need exists for a concrete relationship between perception of previewed

states and control using those previewed states, to address the minimum
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amount of information needed by a perception system to allow for imple-

mentation of optimal preview control for autonomous path-following.

The remainder of this dissertation is organized as follows. Chapters 2 and 3 take

the temporal preview horizon concept a step further by fusing map and camera-

sensed previewed information to estimate both the goal path and the vehicle’s

lateral states simultaneously. Through the use of a camera, map, and a yaw rate

gyro, an efficient system capable of driving an automobile down a road within

the capabilities of its perception hardware is the ultimate goal. The two camera-

based methods developed in these pages offer perception system designers a way

to determine how far in front of a vehicle a robot must see in order to achieve

the best possible accuracy. Chapter 4 discusses the practical implementation of

the filter developed in Chapter 3, and Chapter 5 shows its merit on public roads

and a closed-course test track, for day and nighttime driving. Then, Chapter 6

discusses some of the limitations of using these temporally predictive frameworks

for high lateral accelerations and tight, constant-radius turns, while Chapter 7

shows that preview estimation is viable in a control context, discusses design issues

with coupled preview control/estimation schemes. Chapter 8 discusses continuing

and future studies in this area.



Chapter 2
Camera-Based Preview Estimation

in Error Coordinates

2.1 Introduction

The previous chapter introduced the idea of formulating a receding horizon optimal

preview control problem as a state feedback system under the assumption of a

particular model for relative road motion. Using a sensor capable of measuring the

path ahead of the vehicle in local coordinates, like a camera, offers a way to couple

previewed map information with vehicle dynamics and inertial measurements in a

simple estimation framework that resembles a one-dimensional linear reduction of

SLAM.

The idea of using road geometry measured by a camera to aid in vehicle control

is not new, as mentioned in Chapter 1. The approaches most closely resembling the
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work that follows are those taken by Dickmanns in [37] and by Hsu in [42]. In [37],

Dickmanns constructs an Extended Kalman Filter that estimates vehicle states and

a parameterized representation of the road geometry ahead of the vehicle. This

approach has been refined since its inception in the late 1980s, but the idea of “4-

D” (spatiotemporal) perception of the road scene remains the core goal. With this

estimation framework, Dickmanns attempts a tightly coupled controller-estimator,

and the newest versions even include some sense of 3D geometry, but his approach

differs from what follows in a number of important ways:

1. The vehicle model was generally simplified to neglect yaw acceleration.

2. Few road points were measured at each time step to obtain a measure of road

curvature.

3. Road geometry was parameterized, and parameters were estimated using a

clothoid fit.

4. The controller used for guidance was a simple feedback controller with a feed-

forward term accounting for road curvature, but did not address the problem

from the standpoint of optimal control, or with intent to form bounds on nec-

essary preview.

5. The filter structure did not employ mapped road geometry, and had no way

to deal with complex and potentially occluded road markers.
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The preview estimation framework developed below should perform better un-

der a wider range of road conditions, but the method developed by Dickmanns

actually has a lot of merit in the sense that his filter only estimates the elements

of the road geometry used by his controller, and directly couples the estimation

processes for road shape and vehicle dynamics. In other words, running a com-

putationally expensive algorithm like a full implementation of SLAM or one of

the Monte Carlo map-based localization techniques just to run a path-keeping

controller that uses only a small subset of the tracked features was not necessary.

Although it is scarce in the literature, the idea of using a temporal preview hori-

zon to aid in vehicle state and environment estimation has also been attempted,

most notably by Hsu in [42] in a spatiotemporal framework that included lateral

velocity estimates, unlike many of the vision-based methods discussed previously.

In this paper, Hsu uses a temporal preview horizon concept similar to those derived

in this dissertation to aid in vehicle state and road curvature estimation, but uses

a very sparse (9 point) preview horizon, and runs a separate filter framework for

spatial estimation of road curvature and vehicle states (within one image) from

the one that enforced temporal consistency of those parameters across successive

video frames via the preview horizon concept. Thus, there are separate, decoupled

estimation frameworks for the vehicle dynamic states and the road curvature val-

ues. In addition, the measurement equations are nonlinear, and only derived for a

parallel camera. In addition to limiting the applicability of the method, this adds
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a significant level of complexity over the methods that follow, and unnecessarily

decouples an estimation process that can be completed in one step. The method-

ology in [42] was tested offline only, and showed estimate errors that increased in

certain cases when temporal filtering was used in conjunction with spatial filter-

ing, rather than improving errors. Additionally, there were no provisions in his

framework for using map information to temper erroneous lane measurements or

to provide road path information beyond the farthest visible lane feature.

In the derivation, discussion, and results that follow, several peculiarities of the

road vehicle driving task are exploited to make the estimation of road geometry

and vehicle states using a preview-based Kalman filter. Some of these include:

1. Generally, there is a very small misalignment between vehicle and road (small

angle approximation applies, except under emergency conditions)

2. Lane lines are stationary. The motion of the road relative to the vehicle is

simply the negative of the vehicle’s motion relative to the road, so the motion

model of road “features” is easy to construct.

3. The path ahead of the vehicle is needed for effective guidance using an opti-

mal preview controller, so the estimator should provide all of the information

necessary for autonomous cruising.

It is interesting to note that one of the greatest challenges in vehicle state

estimation is the incredibly small signal to noise ratio that exists on states like
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lateral velocity. Rather than hindering the preview-estimation framework, this

small relative value of lateral velocity versus its longitudinal counterpart is the

entire reason that representing the road in a shift register is acceptable, because

the framework depends heavily on the small-angle approximation.

2.2 Setup of the measurement framework in er-

ror coordinates

As in the previous chapter, the following analysis is more tangible when the vehicle

is assumed to move in a more or less straight line, so that it and the road ahead

may be described by the augmented error-coordinate bicycle model equations of

Equation 1.27. This preserves linearity in the global representation of the vehicle

dynamic equations, makes map registration easy using odometry, and allows for

careful estimator development. The results are applied to a purely local represen-

tation of the bicycle model in the next section, for a more flexible implementation.

In the error coordinate form of the vehicle-road system, as mentioned in Chap-

ter 1, there is no inherent coupling between road dynamics (the shift register) and

vehicle dynamics. The road dynamics, as described, can be interpreted rather sim-

ply: because the path points are globally stationary, their position relative to the

vehicle in the pseudo-global x-direction changes as a result the vehicle’s forward

velocity in the (approximate) x direction by a distance of UT meters with each
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loop of the discrete system.

However, even with the error-coordinate representation of the bicycle model,

where the vehicle lateral velocity derivative is expressed as if equal to the newtonian

acceleration of the vehicle (it is, in general, not), a camera mounted to the vehicle

will see the road path points slightly differently than an observer looking down the

x-axis. In particular, mismatch between the global y-coordinate of the road point

and the “vehicle referenced” measurement of the same will occur as a result of the

car’s current y-position and yaw angle, as detailed in Figure 2.1.

UT 2UT pUT3UT

Y

X

xp ′

ψ

x′

y′

y

yp ′

P

Figure 2.1. Road features on a spatiotemporal horizon for a vehicle moving at a
constant speed

As before, the road ahead of the vehicle can be discretized into np points, which

range from zero to UT (np− 1) meters beyond the vehicle CG. As in the previous
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chapter, we will set up a motion model in the x-direction for these points that

shifts each road point UT meters closer to the vehicle with each time step. As

before, the motion model for the road is simply

~yk = D ~yk−1 + E ~yri (2.1)

Where the state transition and input matrices are given by

D =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

0
...

. . .
...

...

0 · · · · · · 0 1

0 · · · · · · · · · 0



, E =



0

0

0

...

1


(2.2)

When the error-coordinate bicycle model is augmented with the road geometry

states ~yk, the augmented system is identical to that described in Eq. 1.27. Once

again, there is no dynamic coupling between the road and the vehicle without a

driver model. However, it is entirely possible to obtain a measurement model that

results in a fully observable system when a Kalman filter is designed around the

above augmented dynamic equation. The key to this is the realization that, from

the vehicle’s perspective, observed y-coordinates of road points ahead are linear

combinations of the road states and the vehicle states as long as the small angle
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Figure 2.2. Qualitative parallels between preview estimation and SLAM

assumption is not violated. In particular, any point ~yp ahead of the vehicle can be

expressed from a vehicle-fixed frame (x′, y′) as:

x′p = (xp − x) cosψ + (yp − y) sinψ

y′p = − (xp − x) sinψ + (yp − y) cosψ

(2.3)

Where x and y represent the location of the vehicle. Note that this equation looks

a lot like the equation for a landmark measurement in SLAM, and the augmented

state vector looks much like the SLAM map of eq. 1.22. Consider a re-mapping of

Figure 1.6 to include evenly spaced “landmarks” along a lane marker, as shown in

Figure 2.2.

Figure 2.2 shows the landmarks along the edge as evenly spaced dots, but

recall that lanes themselves cannot be relied upon to offer good features for two

dimensional tracking. Fortunately this is not an issue for the preview estimation
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framework. Because of the setup of the road shift register, this estimator is not

required to track the x′p coordinate of the lane edges in the shift register at all, since

they are lagged by the road motion model backwards through the state space. This

is obviously an approximation from time step to time step, but if the vehicle follows

the path closely, as it will under competent closed-loop control, the absolute value

of the road points yp in the shift register is small. Therefore, when the same small

ψ assumption central to the error-coordinate derivation of the bicycle model is

applied, x′p ≈ pUT and thus the linear measurement equation for the road point’s

local lateral displacement y′p becomes:

y′p ≈ −pUTψ + yp − y (2.4)

and the x′p ≈ pUT spatial coordinate, which SLAM might track, is replaced by

a temporal coordinate representing how far into the future each feature is. This

measurement description can be assembled into an observation equation for use in

the design of a linear Kalman filter. In this filter, all road points in the shift register

in front of the vehicle starting with y1 are available for measurement, yields:
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~zk =



−1 0 −UT 0 0 1 0 0 · · · 0

−1 0 −2UT 0 0 0 1 0 · · · ...

...
...

... 0 0 0 0 0
. . .

...

−1 0 −(np− 1)UT 0 0 0 0 0 · · · 1


︸ ︷︷ ︸

H



y

ẏ

ψ

ψ̇

yr,0

yr,1

...

yr,np−1


︸ ︷︷ ︸

~xk

(2.5)

The idea of the present study is that a Kalman filter, designed with the above

measurement equation, and augmented with a yaw rate measurement, can offer

improvement in state estimation with increasing preview distances in a way that

mimics SLAM, but in a linear framework under the stated assumptions. Mapped

road geometry is fed to the system through the road input matrix E, where map

registration is achieved in coarse fashion by the GPS sensor, or a fused estimate of

odometry achieved through the fusion of GPS position and velocity. Although reg-

istration through a “distance traveled” metric is subject to a large amount of error,

the road offset at the preview distance is quickly corrected by local measurements

at each time step.

It is also worth noting that if no map is available, the estimator, with access



56

to road measurements out to the preview horizon, will still be able to provide

estimates of all states, including lateral velocity. If a map is available, but visibility

is low, the mapped input will be propagated back through the motion model until

it is corrected by camera measurements– either way, a Kalman filter framework will

maintain estimates of the covariance values of vehicle states, along with statistical

confidence in the position of each point in the shift register. While the shift register

model challenges causality (how does one “know” what will happen in the future?),

it will be proven as a good approximation for most driving.

2.3 Local measurement of lane offset using a monoc-

ular camera

Researchers have long relied on forward-facing cameras to aid in road scene under-

standing. In fact, the first autonomous traversal of a public road in the late 1980s

was achieved primarily through the use of a forward-facing monochrome camera

[37]. Algorithms for lane marker or road edge extraction are various, and range

in computational complexity, but for the present study, we will begin with an

edge-based extraction of lane lines followed by an inverse perspective transform,

where the road in front of the vehicle is treated as a planar, level surface. For the

purposes of tracking lane lines in local vehicle coordinates, this might be sufficient,

or at least a good place to start.
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2.3.1 Lane extraction method

To extract lane geometry, the input video stream is cropped so that only the

scan-lines that would map to a planar road surface within the preview horizon

are considered. This reduces the likelihood that far-field objects or objects above

the horizon line will be encoded as lanes. The image is converted to grayscale,

after which OpenCV’s Canny Edge filter is applied (Figure 2.3). The resulting

image is binary, and consists of thin lines. With proper tuning of the Canny Edge

parameters, the lane lines are handily recognized.

After the image is satisfactorily binarized, road edges on the right and left are

found by computing the scan-line in the image for each preview distance according

to eq. 2.6, and searching for white pixels within a window where lane lines are

expected to occur for both straight and curved roads. Lanes are tracked upwards

through the image, and their locations are recorded in a vector of pixel-coordinate

locations for the transformation to vehicle-fixed coordinates as shown in Figure 2.5.

More details are provided in Chapter 4, but a key feature of the preview estimator

framework is that it is agnostic of the lane detection algorithm used. The lanes

are measured and used for fusion of the map and camera information to estimate

vehicle states, but any number of extraction techniques could be used, as long as

the modeled noise in the Kalman Filter framework is acceptable.

As shown in Fig. 2.4, each scan line (yi coordinate) in an image will map

directly to a vehicle-fixed x-distance when the road considered is flat. Consistent
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Figure 2.3. Canny edge filter applied to grayscale road scene image

with [37], the equations for the inverse perspective transformation are given by Eq.

2.6 below:

xp = hcam
f − yi tan θ

yi + f tan θ

yp = xi
xp

f cos θ

zp = −hcam

(2.6)

where hcam is the height of the camera above the (assumed flat) road surface, f
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θ
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Figure 2.4. Inverse Perspective Transformation for flat roads

is the normalized focal length of the camera in pixels, yi, xi represent image plane

coordinates, and xp, yp, zp represent vehicle-referenced physical coordinates with

the axes oriented as in the bicycle model equations of eq. 3.1.

Figure 2.5. edge-based lane extraction during nighttime driving
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2.4 Preview measurement noise model

To give appropriate weights to the lane measurements in the Kalman filter struc-

ture at each previewed time, especially since the quantization of the lane detection

error at a pixel’s width is likely to make the noise appear non-Gaussian, an assumed

Gaussian noise model reflecting the physical uncertainty of a monocular camera

extracting lane lines ahead of the vehicle is now considered. This is a necessary

assumption for the use of a Kalman filter, which assumes Gaussian noise in its

derivation. Like the canny-based lane extraction method used in this work, most

lane-detection methods employ an inverse perspective transformation illustrated in

Figure 2.4, with general transformation equations from the camera to vehicle-fixed

reference frames given by equation 2.6. These assume a flat road in front of the

vehicle, so extra uncertainty should be added to the filter framework to account

for dips, hills, and unmodeled vehicle roll and pitch motion.
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Figure 2.6. Pixel area on road surface
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Eq. 2.6 offers yet another source of uncertainty in the lane measurements,

because it distorts pixel-level noise based upon the mapping of each pixel onto the

road surface, and pixel-width errors in lane edge detection represent larger and

larger lateral and longitudinal edge measurement errors as the distance in front

of the vehicle increases. To examine a baseline for lane measurement error, a test

vehicle was parked in the middle of a typical two-lane road, and a Canny edge-filter-

based lane detector was run on video data of the vehicle sitting still in the road.

The 1-σ error was not very illustrative in this case, because the noise observed

was hardly Gaussian given the quantization effects resulting from non-subpixel

edge detection. However, the theoretical (from equation 2.6 ) and experimentally

measured maximum variation in lateral lane position estimates increased linearly

with distance, as shown in Figure 2.7.
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Figure 2.7. Maximum variation in lateral lane position estimate for a static lane de-
tection test
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While Figure 2.7 might tempt some to use a linear approximation of lane mea-

surement deviation (a squared approximation of variance) as a function of preview

distance, edges detected could also be erroneous in the vehicle’s x-direction due to

the approximations in the shift register. Pixel-level variation in x will also distort

measurements of the y-coordinate of a lane edge, especially for lane features that

change lateral position abruptly due to a break, painting error, or other anomaly.

Thus, the measurement variance due to pixel-level noise for each preview point is

conservatively approximated as each pixel’s projected road-coordinate length mul-

tiplied by its projected road-coordinate width, which results in a larger variance

than simply squaring the pixel width variation. Figure 2.6 illustrates the that

while the measurements are taken at particular scan lines corresponding to the

evenly spaced preview distances in the shift register D, and the width of each pixel

only grows approximately linearly as preview distance increases, the projection of

each pixel on the road creates pixel coverage areas that grow nonlinearly. This

agrees with intuition where increasingly distant features have decreasing utility for

measurement of lateral position.

Unless otherwise noted in the text, the road surface area captured by each pixel

was computed as a function of preview distance for a VGA monochrome camera

with a downward tilt angle of 5 degrees and a focal length f of 1068 pixels mounted

at 1.0m above the road surface. A third-order polynomial fit of total pixel area

on the road surface versus preview distance was used as a basis for the diagonal
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Table 2.1. Representative Filter Parameters.

Parameter Value Units

σ2
gyro 0.00066 rad2

s2

σ2
Xvehicle

1.5 m2

σ2
cam,x 1.5× 10−6x3

+6.5× 10−6x2

−5.7× 10−5x m2

σ2
cam,extra 0.1 m2

measurement noise matrix R in the preview filter. The polynomial representing the

assumed lane measurement noise as a function of preview distance x is shown in

Table 2.1. Because a yaw rate measurement is also used, Table 2.1 also provides a

representative gaussian white noise parameter for an L3G4200D MEMS gyroscope.

Finally, because map registration must be achieved through a measurement of

distance traveled in the X direction, representative noise from a simulated longi-

tudinal positioning sensor or algorithm was used to compute the longitudinal noise

in Xvehicle. This variance was not used in a measurement equation, but was used

as the process noise affecting yr,i in the filter design since yr,i is computed directly

from the vehicle’s X-location. The magnitude of this variance, 1.5m2, was chosen

roughly according to the algorithm performance metrics employed in [16].
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2.5 Simulation of state estimates during lane change

The filter described above was used to estimate vehicle and road states using a

Kalman filter acting on the vehicle-road system with the measurement matrix H

for a lane change maneuver at 20m
s

. The simulation of the lane change maneuver

was performed using a linear bicycle model with parameters given in Table 2.2,

which represents the vehicle simulated in Sharp’s original optimal preview control

paper [63] but measurements of vehicle lateral position and yaw rate were corrupted

with Gaussian noise as in Table 2.1. For comparison purposes, a standard model-

based Kalman filter was also run in parallel using the same measurements (with

assumed noise as in the preceding chapter), but without the benefit of simulated

camera measurements.The camera measurements fed to the preview estimator were

corrupted with Gaussian noise that increased with distance of the road point in

front of the current vehicle position as indicated in Table 2.1. Both filters were

subjected to steer angle input noise σδ = 0.01rad. Simulation results for a lane

change maneuver are shown in Figure 2.8.

As Figure 2.8 shows, all four non-previewed vehicle states benefit visibly using

the preview estimation framework when compared to an idealized model-based

Kalman filter fusing GPS and yaw rate measurements except yaw rate, since it is

measured directly. Also note that the performance of the GPS sensor in the stan-

dard model-based Kalman filter is an idealization, since low-cost GPS systems do

not typically have unbiased Gaussian error characteristics (as shown experimen-
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Figure 2.8. True and estimated vehicle states during lane change at 20ms for standard
model-based Kalman filter and error-coordinate preview filter

tally in Chapter 5). Because it is somewhat unfair to compare an estimator using

a coarse GPS sensor alone with one using a more precise sensor like a camera,

consider Figure 2.9, which shows the preview filter’s error characteristics for the

same simulation as in Figure 2.8, but using preview filters with varying preview
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horizon lengths.
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Figure 2.9. Estimate errors during simulated lane change at 20ms for error-coordinate
preview filter using various preview distances

This is a primary benefit to the preview estimation framework described– one

can determine analytically, based on available road feature visibility, what to expect

for non-previewed state estimation accuracy, if the camera noise model is carefully
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calibrated. This is true of any Kalman filter, if the number of measurements is

known, but the key insight here is that visibility in distance or time maps directly

to the number of measurements available to the estimator.

2.6 Calculation of theoretical estimator perfor-

mance

It may be apparent to the reader at this point that the preview estimator, having

full row rank in its observability matrix, is capable of estimating road geometry as

well as vehicle states. This has strong parallels to Simultaneous Localization and

Mapping (SLAM) algorithms, which pick out road features in a robot’s environ-

ment, and localize the robot relative to those features. The landmarks in a SLAM

framework are stored as states in an augmented state vector, much like the road

geometry is in the preview estimator.

While there are definitely parallels between this estimator and SLAM, there

are also distinct differences. For one, the shift register representing the road ve-

hicle dynamics in the preview estimator takes care of the propagation of the road

geometry towards the vehicle, so the intense data association problems that plague

SLAM are not an issue. Because road lane markers are relatively continuous enti-

ties, and because a road vehicle’s longitudinal velocity dominates its lateral velocity

and changes slowly, using a shift register to obtain the x-position of any one road
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geometry element relative to the vehicle is acceptable. Additionally, the current

(error-coordinate) realization of the preview estimator is set up to use map in-

formation as an input, so the “mapping” step of SLAM is only partially accom-

plished. The filter could be thought of as “updating” mapped geometry using

measurements from the camera, but a map can not be generated from scratch.

Finally, most SLAM algorithms keep track of a nearly ever-increasing number of

map features, but the preview estimator only keeps track of features within the

time horizon relevant to guidance by optimal preview control.

To isolate potential benefits of increased preview distance/time on the preview

estimator’s performance under ideal conditions, a series of steady-state Kalman Fil-

ters was designed using increasing numbers of preview measurements for various

fixed speeds. The resulting filters were used to examine steady-state covariance in

each state estimate. These covariance values are illustrative in that they represent

the achievable accuracy for a preview filter designed for a given look-ahead con-

dition. These results thus estimate an analytical relationship between lookahead

distance and achievable lateral state estimation accuracy.

The measurement equation for each simulated filter included camera measure-

ments of a road lane line in front of the vehicle, starting at around 2m from the

vehicle’s CG . The lane line detection starts 2m ahead of the actual CG to account

for vehicle’s body obscuring the ground directly under the vehicle. The camera

noise parameters derived above for a typical monocular camera arrangement were
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Table 2.2. Representative Vehicle Parameters.

Parameter Value Units
m 1592 kg
Iz 2488 kgm2

a 1.18 m
b 1.77 m
Cf -75000 N

rad

Cr -55000 N
rad

held constant for each filter. The filters were designed for a vehicle with parameters

given in Table 2.2 at constant forward speeds of U = 20 to 35m/s, which repre-

sent a range of speeds expected during highway driving. The resulting theoretical

steady-state system covariances on each state as a function of preview distance for

each test speed are given in Figure 2.10.

It is clear from Figure 2.10 that when using previewed lane line position and

yaw rate alone for vehicle state estimation, very good accuracy can be expected,

even on difficult to estimate states like lateral velocity. The plot also indicates

that an increasing number of temporally previewed features does, in general, ben-

efit the task of vehicle state estimation. However, the figure also indicates that

measurements of lane position at distances greater than 40m are nearly useless

for improving vehicle states across highway driving speeds, at least for this spe-

cific camera and gyroscope arrangement. Thus, a preview filter of finite dimension

(or a road scene with finite visibility) is sufficient to obtain minimum achievable

non-previewed vehicle state estimate covariances.
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Figure 2.10. Expected variance of vehicle state estimate errors as a function of preview
distance

These results are valuable information for selection and orientation of forward-

facing monocular cameras and the design of preview-based vehicle guidance algo-

rithms, if camera noise is experimentally determined for a given camera’s intrinsic

and extrinsic parameters. The reader should tread carefully when interpreting

Figure 2.10 literally, however, since in practical implementations of the filter, not

all preview states will be available for measurement at all timesteps. Visibility is
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a major factor here, and occlusions stemming from other vehicles in the roadway,

darkness, fog, snow, or other unforseen occlusive items will change the filter covari-

ance matrix P as time progresses. This is a primary advantage of the preview-filter

framework, since visibility is easily correlated with confidence in state estimates.

Visibility itself, especially in the context of this preview filter framework, could be

developed as a key source of filter and control system diagnostic measures, given

the ease with which the accuracy effects of missing features on the preview horizon

can be calculated.



Chapter 3
Camera-Based Preview Estimation

in Body-Fixed Coordinates

One practical issue with the estimator in the form derived above is that it is based

on the error-coordinate representation of the bicycle model. The assumption that

the local vehicle reference frame is inertial becomes erroneous for most driving,

even when the vehicle is driving on a relatively straight road that turns only

gradually. With this in mind, it becomes important to formulate a version of the

preview estimator that does not rely directly on such assumptions. Additionally,

the error-coordinate formulation above does not address concerns with 3-D road

geometry, which often includes a lateral superlevation of turns. This superelevation

is readily available from a map with only a slight increase in map complexity, and

provides a disturbance input to the vehicle that is often significant for lateral

velocity estimation. This will be demonstrated shortly.
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3.1 Development of the vehicle-road motion model

in body-fixed coordinates

The vehicle-referenced linear bicycle model equations in ISO coordinates, also

called body-fixed coordinates, are given below (as derived in Chapter 1, eq. 1.8)

in eq. 3.1.

 V̇

ṙ

 =


Cf+Cr

mU

aCf−bCr

mU
− U

aCf−bCr

IzU

a2Cf+b2Cr

Iz


 V

r

+


−Cf

m
−g
100

−aCf

IzU
0


δf
e

 (3.1)

These equations for local lateral velocity and yaw rate are independent of the road

geometry in the xy plane, and the only influence the road has on the states is

through the superelevation e. The equation also assumes that the direction of V

changes as the vehicle rotates, which is perfectly suited for a motion model with

measurements provided by a sensor attached to the vehicle. The road points in

the shift register are therefore assumed to move relative to the vehicle based on

its local velocity and yaw rate from timestep k − 1 to timestep k. This idea is

illustrated in Figure 3.1. The movement of the vehicle from time k to time k + 1

is given simply by ∆x,∆y,∆ψ, with those quantities approximately given by eq.
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Figure 3.1. Relative road movement from timestep k to timestep k + 1

3.2 for a small timestep:

∆x = UT

∆y = Vk−1T

∆ψ = rk−1T

(3.2)

When a simple coordinate transformation inclusive of the rotation ∆ψ is consid-

ered, the nonlinear equations expressing the stationary point P from the “new”

vehicle-fixed coordinate system at time k + 1 is given by eq. 3.3.

xp,k = (xp,k−1 −∆x) cos ∆ψ + (yp,k−1 −∆y) sin ∆ψ

yp,k = − (xp,k−1 −∆x) sin ∆ψ + (yp,k−1 −∆y) cos ∆ψ

(3.3)
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Bringing in the small angle assumption for the small movement of each point in the

shift register between successive samples, and recognizing that in the shift register

framework, xp,k−1 = (p+ 1)UT , these equations lose their trigonometric terms

and eq. 3.4 is obtained.

xp,k = ((p+ 1)UT − UT ) + (yp,k−1 − Vk−1T ) rk−1T

yp,k = − ((p+ 1)UT − UT ) rk−1T + (yp,k−1 − Vk−1T )

(3.4)

Then, neglecting the small multiplicative nonlinear terms−Vk−1rk−1T and yp+1,k−1rk−1T ,

and recognizing that the road points are still assumed to “move towards the vehi-

cle” with a velocity approximately equal to U from the vehicle’s perspective, the

relationship between the road offset at time k−1 and the offset of that same point

at time k is given by Eq. 3.5.

yp,k = yp+1,k−1 − Vk−1T − rk−1UT
2(p) (3.5)

Here p is the index of the road point under consideration. The small angle assump-

tion, in this case, merely asserts that the change in vehicle yaw angle from time

k− 1 to time k is small so that pUT represents the x distance of the road point at

p timesteps ahead of the vehicle. Considering that most vehicles are only capable

of r < 60 ◦
s

in yaw, and that common time steps T for a filter of this nature are on

the order of 50HZ, a vehicle could only reasonably achieve a ∆ψ of approximately

2◦ from timestep to timestep, which falls well under the definition of small angles.



76

Reassembling the road shift register dynamics under this new motion model, the

following open-loop, augmented, discrete-time system is obtained in body-fixed

coordinates and shown in equation 3.6, where A11, A12, A21, A22, B11, B12, B21

come from the discretization of Eq 3.1.

Reassembling the road shift register dynamics under this new motion model,

the following open-loop, augmented, discrete-time system is obtained.
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[~xk] =



A11 A12 0 0 0 0 · · · 0

A21 A22 0 0 0 0 · · · 0

−T 0 0 1 0 0 · · · 0

−T −UT 2 0 0 1 0 · · · ...

...
...

...
...

...
. . . · · · ...

...
...

...
...

...
...

. . .
...

−T − (np− 2)UT 2 0 0 0 0 · · · 1

0 0 0 0 0 0 · · · 0


︸ ︷︷ ︸

Ad



Vk−1

rk−1

y0,k−1

y1,k−1

...

ynp−2,k−1

ynp−1,k−1



+



B11 B12 0

B21 0 0

0 0 0

0 0 0

...
...

...

0 0 0

0 0 1


︸ ︷︷ ︸

Bd


δ

e

yr,i

 ; ~zk =

0 1 01×np

0 0 Inp×np


︸ ︷︷ ︸

H

[ ~xk]

(3.6)
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3.2 Estimation of body-fixed vehicle-road system

states

In body-fixed coordinates, the decoupled nature of the open-loop vehicle-road sys-

tem is no longer an issue. Since each road point’s motion is now coupled to the

vehicle motion, the measurement equation giving the measurements ~zk as in Equa-

tion 3.6 for this estimator is quite simple. Measurements of states are direct, since

state measurements come from a camera, which is always assumed to measure road

geometry in the vehicle-fixed reference frame. V and r are both observable if yaw

rate or multiple road points are available for measurement. The system is also able

to estimate the road geometry ahead of the vehicle, and the observable space of the

road geometry is determined by the farthest road point available for measurement

by the camera, although a filter without measurements at the preview horizon will

still “see” road geometry by way of the model propagation of the road input.

Because a map of road geometry is available, the map information can be

used to generate a suitable yr,i value at time k − 1 by aligning the road marker

map with the vehicle coordinate frame. This step provides an input to the road

geometry motion model, and allows the road line offset to propagate backwards

towards the vehicle as time marches forward. This process is well-defined if the

map registration process is known. However, because the filter is no longer keeping

track of global states, map registration in the global reference frame must be
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accomplished through a parallel process of some kind. In the body-fixed coordinate

estimator, vehicle yaw offset from the lane line tangent as defined in Equation 3.7

and lateral position from the lane marker nearest the vehicle CG, given by y0, are

available in the augmented state vector. Unfortunately, global states X and Y are

not.

ψrel ≈
ŷ1,k−1 − ŷ0,k−1

UT
(3.7)

To make use of quality GPS-free filtered odometry estimation strategies like the one

presented in [17] or low-cost GPS sensors, which may provide sufficient longitudinal

registration, consider a road map in the configuration shown in Equation 3.8

MAP =

[
~Sr ~Xr

~Yr ~Zr ~φr ~θr ~ψr

]
(3.8)

where the station Sr, or total distance traveled along the road is available in the

map along with cartesian position and orientation of the mapped lane marker at

a number of discrete points. The use of the path coordinate Sr allows for a 1:1

lookup of the road marker pose, even for closed-loop paths. At each timestep, a

separate estimate of distance traveled by the vehicle (or longitudinal registration

through a K-nearest-neighbor (KNN) search in the case of GPS) can be used to

find the correct location of the vehicle in the map in path coordinates. Then, using

interpolation of the map points and simple coordinate transformation equations,

the positions of lane points within the preview horizon can be computed in current



80

“road frame” coordinates. Finally, the transformation between the road-aligned

coordinate frame and the vehicle-fixed coordinate frame is achieved using the lat-

eral offset of the vehicle from the lane line, given by ŷ0,k−1 and a simple estimate

of the vehicle’s yaw offset from the road tangent, given by Equation 3.7. Once the

transformation of map points in the preview horizon is completed, a suitable value

of yr,i can be brought into the filter. This general concept is illustrated by Figure

3.2.

ψrel

y0,k

yv

xr

xv

yr

X

Y

S

ψr

Figure 3.2. Map registration procedure for local-coordinate preview estimator

The filter thus far assumes that the forward speed of the vehicle, U is constant.

If there are periods of significant, abrupt acceleration, then the LTI filter structure

presented here will likely not function properly. This could be corrected by chang-

ing the measurement equations and state transition equations to allow for varying
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spatial intervals in the preview horizon that maintain even temporal intervals based

on a model for vehicle longitudinal acceleration. This is not demonstrated here as

the aim of this work is to introduce the map-based estimator, and thus the focus

is to provide lateral vehicle and environment states during cruising.

3.3 Simulations of autonomous driving using the

local-coordinate preview estimator

To test the local version of the preview estimator in simulation, an LQR controller

was implemented that used the estimator’s vehicle and road geometry states. The

longitudinal map registration values were given representative noise variance of

1.5m2 to simulate a WAAS-enabled GPS system. The vehicle was commanded

to follow the simulated right lane edge at Penn State’s Larson Transportation

Institute (LTI) test track. The map of the test track and the position of the

vehicle during the planar simulation are shown in Fig 3.3.

The fictitious camera and yaw rate measurements used in the local preview

estimator were generated using Gaussian noise as in Table 2.1. The filter had access

to right lane edge measurements as close to the vehicle as the camera geometry

would allow (7.5m), and at each previewed time step all the way out to the preview

horizon.

The lane position estimates quickly (<1 second) converge to their correct val-
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Figure 3.3. Map of fictitious road centerline marking and simulated vehicle position at
LTI test track

ues, and the lateral offset of the lane from the vehicle agreed well with the ground

truth commanded offset fed to the optimal preview controller of 1.5m. The agree-

ment between true and estimated non-previewed vehicle and road states during

the simulation is shown in Fig. 3.4. These results show promise for this filter’s

ability to estimate local bicycle model and road geometry states with little more

than a camera and a yaw rate gyroscope (if available), and without computation-

ally complex calculations like optical flow or stereo image correspondence, which

would be necessary for an implementation of SLAM.
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Figure 3.4. Ground truth versus estimated non-previewed states for simulated au-
tonomous driving

3.4 Calculation of theoretical estimator perfor-

mance

Specifics of the error-coordinate realization of this filter are given in Chapter 2, but

recall that the filter shows decreasing improvements to state estimate accuracy as

lookahead distance increases when all lane features in the preview horizon (except

for those obscured by the vehicle body) are available for measurement. In fact,

this is true even without a yaw rate measurement r, and regardless of whether

the assumed noise in the camera measurements varies as in Table 2.1 or is a

constant value. Theoretical variances on states V̂ ,r̂, and ŷ0 for steady-state Kalman
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estimators for the case in which noise parameters are given by Table 2.1 are shown

in Figure 3.5.
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Figure 3.5. Predicted variance of vehicle states as a function of preview horizon length
with measurement noise as given in Table 2.1

In Figure 3.5, the expected accuracy of the filter as implemented on Penn State’s

“Big Red” test vehicle is shown. It is not clear, however, whether the shape of the

estimator performance curves has more to do with the yaw rate gyro’s accuracy,

the preview measurement noise model, or the number and distance of preview

points measured. To address the real effects of increased lookahead distance with

increasing numbers of features, see Figure 3.6, which differs from Figure 3.5 in that

it was designed without the benefit of a yaw rate gyro, and to reflect a preview

sensor with a constant 1cm2 measurement noise variance.

Figure 3.6 indicates that even for very high speeds, lane features beyond 40m

do not improve state estimates at all, and suggests that at 20m
s

, a meager 30m
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Figure 3.6. Predicted variance of vehicle states as a function of preview horizon length
with σcamera = 0.01m2, no yaw rate measurement

of lookahead is sufficient to obtain maximum estimator performance for the states

close to the vehicle. The fact that there are similar trends in the shape of the

variance curves of Figures 3.5 and 3.6 despite the disparate noise models and

characteristics indicates that preview horizon length offers decreasing benefits in

estimating non-previewed states across measurement noise models. Whether a

cubic relationship between x distance and variance is assumed, as in Figure 3.5, or

a high-accuracy sensor can provide preview measurements with a small, constant

variance as in Figure 3.6, one can compute a preview distance that offers maximum

benefit in the estimation of non-previewed states.

Another interesting phenomenon, tacit in Figure 3.5, is that the required looka-

head distance has changed with the transformation of the estimator from global

to local coordinates, due to the differing use of the road point locations in the
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shift register. Whereas in Chapter 2, preview point estimates in the state space

represented their global locations, in this framework they are tied to lateral veloc-

ity and yaw rate at each time k directly, and represent locations relative to the

vehicle’s coordinate system. Figure 3.6 was generated using the same camera, yaw

rate, and map registration noise values as Figure 2.10. To see the differences in

estimator performance between the body-fixed and error-coordinate implementa-

tions for identical filter and vehicle designs at one forward speed, see Figure 3.7.

This figure shows how the changing coordinate system definition changes predicted

filter performance for the same vehicle and sensor configuration.

As Figure 3.7 indicates, the error-coordinate estimator exhibits more sensitiv-

ity to preview than the body-fixed version, which is likely due to the differences

between coupling road/vehicle states in the measurement matrix H as opposed

to coupling them directly in the state transition matrix Ad. Additionally, the

error-coordinate estimator measures previewed points as linear combinations of

road locations and integrated “global” vehicle states. The fact that y and ψ are

not tracked by the body-fixed estimator may contribute to its increased predicted

variance on lateral velocity and yaw rate estimates. Conversely, the body-fixed

estimator uses lateral velocity and yaw rate to couple relative road movement

to previewed geometry estimates directly in the Ad matrix, which could explain

the decrease in predicted y0 variance when moving from the error-coordinate to

body-fixed coordinate framework.
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In this way, the disparate structure of the two estimators is reflected in their

distinct predicted error characteristics. Because the error-coordinate implementa-

tion of the preview estimator couples road and vehicle dynamics in measurement

rather than in motion model, it is more sensitive to increasing preview distances

for short preview horizon lengths, but is able to achieve better lateral velocity and

yaw rate estimates with a longer preview horizon, since road motion and vehicle

motion are decoupled in the system equations. The direct motion coupling be-

tween road and vehicle in the local-coordinate preview estimator implementation

confounds estimation of the velocity states V and r, but direct measurement of

locally referenced lane positions allows it to achieve better estimates of current

lateral offset y0.

While these differences are interesting, the error-coordiate estimator is far less

suited to real-world implementation than the body-fixed version, and the body-

fixed preview filter will be carried through the rest of this dissertation in the interest

of showing the framework’s real-world capabilities.
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Chapter 4
Implementation and Organization of

the Preview Estimator in ROS

The simulations of the preview estimator in local coordinates outlined in the

preceding section suggest that the preview estimation framework may be useful

for improving state estimates and environment perception using low-cost sensors.

However, a significant theoretical and physical divide exists between a pseudo-

linear simulation with quality, gaussian simulated measurements and a realization

of the preview estimator that can run in real time on low-cost computing equip-

ment. To facilitate real-world tests of the estimator, a transition was made between

the MATLAB programming environment and the mixed Python/C++ program-

ming language structures that dominate Willow Garage’s Robot Operating System

(ROS).
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4.1 The Robot Operating System (ROS)

ROS is a collection of command-line and graphical tools for roboticists. ROS’s

capabilities span hardware abstraction, sensor emulation, multibody simulations,

and real-time control tools. The core ROS packages have been installed by the

author on hardware ranging from the $35 Raspberry Pi ARM7-powered embedded

computer, running at a 700 MHz clock speed, all the way to a 2011 MacBook

Pro with a quad-core sandy bridge processor, on operating systems including Mac

OS X Lion, Ubuntu 12.04, and Debian Wheezy. ROS is open source, and is

developed and distributed under a BSD License [67]. The remainder of this chapter

discusses the general organization of the software written in order to implement

the preview estimator, and the specifics of the communication, interconnection,

and methodology employed in order to make the estimator work with real driving

data.

4.2 Realization of preview filter algorithm

While the local-coordinate preview estimation framework is linear in its motion

model and filter framework, several sources of nonlinear coupling exist between

the filter itself and the inputs and measurements it needs to run. In a sense,

the preview estimator trades simplicity and linearity in the estimation process for

an increased level of necessary support from auxiliary processes that manage the
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feature map, update global vehicle pose estimates, process camera images, and

process the feature map to generate suitable inputs for the preview-based motion

model. To ensure that some estimate of lane position out to the preview horizon

is maintained, even without a fully populated measurement matrix H, global map

registration is necessary to provide a suitable and representative value of yin to

the filter motion model. Global map registration as explained in Chapter 3, is

undoubtedly a nonlinear process, but is necessary to obtain yin.

All tests of the preview filter were performed using the Robot Operating System

(ROS) where the tasks necessary to run the filter were broken down into “nodes,”

with each performing a specific tasks, and “topics” that represent data streams

flowing between the nodes as needed. The general setup of the system is shown

in Figure 4.2. ROS handles many of the timing, coordinate transformation, and

communication details automatically, so changes to the filter framework are rapidly

and readily made.

Figure 4.1 shows a sample of the match between an actual forward-looking cam-

era image and the mapped lane feature (right lane line) obtained using a preview

filter during a straight-road 55-mph test, along with generated state estimates for a

period of manual sinusoidal steering. The visual agreement between camera image

and mapped lane geometry indicates a good estimate of local (and thus global)

vehicle yaw angle and lateral position. The filter implemented used np = 50 and

T = .02s to put the preview horizon at 1s and 25m, offering the full accuracy
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benefits of preview for the camera used as discussed in Chapter 3.
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Figure 4.1. Filter results for sinusoidal steering at a speed of 55mph

Figure 4.2 shows the interconnection between all of the “nodes” that comprise

a ROS-enabled system. Each has its own specific functions, as detailed below,

except the “map registration” node, whose function is described in Chapter 3.

4.2.1 Map server and map generation

The procedures for creating maps of the right lane edge for use in the preview filter

fell into two distinct categories: maps generated using public GIS data, and maps

generated in-house using high-fidelity sensors. For early tests of the preview filter,
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Figure 4.2. Functional Layout of Algorithm in ROS

maps were generated using online aerial imagery/map software by creating a list

of points representing the right lane edge. This approach to generating mapped

lane features is not new at all– in fact, this is the general method used in many

map-based vision techniques, like those in [21, 22, 24]. While some efforts in using

lane feature maps generated from satellite imagery like [22] use automatic feature

extraction techniques, for this dissertation it was determined for the sake of brevity

and to eliminate erroneous lane marker detection that tests of the preview filter

using imagery-generated maps would be performed on maps encoded by hand.

Google Earth works very well for this purpose, because it offers users the option to

export a path as a Keyhole Markup Language (kml) file after clicking on a series of

points in the Google Earth user interface. Figure 4.3 shows the process of selecting

road edge points, which can be done with a great deal of precision at high zoom
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levels.

Figure 4.3. Building a road feature map in Google Earth

While this method of selecting points is ad-hoc and subject to human error, the

level of precision offered in Google Earth is substantial (global accuracy concerns

will be discussed in Chapter 5 ). The only obvious issue with this method, the

lack of elevation data present in the exported kml file, was remedied handily with

a small Python script that separately accessed Google’s elevation data to gener-

ate road height profiles. After exporting the kml file representing the right road

marker, a python script parsed the file, and queried Google Maps’ web Application

Programming Interface (API) for elevation data corresponding to each point. The

web API gives rather precise JavaScript Object Notation (JSON)-encoded eleva-

tion information, which was used to complete the map description for use in the

preview filter.

Maps generated with this method, when tested for agreement in lateral posi-

tion estimates (lane offset y0) by comparison with a RTK GPS/INS system, were
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found to have insufficient global accuracy for a fair evaluation. This will be shown

explicitly in Chapter 5, but in summary, the RTK GPS/INS system showed lateral

offsets that did not match intuition or video data, and showed the vehicle exhibit-

ing frequent departures from the lane when the GIS-generated maps were used.

It should be noted, however, that this global error appeared not to affect lateral

position or yaw rate estimate accuracy.

With this in mind, maps were generated using the RTK GPS/INS system

and a downward-facing Sick LMS500 LIDAR sensor as shown in Figure 4.4 where

mapping with this equipment was possible. Lane edges were extracted from the

LIDAR data using a simple threshold-based approach on infrared reflectivity. This

was accomplished by scanning outwards from the center of the LIDAR scan until a

reflectivity value higher than an experimentally-determined threshold was found,

and storing this point as the edge of the lane, after a coordinate transform to a

globally-referenced set of East North Up (ENU) axes.

At Penn State’s Larson Transportation Institute Test Track, multiple laps were

performed to ensure repeatability in the mapping process and to confirm the fidelity

of the Novatel Span DL4 GPS/INS system. A sample overlay of mapped LIDAR

points onto the forward-looking camera image during the high-fidelity mapping is

shown in Figure 4.5.

Lane markers at the track were exceptionally easy to extract from the LI-

DAR data, because of the reflective glass beads used in lane marker paint. After
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transforming the LIDAR points into a map frame using ROS’s coordinate transfor-

mation API, and extracting lane features, the points were saved for use in the map

server. Instead of saving all mapped intensities and positions, as is the standard for

many of the map-based localization and tracking approaches using LIDAR data,

this study needs only a very compact version of the map, representing just the

right lane marker’s position.

With the map saved as a comma-separated-value (CSV) file, the ROS map

server node broadcasts map data as a “latched topic,” which ensures that excess

bandwidth is not eaten up by the repeated transfer of static data. The map format

upon transfer between ROS nodes is similar to the format given in eq. 3.8, but in

a packed data form common to ROS.

Figure 4.4. Lidar/GPS mapping rig on test vehicle
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Figure 4.5. Mapping of Penn State Test Track

4.2.2 Low-cost GPS/IMU and speed sensor

In Figure 4.2, the node labeled “Low-Cost GPS/IMU and Speed Sensor” exists

physically as a ROS-enabled BeagleBone embedded single-board computer inter-

facing with GPS and IMU modules through an Inter-Integrated Circuit (I2C) in-

terface. This unit measures forward speed by communicating with a vehicle’s CAN

bus and/or wheel encoders. ROS allows for a high level of abstraction, and the map

registration and inertial measurements could come from any number of sources.

The embedded BeagleBone board with IMU and GPS sensors attached is shown

in Figure 4.6.

The BeagleBone itself runs Ubuntu 12.04 Linux, and runs a bare-bones variant

of ROS, so that once it has connectivity to the main data acquisition/filtering

computer (in most cases during tests in this dissertation, a 2011 MacBook Pro),

there is full connectivity between all ROS nodes and topics on the network. This
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Figure 4.6. BeagleBone with custom sensor suite

allows for high-level programming of the hardware/software interfaces for data

collection, and seamless integration with high-level control and filtering processes.

With that said, there proved to be very little qualitative difference between

running the camera interface node and the node that parsed data from the USB-

powered OBDII/CAN bus speed sensor module (not shown) on the BeagleBone

versus running those hardware-level interface nodes on the main filtering computer.

In most cases, it was easier to leave all hardware connected to the BeagleBone,

and leave the high-level filtering and visualization tasks to the MacBook.

4.2.3 Lane measurement

For all tests in this document, a PointGrey Research Firefly MV USB 2.0 monochrome

camera with VGA resolution comprised the hardware portion of the lane measure-

ment system. This camera, chosen for its price ($35) and low pixel-level noise,
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Figure 4.7. PointGrey Firefly camera

produces a quality video stream, although many modern production-grade cam-

eras at least approach, if not surpass its performance. The camera is shown in

Figure 4.7

Time stamped camera images brought into the lane measurement node were

cropped to reflect the road vanishing point calculated from eq. 2.6 according to

downward tilt. Then, a canny-filtered version of the image was searched for white

pixels according to the expected locations of a straight lane, with a search area

wide enough to encompass curved roads, but small enough to attempt to avoid

extraneous markings outside of the lane.

Note that because of ROS’s easily expandable framework, any number of lane

detection techniques could have been used in the preview filter. The canny-based

constrained search was chosen for simplicity, and to decrease likelihood that edges
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in the middle of the lane would throw off a true “dumb” search working outward

from the center of the image at each time step.

4.2.4 Preview Filter

Figure 4.8 shows how local estimates of non-previewed vehicle states are fed back

into the map registration procedure. This is accomplished by combining them with

coarse longitudinal registration from GPS or an alternative odometric algorithm

to obtain yr,i through a coordinate transformation. For the error-coordinate real-

ization of the preview filter, this feedback of estimator states is not needed. Note,

too, that Figure 4.8 shows a steady-state oberver gain L, while in practice, L is

updated according to the standard current-measurement Kalman filter equations

as derived in [15], and shown briefly with time-varying system and measurement

matrices in Equation 4.1.

x̂k|k−1 = Ad,k−1x̂k−1|k−1 +Bd,k−1uk−1

Pk|k−1 = Ad,k−1Pk−1|k−1A
T
d,k−1 +Qk

ỹk = zk −Hkx̂k|k−1

Lk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1

x̂k|k = x̂k|k−1 + Lkỹk

Pk|k = (I− LkHk)Pk|k−1

(4.1)
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Figure 4.8. Block diagram layout of preview filter



Chapter 5
Experimental Validation of Preview

Estimation Framework

To assess whether the theoretical advantages of the preview filter framework trans-

late to real life, and if they do, to what degree, two separate batteries of testing

were performed. The first, on an exceptionally tortuous road with a speed limit

of 55mph, was performed without the aid of steering sensor or superelevation in-

puts to the filter, and was performed with a map generated from GIS data. The

second was performed at Penn State’s Larson Transportation Institute test track,

and included a filter setup that had access to a high-resolution low-cost steering

sensor and a LIDAR-generated map of road superelevation at every point. For

both tests, the filter itself was run separately on collected data, but ROS is set

up to emulate real-time performances, with data playing back at exactly the rate

they did in the actual event. Actual real-time tests of the preview filter are not
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shown until Chapter 7, where the preview filter is run in real-time along with an

optimal preview controller.

5.0.5 Sensors and data acquisition

In both of the testing scenarios, non-previewed vehicle states were compared with

states provided by a Novatel SPAN RTK GPS system augmented with a Honeywell

HG1700 ring-laser gyroscope. The 2cm position accuracy provided by the Novatel

system was deemed sufficiently accurate to act as a fair ground-truth measurement

of lane position, as long as the global accuracy of the map is equal to or better than

the accuracy of the Novatel system. The lateral velocity and yaw rate estimates

from the system have proven extremely accurate and reliable in controlled tests at

Penn State’s Larson Transportation Institute test track. The Novatel Span sys-

tem’s INSPVA (Inertial Navigation System Position Velocity Acceleration) data

were collected at 50HZ, and raw IMU measurements from the Honeywell HG1700

were collected at 100HZ. The preview filter ran with a 50-timestep preview hori-

zon, with a sample time of 0.02s. All messages and state estimates from the preview

filter were time-stamped at the time of creation according to the computer’s in-

ternal clock, and ground truth data from the GPS/INS system were timestamped

using GPS time for comparison.

Low-cost sensor inputs to the preview filter for both tests were provided with

the same hardware setup as described in Chapter 4, with the exception of the
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Table 5.1. 1999 Hyundai Elantra Vehicle Parameters

Symbol Value Unit

m 1436 kg
b 1.489 m
a 1.069 m
Izz 2500 kg·m2

Cαf -60000 N/rad
Cαr -80000 N/rad

speed measurement, which was provided by a Controller Area Network (CAN)-bus

sensor for the testing with the 1999 Hyundai, and differentiated quadrature encoder

measurements on the 1989 GMC “Big Red,” since this vehicle was manufactured

without a user-serviceable interface to diagnostic data.

5.1 Testing on Pennsylvania Route 350

In order to test the preview filter algorithm on as simple a hardware set as pos-

sible and in as real a scenario as possible, a test was performed using a 1999

Hyundai Elantra on Pennsylvania state route 350. Parameters for the Hyundai

were compiled using a combination of physical measurements and consultation of

both CarSim equivalent vehicles (tire parameters) and NHTSA vehicle parameter

databases [68] and are given in Table 5.1.

The test, run at night, spanned the global position trace shown in Figure 5.1.

This road segment is deceptively curvy, with blind turns made by rocky abutments

obscuring far lane measurements through most of the sweeping turns. These turns
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Figure 5.1. Global position trace during Route 350 test

are relatively flat (little superelevation), which makes them good candidates for

testing the preview filter without superelevation influences. An approximately

constant speed of 55MPH, the road’s speed limit, was maintained for the entire

traversal.

As mentioned in the preceding section, the preview filter itself only had access

to sensor information from the low-cost BeagleBone-based sensor block. Longitu-

dinal map registration as described in Chapter 4 was accomplished using the KNN

nearest-neighbor search method. In other words, the odometric path coordinate S

used in the preview filter’s map registration procedure was computed relative to

the map. The resulting error in longitudinal path coordinate S when compared to

the S-coordinate computed using the position from the Novatel system is shown

in Figure 5.2.
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Figure 5.2. Error in path-coordinate registration

Figure 5.3. Raw lane measurements, global position estimates, and image overlay
during Route 350 traversal

The results shown in Figure 5.2 are typical for the low-cost GPS system used,

and have proven to be accurate enough for use with the preview filter, as evidenced

by the augmented-reality-type overlay of map, image, and preview filter estimate

given by ROS’s visualization software RVIZ, shown in Figure 5.3.
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This figure shows the upcoming turn in the correct location, even though it

has not entered the preview filter framework yet, which indicates that the small

errors in longitudinal map registration are overshadowed by the generally gradual

curvature of a public road. Further, any lateral errors introduced by longitudinal

error are quickly corrected by camera measurements once they enter the preview

filter.

5.1.1 Results

The non-previewed states tracked by the preview filter, V , r, and y0 are all primary

candidates for validation. The bicycle-model state estimate match between RTK

GPS/INS is shown in Figure 5.4.
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Figure 5.4. Vehicle State Comparison

The filter’s ability to estimate lateral velocity is rather good, especially with
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Figure 5.5. Lateral offset from the mapped lane marker

the lack of access the filter has to steering angle and the poor accuracy of the map.

Yaw rate is also quite good, aside from some minor scale factor issues, which may

have to do with the small assumed variance in steer angle δ, which can make a

Kalman filter “pull” estimates towards the model prediction, which in this case,

again, had no access to steer angle. Still, this match suggests that the preview

filter could only improve with the inclusion of model inputs other than yr,i, as

demonstrated in the second test at Penn State’s test track.

The situation is a little more complex when the lateral offset y0 is considered.

The match between this state and the “ground truth” is shown in Figure 5.5. While

at first glance it appears that the preview filter was unable to correctly measure

y0, it is important to look at the scale and shape of the “ground truth” and raw

low-cost GPS measurements of y0. The vehicle, according to the Novatel system,
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is crossing the lane boundary, and swinging wildly around in the lane throughout

the traversal. This indicates not that the position measurements from the Novatel

system are erroneous (the low-cost GPS measurement shows a similar shape), and

not that the preview filter estimate is corrupted, but rather that the map is at

fault. Remember, this is a measure of globally referenced lateral position offset,

compared to the local one that the preview filter maintains. This means that the

preview filter, even in the face of a map with global errors, is able to correctly

assert the trends in vehicle lateral position seen in the video data. While these

results do not speak to its absolute accuracy, this is addressed by the following

experiment, in which a higher-fidelity map is used.

5.2 Testing at the Larson Transportation Insti-

tute test track

To mitigate potential effects of an erroneous map built from GIS data, the map used

in the testing at the Larson Transportation Institute test track was constructed

using a combination of the Novatel INS system and a downward-facing LIDAR

scanner, as explained in Chapter 4. This allowed for an absolute globally-referenced

map of the right lane line to be used. The lane lines at the Larson Transportation

Institute track are of standard width and composition. They were painted as part

of a cooperative agreement with the Pennsylvania Department of Transportation
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(PENNDOT) in May of 2013, as shown in Figure 5.6. The lines were scanned with

the LIDAR rig immediately after painting to ensure a high-quality map.

Figure 5.6. Lane lines being painted at the Larson Transportation Institute test track

The paint, like the paint on all public roads in the area, is impregnated with

glass beads so that it luminesces at night. This also aids in the mapping step,

because the glass beads boost the infrared reflectivity measured by the LIDAR,

aiding in classification of the lane edges.

5.2.1 Vehicle Setup

For tests at the LTI test track, given the abundance of redundant sensors on Penn

State’s autonomous testbed “Big Red,” a 1989 GMC 2500, this vehicle was used

for all tests at the closed course testing facility. This vehicle’s inertial and tire

parameters are given in Table 5.2, and it is shown in Figure 5.7.

Parameters for the GMC 2500 were taken from previous physical tests con-

ducted by the author Dr. Sittikorn Lapapong as part of his PhD work in [69].

Tire cornering stiffness values were obtained through exhaustive testing of the ve-
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Figure 5.7. 1989 GMC 2500 “Big Red”

Table 5.2. 1989 GMC 2500 Vehicle Parameters

Symbol Value Unit

m 2579 kg
b 1.964 m
a 1.39 m
Izz 5411 kg·m2

Cαf -75700 N/rad
Cαr -83700 N/rad

hicle’s tires, as documented for various tire pressure values in [6]. The vehicle

speed during this test was roughly 20 m
s

throughout the traversal. The test in-

cluded sinusoidal steering on several of the straight sections of the road to excite

the vehicle dynamics for the purposes of testing the preview filter.

Figure 5.8 shows the ground truth position trace and map for the counter-

clockwise validation run around the test track, along with the forward speed of

the vehicle during the test. Low-cost sensor data were augmented with “ground

truth” data from the INS system for comparison and validation of the filter. As

Figure 5.8 indicates, the speed during the test was not entirely constant, but the
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Figure 5.8. Test trajectory and speed profile

driver attempted to maintain a fairly constant speed throughout the entire loop.

Steering angle was measured by a string potentiometer at the steering rack, with

effective roadwheel angle computed from the average angle of the left and right

wheels. These were calibrated as in [69] using skid-plates on both front wheels.

Once again, longitudinal map registration was achieved using the low-cost GPS

aboard the BeagleBoard embedded computer using a K-Nearest-Neighbor (KNN)

search algorithm. Longitudinal map registration accuracy obtained from the low-

cost GPS was within 3m for the majority of the tests, which was confirmed by

comparison to the Novatel DGPS unit. Therefore, curves were anticipated correctly

by the preview filter through the road input yin, even when the lane detection step

did not see lane edges out to the preview distance. The preview filter maintained

50 preview points with a timestep of 0.02s, for a total of 1s of preview. Camera

measurements arrived from the PointGrey camera at 15Hz. Note that because the

camera measurement update rate is slower than the system propagation frequency,
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the statistics of the filter’s estimates are slightly different than they would be with

a 50Hz measurement frequency. These statistics are still governed by eq. 4.1,

with the equation for Pk|k−1 inflating the system covariance matrix in propagation

appropriately between measurement updates.

5.2.2 Results

Figure 5.9 shows the lateral velocity and yaw rate match between the ground truth

INS system and the preview filter for the test run. Once a relatively steady-state

speed is achieved at approximately 10s, the states match very well. Scale-factor

errors causing overprediction of V̂ as seen in Figure 5.9 at 15 to 25 seconds and

again from 65 to 75 seconds cause some input-correlated noise characteristics. This

can be seen more clearly in 5.11. These scale-factor errors in transient maneuvers

are often caused by unmodeled tire or suspension dynamics that manifest as “notch

filters” at certain frequencies [70].

Astute readers will note that between approximately 10s and 25s, the vehicle

is in an ostensibly aggressive steady-state turn with a yaw rate of 0.2 rad
s

, which,

according to Table 5.2 and a steady-state analysis of bicycle model dynamics,

should result in a steady-state lateral velocity of nearly 0.7 m
s

. However, because

of the superelevation of the test track through both turns, which is brought in via

the map data server to the propagation step of the filter equations, the steady-state

lateral velocity does not reach the value it would on a flat road. This observation is
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Figure 5.9. Planar velocity state estimates versus ground truth for test track data

important to note for vehicle control purposes since most prior research on lateral

vehicle control and state estimation neglects this system input. This research

shows that the influence of road superelevation can be quite significant in correctly

estimating vehicle states–particularly lateral velocity. Both the ground-truth value

of V obtained from the INS system and the filter estimate V̂ correctly reflect the

effects of the known superelevation through the turns.

V̂ and r̂, however, are only two of the 52 states maintained by the preview filter

in the test. While it would be impractical to show the global error of each preview

point y in the filter shift register, the point y0 represents the vehicle’s current

lateral offset from the lane, which is another extremely important state for vehicle
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control. The methodology in [63] indicates that when using Optimal Preview

Control for guidance, preview points far ahead of the vehicle are of eventually

decreasing utility for control, which is a similar conclusion to the one drawn in

Chapter 3, but points close to the vehicle, especially the current lateral offset, are

very important. The match between ground truth and the preview filter’s estimate

of lateral offset is shown in Figure 5.10. Ground truth, in this case, refers to the

lateral offset from the map (which was generated using LIDAR during a separate

traversal), as measured by the RTK differential GPS system.
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Figure 5.10. Lateral position offset from mapped path estimate versus ground truth of
test track data

The lateral offset, too, matches very well with the INS ground truth data

for the run, although the estimator performance bounds suggested in Chapter 3

are not quite acheived. This is to be expected, given the fact that the linear
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approximations inherent in the shift register and vehicle dynamics model are, in

fact, approximations. The relative accuracy of the filter given its simplicity is

notable. Additionally, not all preview points in the shift register are available for

measurement at all times. This very fact makes the preview filter capable of self-

diagnosis via a lookup table of expected system covariance as a function of preview

points available, for comparison with filter-maintained state confidence values. In

the validation run examined, anywhere between 5 and 40 of the 50 preview samples

were measured for each update step, even though the filter was designed to track

50 preview points – not all were available for measurement at any given time. Once

again, if no lane was “found” at a particular preview distance for measurement,

that state’s statistics for the propagation step were governed by the Kalman filter

equations of eq. 4.1. This allows the filter to maintain estimates of unseen preview

points with statistical confidence bounds, even when those points are not found

during a camera update.

To examine the performance of the filter, and address any issues with modeling

error, it makes sense to examine the error characteristics of these three states indi-

vidually. These are shown in Figure 5.11. While the error in r̂ is arguably white,

which follows naturally given its direct measurement and low sensor variance, the

errors in V̂ and ŷ0 are not as well-structured. While the errors are generally agree-

ably small in maximum and in standard deviation, there appear to be systematic

components in each, which may have causes in measurement model error (e.g. ap-
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proaching non-flat portions of the track, roll motion of the vehicle) or in timing.

The sinusoidal error in V̂ occurs on flat portions of the test track, and appears to

be due to a very slight time lag in V̂ when compared to the value of V provided

by the ground truth INS system. This is a bit anomalous, as physical systems

are always more complex and higher order than their simplified models. There-

fore one generally expects the system responses measured on a vehicle to more

often lag behind model-based state estimates, rather than the opposite situation

observed here. Because the real measurements lead the estimator, it suggests that

there are some signal timing or modeling errors that are effectively adding a small

amount of phase lag to the estimated lateral velocity. Further investigation of

this phenomenon is ongoing, but the overall small error in V̂ and its steady-state

agreement with the defense-grade INS system show the capabilities of the preview

filter’s simple, straightforward structure.

In regards to ŷ0, recall that the forward-looking camera can not directly mea-

sure this state, so it is propagated back using state estimates from the closest

available preview measurement. Thus, small errors in U , longitudinal accelera-

tion or deceleration, and other unmodeled error sources may contribute to its final

value. Additionally, differences between the way a canny filter picks out a lane

edge in image data and the way the threshold algorithm finds the lane edge in

the LIDAR data could also contribute to high-frequency error. The simplistic pla-

nar lane assumption, and even the linearization of the relative road motion model
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Figure 5.11. Error in planar vehicle states for test track data

could contribute to low-frequency error while the vehicle traverses a sharp turn.

Any of these error sources might explain some of the low-frequency bias error seen

between 45 and 75 seconds, which occurs on a portion of the test-track with a

changing bank angle.

Finally, to address the way the filter functions in the measurement update step,

the innovations for all camera preview measurements for all preview points and

all timesteps are shown in Figure 5.12. Figure 5.12 shows, from a top-down view,
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Figure 5.12. Preview measurement innovations for all preview points

the visibility space as a function of time for the data collection run–a pronounced

dip in visible features close to the vehicle occurs at 10s into the run, for example.

This figure also shows that the innovations at the far end of the preview horizon

are markedly large, which is an expected result when an error in longitudinal map

registration occurs, since the yin value generated from the map is not corrected

until the camera can see it. Kalman Filters, when functioning perfectly, have

zero-mean innovations with white noise characteristics. To examine the mean and

standard deviation of the innovations at each preview point for the whole run,

consider Figure 5.13.

Figure 5.13 shows that innovations out to preview point 40 (.8s or 16m in front
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Figure 5.13. Preview measurement innovations for all preview points (mean of inno-
vations shown in black, covariance of innovations shown in grey)

of the vehicle) are nearly zero mean, but that beyond this point, innovations are

biased, which is an artifact of a mean bias in the GPS longitudinal map registration,

similar to the mean bias shown in Figure 5.2. While this is an unfortunate side-

effect of this registration method, it does not have a detrimental effect on the

majority of the road geometry estimates in the preview horizon. Longitudinal

registration methods with zero-mean error characteristics, like the GPS-free pitch-

based localization approach in [2], may eliminate this bias in innovations near

the preview horizon. Overall, however, the innovations statistics on the preview

horizon indicate that the shift register motion model for the road geometry is not

introducing significant biases into the filtered estimate of roadway geometry, at

least for the conditions tested. The potential for modeling error-induced bias does

exist, however, and is discussed in the next chapter.
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5.3 Performace of local-coordinate estimator un-

der ideal conditions

The preceding section showed that while the local-coordinate preview filter pro-

vides good vehicle state estimates during a challenging traversal of a test track

with banked turns, and under aggressive sinusoidal steering, it also suggests that

the filter does not perform quite as well as the results of Chapter 3 would suggest.

The predicted variance values reported in that chapter for the non-previewed state

estimates suggest that the filter should be more accurate than the tests at the Lar-

son Institute Test Track showed. Taking the square root of the variances predicted

by steady-state Kalman filter designs for varying preview distances and speeds

should give theoretical 1-σ variation for state estimate errors in the filter, with

the assumed process and measurement noise values. These are shown for Big Red

at varying speeds in Figure 5.14. For the 20m preview distance and 20m
s

forward

speed of the the tests at the test track, the algorithm predicts 1-σ bounds for ŷ0,V̂ ,

and r̂ of 0.058m, 0.12m
s

, and 0.08 rad
s

, respectively. By comparison, the physical

results featured 1-σ error bounds on the same states of 0.17m, 0.11m
s

, and 0.02 rad
s

.

This is a fair agreement considering the assumptions in the filter’s derivation.

As these numbers show, the predicted bound on yaw rate r is worse than the

error observed in the tests. This is likely due to the inflated noise assumed for

the camera and yaw rate measurements to deal with unmodeled error sources.
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Figure 5.14. Theoretical standard deviation of non-previewed state estimates for Big
Red

The lateral velocity bound generally agrees with Figure 5.11’s statistics, but the

predicted bound on lateral position, y0, is not achieved by the filter in that test.

The next chapter deals with some possible sources of this disagreement.

Because the test presented above was performed with aggressive steering, it is

possible that the error in the state estimates resulted from this excitation. Most

driving using the filter, even under autonomous control, will not feature such pro-

nounced sinusoidal steering. Therefore, an experiment was conducted to examine

whether a more realistic traversal enables the filter to achieve the lateral position

accuracy predicted by the steady-state Kalman filter analysis. The vehicle was

driven on a straight section of the track at 20m
s

with the same filter design as

before, but the test did not feature sinusoidal steering to excite vehicle dynamics.

Figure 5.15 shows the state estimate errors for this case, along with the standard
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deviation of the error in each non-previewed state. Figure 5.15 shows that for
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Figure 5.15. State errors for 20ms straight-running traversal of test track’s north
straightaway

a short, straight-run traversal with little steering excitation, the filter surpasses

predicted error characteristics for all non-previewed states, with the 3cm 1-σ er-

ror exceptionally close to the accuracy of the ground truth Novatel SPAN system

(about 2cm) and the accuracy of the map. Indeed, the estimator error is so close

to the expected error in the “truth” measurement from the DGPS/INS that the

estimator’s error is not likely to be statistically significant. Additionally, it can be

considered to be on the order of the predicted accuracy of the filter according to

Figure 5.14.
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Interestingly enough, although the lateral dynamics of the vehicle were not

significantly excited during this traversal, and the driver maintained “lane-center”

through the straight segment of road, there was a surprising amount of lateral

deviation from the road center’s theoretical offset of 1.625m from the right edge

for the test track lane. To illustrate this further, the lateral position estimate

versus ground truth, in an analogous figure to Figure 5.10, is shown in Figure 5.16.

The most interesting thing about Figure 5.16 is the pronounced variation in offset

0 1 2 3 4 5 6 7 8
Time (s)

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

La
te

ra
lo

ffs
et

fro
m

pa
th

(m
)

Preview filter estimate
RTK GPS/INS ground truth

Figure 5.16. Lateral position offset from mapped path estimate versus ground truth
for 20ms straight-running traversal of test track’s north straightaway

from the right lane edge. The waviness in the lane line itself is likely “at fault”

for a large portion of this variation. This supports the general assertion of the

preview filter framework that there is significant information content in the lateral

deviation of lane lines from their “ideal” geometry. This is an effect not captured

in lane tracking methods that assume parametric equation fits for road geometry.
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Additionally, it is important to note that both the ground truth data and the

filter’s estimate of lateral position capture this effect. The map of the lane line

reflected the lane’s actual position, the DGPS accurately measured the vehicle’s

offset from the lane, and the preview filter’s estimates of lateral offset agreed. This

agreement would not be possible with an erroneous map, an incorrect algorithm

implementation, or significant unmodeled error sources.

Finally, during this test, the driver was instructed to drive as straight as pos-

sible, and maintain a position in the center of the lane. The observed variation

of almost 30cm or 1 foot over the 9-second straightaway indicates that the driver

appeared to be tolerant of a significant amount of lateral position error. This

tolerance suggests that a bound of 30cm on tracking error in a combined percep-

tion/guidance system would achieve a performance similar to that of the human

driver in the test shown, but that a controller with an error on the order of 3cm

might be unnecessary. The difference in lateral positioning performance might not

even be perceptible to vehicle occupants.

Even with these results, which showcase the preview filter’s ability to estimate

vehicle states in ideal conditions, it is apparent that during challenging maneuvers,

there are error sources not accounted for in the preview filter’s derivation. One of

these is discussed in the next chapter, using a concrete simplification to examine

error bounds over a wide range of expected driving conditions.



Chapter 6
Causality and Steady Curves

Errors in the preview estimator framework can arise from a number of possible

sources. These include the following:

1. Errors arising from the assumption that sensor noise is Gaussian with zero-

mean and the modeled covariance. This includes noise on the steering angle δ,

the errors in the GPS-based longitudinal map registration, and measurements

from the yaw rate gyroscope, which were inflated to deal with unmodeled

error sources.

2. Errors arising from erroneous velocity. The forward speed U is considered a

parameter, but is actually a measured quantity at every time step.

3. Errors arising from unmodeled tire dynamics.

4. Errors associated with the discretization of the vehicle model, and the Euler-

integral approximation of the motion of the road relative to the vehicle.



127

5. Errors arising from the “future predictions” of the shift register, which could

be significant for particular geometry. These will cause disagreement between

measurements of previewed geometry and predictions, because the measure-

ments of road points will repeatedly correct causal errors in the shift register

road motion model.

While almost all of these errors plague every Kalman filter-based estimator in

one form or another, the one item unique to the preview estimator specifically in

this dissertation is Item 5. Because of this, we will address this source of error in

detail.

One of the key assumptions in the whole preview estimation and control frame-

works is that the x-distance traveled relative to the vehicle of each road feature

is constant and equal to UT meters with each timestep. This is usually a decent

assumption, but when the road is turning significantly, it is not the x-distance that

is UT meters with each timestep, it is the S-distance. These two are the same for

a straight road, but can be quite different for a curved one. It would be an exercise

in futility to consider all possible modeling errors arising from all possible road

geometries that may violate the straight preview horizon assumption. However,

since most highways are comprised of straight and curved sections, these are the

two that will receive a thorough treatment in this chapter. This chapter inves-

tigates the modeling error that arises from the assumption of a straight preview

horizon when in fact the road is curved, and the vehicle is in a steady-state turn.
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In Chapter 3, it was shown that state matches in simulation showed that the

local coordinate preview filter performed as expected. However, for the sections of

the simulation where the vehicle traversed a constant turn, the simulated estimate

error plots tell an interesting and different story, as in Figure 6.1. While the error in
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Figure 6.1. Error in measurement for constant-radius turn for planar simulation of
preview estimator

the non-previewed states appears at first glance to be zero-mean, close inspection

reveals that the mean of the estimate errors might not remain identically zero,

which they should indeed do, since the simulation was purely planar with a linear

vehicle model, and all measurements were corrupted with zero-mean Gaussian

noise. To investigate the possibility of systematic errors corrupting the mean of

the estimator errors, see Figure 6.2. Here, the exact same simulation of control
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and estimation using the preview filter/preview controller was performed, but the

“measurements” of lane geometry, steer angle, and yaw rate had no noise added

to them. In this way, the estimator was tested as a weighted sum of inputs and

measurements that should, in theory, result in a zero-error estimate.
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Figure 6.2. Error in measurement for constant-radius turn for planar simulation of
preview estimator with no measurement noise

While the noise in Figure 6.1 does appear white with near zero mean, the

resulting errors are not identically zero mean as expected. It is thus evident that

there are modeling issues that result in small preview filter estimate biases when

the vehicle traverses a constant radius turn. Figure 6.2 does, however, suggest

these errors will be small relative to the Gaussian modeled noise sources, especially

violation of the temporal preview assumption caused by a “wandering” vehicle that
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does not follow a curve perfectly. But without knowing their underlying causes,

and bounds on their magnitudes, they cannot be ignored. This chapter investigates

these error sources by looking at an alternative “ideal preview scenario” from the

one through which the local-coordinate preview filter was derived.

6.1 Road curvature preview horizon bias

Because the causality of the temporal preview horizon is not exact unless the vehi-

cle follows a straight path perfectly, some bias errors will appear in the estimates

of V and r, and also in the preview points yp, when the vehicle is violating this

assumption. Remember that the predictive nature of the preview horizon asserts

that a point pUT meters in front of the vehicle is also pT timesteps in front of

the vehicle. If the vehicle’s path is anything other than a straight line in the local

x direction for the entire horizon length, this is bound to be somewhat incorrect.

Errors arising from this phenomenon will have two separate types:

1. Mismatch between the assumed straight preview horizon and the actual pre-

view horizon shape (along the path) will cause structured error in the system

dynamic model, i.e. the vehicle-road Ad matrix.

2. The preview filter will attempt to measure lane features along the assumed

straight preview horizon, rather than at the correct preview distances in front

of the vehicle. This will create direct error in the measurements.
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To determine the source and expected magnitude of bias errors in preview-filter

state estimates, consider Figure 6.3, which gives a qualitative picture of the mea-

surement error that can result by assuming that a point P at p timesteps in front

of the vehicle lies along the vehicle’s x-axis rather than along the path traveled.

One of the key underlying assumptions in the preview filter is that we know, in a

temporal sense, when the reference path points on the preview horizon will pass

underneath the vehicle. In reality, this is a causally flawed premise, because any

path deviation or curvature causes an increase in path length when compared to a

perfectly straight line. This effectively causes the vehicle to drive farther on curves

than on straights given the same, straight preview horizon assumption. Therefore,

the timing of a vehicle’s path is in disagreement between straight and curved road

segments. The magnitude of the resulting error is discussed in the sections that

follow.

To mathematically analyze this error, note that when a vehicle is following a

path of arbitrary shape, and under competent control, the temporal preview hori-

zon lies approximately along the path, not along the vehicle’s x-axis. The x-axis

and the temporal horizon line up exactly only when the vehicle is traveling along

a straight road. In the straight road case, even with slight angular misalignment

between vehicle and path, the small angle assumption justifies the fact that mea-

surements of yp, or the yroad measurement at p timesteps in front of the vehicle,

is acquired at pUT meters in front of the vehicle, and in local coordinates. The
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degree to which the geometry introduces error depends on the radius of curvature

of the road R, the vehicle’s forward speed U , the timestep T , and the preview

point p in question. Additionally, consider that the shift register dynamics in the

vehicle motion model, which depend on preview points that are temporally even

in spacing, will also be erroneous for highly curved roads. This effect is shown in

Figure 6.3, which shows a vehicle in the midst of a constant-radius turn traversal.

To address each of these issues, recall that the equation of a circle in cartesian

coordinates is given by:

y = R (sin θ − 1)

x = R (cos θ)

(6.1)

Figure 6.3. Error in measurement for constant-radius turn
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where θ is the subtended angle in the circle’s circumferential arc. Now, imagining

that the vehicle’s controller enables it to traverse the arc at a constant lateral offset,

in the same way the estimator’s predictive shift register has assumed the preview

horizon to extend straight in front of the vehicle, it is clear that the preview horizon

points must lie along the path itself rather than on an imaginary arm extending

straight in front of the vehicle. These “true” preview points are shown as black

tick marks in Figure 6.3. This path, for the simple circular arc representing the

right lane edge of a right-hand turn, has a length of:

S = Rθ (6.2)

which means that for a given preview point at p time steps in front of the vehicle,

the angle subtending the vehicle’s circular trajectory of length S = pUT meters

for a right-handed turn as shown in Figure 6.3, is:

θ =
π

2
− pUT

R
(6.3)

This implies, in turn, that the true x′, y′ coordinates of the preview point P in a

constant-radius, right-hand turn is actually equal to:

y′P = R sin

(
π

2
− pUT

R

)
−R

x′P = R cos

(
π

2
− pUT

R

) (6.4)
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When the coordinate transforms from the x′, y′ coordinates to the x, y coordinates

are considered, which consist of a rotation through the steady-state sideslip angle β

followed by a translation in the y-direction, the true x, y coordinates of the preview

point at p time steps in front of the vehicle are given by:

y = R cos θ sin β + (R (sin θ − 1)) cos β + y0

x = R cos θ cos β − (R (sin θ − 1)) sin β

(6.5)

However, with a straight preview horizon, the x coordinate in the Ad-matrix of

the local-coordinate preview estimator equations, eq. 3.6 is assumed to be pUT ,

so that for the constant radius turn case, the error in the state transition matrix

resulting from the curved path is given by:

∆Ad =



0 0 0 . . . 0

0 0 0 . . . 0

0 εx,1T
... 0

0 εx,2T
... 0

0
...

... 0

0 εx,npT
... 0

0 0 0 0



(6.6)

where T is the time spacing between preview points, and εx,i are the errors in the

preview point’s x location in front of the vehicle. One way to think of each of these
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errors is as an error in the “lever arm” that maps yaw rate motion to the lateral

movement of each preview point from time step to time step. These individual

errors εx,i are given by the difference between the assumed and actual lever arm

lengths:

xp − x?p = εx,p (6.7)

These errors are easily calculated, since the true value of θ for the constant

radius turn is known. However, while this analysis accounts for propagation error

in the filter equations, consider that the filter, under the assumption of a straight

preview horizon, “looks for the preview points” during the measurement step in

the wrong spatial x locations. In other words, the measurements of the assumed

preview point P ? as shown in Figure 6.3 will not produce the same y-values as

a measurement at the actual preview point P . The magnitude of this error can

be calculated for a given vehicle design, speed, and turn radius by solving for the

subtended angle θ? of the assumed preview point, and then calculating, based on

eq. 6.1 and eq. 6.5 the expected true value of the preview point’s lateral offset yp.

This analysis leads to a vector of expected measurement errors for the constant-

radius turn, given by eq. 6.8.

yp − y?p = εy,p (6.8)

To analyze the magnitude and shape of these error sources in detail, and see how

they conspire to corrupt the expected value of the preview filter’s state estimates,
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the steady-state vehicle attitude angle β is necessary, along with a steady-state

lane offset y0. The sideslip angle β Comes from the vehicle dynamics, and depends

on the vehicle’s lateral acceleration, a function of turn radius and forward speed for

a given vehicle design. Also note that these equations change slightly depending on

whether the filter tracks the right or left lane edge, and whether it traverses a left

or right hand turn. For a filter that tracks the right lane edge in a left-hand turn,

as was the case for the simulation shown in Figure 6.1, the analysis is repeated by

adjusting eq. 6.5 and eq. 6.3 accordingly to reflect the changes in the geometry,

so that θ = pUT
R
− π

2
and y′p = R (sin θ + 1). The resulting differences in errors

between the two curve directions will be shown in the following sections.

6.2 Steady state estimation error

As discussed in the preceding section, there is, in general, a difference between pre-

diction and reality in the preview estimation algorithm. This suggests that while

the Kalman filter structure of the estimator is generally effective in estimating ve-

hicle states, some of the fundamental assumptions of the Kalman filter are violated

for its derivation in the preview filter context. Among these, which include contri-

butions from non-Gaussian camera noise and system linearization, the modeling

error associated with the causal violation of the temporal horizon is an intriguing,

unexpected guest. Two distinct geometric error sources in the propagation and

measurement step combine in tandem to corrupt the normal zero-mean expecta-
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tion for Kalman filter estimates. To begin to understand these errors, assume first

that the Kalman gains have reached a steady-state value, and ignore (supposedly

zero-mean) sensor noise for simplicity. Then, the estimator equations reduce to

those of a simple Linear Time-Invariant (LTI) discrete observer. This is shown in

eq. 6.9, with assumed system matrices and signals denoted with a ? superscript.

x̂?k|k = A?dx̂
?
k−1|k−1 +B?

duk−1 + L
(
y?k −Hx̂?k|k−1

)
= A?dx̂

?
k−1|k−1 +B?

duk−1 + L
(
y?k −H

(
A?dx̂

?
k−1|k−1 +B?

duk−1

))
= (I− LH)A?dx̂

?
k−1|k−1 + (I− LH)B?

duk−1 + Ly?k

(6.9)

Recall that in the special case where the assumed system matrices A?d, B
?
d are

identical to the true system matrices, Ad, Bd, the error dynamics of the estimator

are given by eq. 6.10:

ek = xk − x̂k = (Ad − LH) ek−1 (6.10)

which is stable (ek approaches zero) as time progresses. For this to occur, the

eigenvalues of (Ad − LH) must lie within the unit disk on the complex plane.

However, when the assumed and actual system dynamics differ, i.e. Ad does

not equal A?d, the discrete equation for error is more complex. If the assumed

estimator is stable, estimates of system states will reach a steady value. In other
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words, x̂k = x̂k−1 = x̂ss. When eq. 6.9 is rearranged with this substitution, the

following equation is obtained:

x̂ss = [I− A?d + LHA?d]
−1 [(I− LH)B?

duss + Ly?ss] (6.11)

where the steady-state input uss is obtained by solving the vehicle dynamic equa-

tions, as in eq. 3.1 for a steady-state value of δ according to the vehicle parameters

and the desired steady-state lateral acceleration U · rss. In a similar fashion, a

steady-state value of sideslip angle β and a vector of assumed and true lane mea-

surements can be obtained from the preceding section’s analysis when a vehicle is

assumed to be traversing a particular geometry at a particular speed. In compact

form, the true values of the steady-state vehicle and road states can also be ob-

tained from any given combination of δ, yr,i, e for the preview filter by performing

a simple algebraic reduction of the system equations at steady state:

xss = [I− Ad]−1 Bduss (6.12)

In this way the steady-state estimator error for the zero-noise case can be obtained

for a steady-constant-radius curve as:

ess = xss − x̂ss (6.13)
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For the simulation results shown in Figure 6.2, where a steady-state yaw rate

of 0.2 rad
s

and a forward velocity U of 20m
s

was achieved during the left-hand curve,

the measurement error εy,p from eq. 6.8 and the lever-arm error εx,p from eq. 6.7

are shown in Figure 6.4.
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Figure 6.4. Error sources for a straight-horizon local preview filter when a vehicle
traverses a left curve of 100m radius at 20ms while tracking the right road edge at a
1.625m offset

Figure 6.4 shows these error sources for a particular scenario. It is important

to remember that these errors will change with curve direction, lateral offset, and

whether the preview filter tracks the left or right lane edge. This is true even

for a particular vehicle, speed, and turn radius. Continuing with the simulation

of Figure 6.2, the total expected value of the error in yp for each preview point
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in the preview horizon due to each of these errors is shown in Figure 6.5. These
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Figure 6.5. Expected value of total error in each preview point location for a straight-
horizon local preview filter when a vehicle traverses a left curve of 100m radius at 20ms
while tracking the right road edge at a 1.625m offset

expected preview point errors are very small, in most cases less than 10% of the

modeled camera noise, and generally less than 1cm for this preview horizon length

(50 points, or 1s). The expected values of the errors in V and r for this scenario are

3.2× 10−3 and 1.4× 10−3 respectively. While these do not match the biases seen

in figure 6.2 exactly, recall that the local-coordinate preview horizon is built upon

the small angle assumption, an Euler-integration of preview point motion, and the

assumption that yp is small throughout the preview horizon. As preview horizons

get longer, curves get sharper, and time steps increase, all of these assumptions
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will contribute to the total bias. This suggests that while it may be tempting to

recast the preview horizon motion model to account for path shape, and use a

map of road geometry to determine which point is actually p time steps ahead of

the vehicle for each measurement, these efforts will likely be thwarted or at least

overshadowed by measurement noise, especially in longitudinal map registration.

6.3 Contributions of temporal horizon errors for

a range of realistic driving conditions

Even though steady-state bias errors caused by the temporal preview horizon as-

sumption were small in the preceding section, it makes sense to analyze their

relative contributions for a range of realistic conditions, since they may change

drastically across speeds and lateral acceleration values. To do this, note that sim-

ulations have shown that the bias errors are greater in cases where the road feature

being tracked is on the inside of the turn traversed. In other words, right turns

result in larger preview horizon and vehicle state estimate errors for a filter that

tracks the right lane edge. The errors for a right-hand turn with a filter tracking

the right lane edge can be seen for the same speed, radius, and vehicle as in the

preceding section in Figure 6.6 below.

The difference in error magnitude is significant, so it makes sense to consider

right-hand turns for a worst-case analysis of the steady-state biases caused by the
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Figure 6.6. Expected value of total error in each preview point location for a straight-
horizon local preview filter when a vehicle traverses a right curve of 100m radius at 20ms
while tracking the right road edge at a 1.625m offset

acausal nature of the preview filter’s predictive horizon. To perform this analy-

sis over a range of vehicle speeds, consider that highways in the United States are

designed according to the American Association of State Highway And Transporta-

tion (AASHTO) Green Book [71], which states that vehicles should be subjected

to an experimentally determined lateral acceleration that decreases with increasing

forward speed. This design “side friction factor,” or normalized lateral acceleration

of the vehicle’s center of mass, is used in eq. 6.14 to determine a minimum curve

radius for a particular superelevation e and forward speed U .



143

Table 6.1. AASHTO Design Side Friction Factors

Speed (mph) 25 30 35 40 45 50 55 60 65 70 75 80 85

fdesign .23 .20 .18 .16 .15 .14 .13 .12 .11 .10 .09 .08 .07

Rmin =
U2

g
(
e

100
+ fdesign

) (6.14)

where fdesign =
ay,CG

g
and g is the gravitational constant. The design side friction

factors for a range of applicable highway design speeds are shown in Table 6.1 and

taken from [71].

Using these equations, it is possible to obtain an idea of what slip angle β a ve-

hicle can expect to experience while cruising at a road’s design speed by specifying

speed alone. Additionally, consider that on most limited-access highways, lanes are

12 feet or 3.65m wide, so a vehicle could be expected to maintain a steady-state

position in the middle of the lane, or at a 1.83m offset from the right lane edge.

With these two pieces of information, it is possible to examine the preview-point

location and vehicle state errors for a range of speeds and preview horizon lengths.

For a filter designed as in Table 2.1 with 1s of preview and a time step of 0.02s,

the biases as a function of preview point and speed are given in Figure 6.7, and

the biases in the non-previewed states are given in Figure 6.8.

It is interesting to see the large effect higher lateral acceleration has at low

design speeds when compounded with geometrically tighter radii. Figure 6.7 shows
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Figure 6.7. Expected value of total error in each preview point location for a straight-
horizon local preview filter with 1s of preview when a vehicle traverses a right curve of
AASHTO design while tracking the right road edge at a 1.83m offset

that at the end of a 1s preview horizon, the expected bias error in the path can

be almost 1cm, but that at higher design speeds, this bias essentially disappears.

The biases in the non-previewed states, too, are worse at lower speeds than at high

speeds due to the roadway designs described by eq. 6.14.

It stands to reason that because longer preview horizons require measurement

and propagation of more of a turn’s curvature, increasing the horizon length could,

in fact, worsen bias errors. This is confirmed by Figure 6.9, which shows that errors

in previewed road states are quite significant at the end of the preview horizon for

low speeds. For 30mph, the steady-state error at the end of the preview horizon
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Figure 6.8. Expected value in non-previewed states for a straight-horizon local preview
filter with 1s of preview when a vehicle traverses a right curve of AASHTO design while
tracking the right road edge at a 1.83m offset

is over 0.12m, even though the current lateral offset estimate as shown by Figure

6.10 is only biased by 0.2cm. This is important information for the design of a

preview filter driving an optimal preview controller in environments where such

high design lateral accelerations are present, e.g. highway off-ramps.

In conclusion, while for most highway driving, the biases on steady curves

caused by temporal horizon assumptions are small contributors to the overall es-
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timate bias, they are exacerbated for roads with high design lateral acceleration.
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Figure 6.9. Expected value of total error in each preview point location for a straight-
horizon local preview filter with 2s preview when a vehicle traverses a right curve of
AASHTO design while tracking the right road edge at a 1.83m offset

6.4 Using path coordinates to mitigate temporal

horizon assumption biases

In situations where these biases are expected to become significant, they can be

somewhat mitigated by constructing the preview measurement vector and Ad ma-

trix by using the mapped road geometry. In doing this, the path-coordinate S is

used to look up true lever arms and preview point locations based on the actual,
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Figure 6.10. Expected value in non-previewed states for a straight-horizon local preview
filter with 2s preview when a vehicle traverses a right curve of AASHTO design while
tracking the right road edge at a 1.83m offset

arbitrary shape of the road marker, so that turns, straights, and transitions are

accurately accounted for. This requires very good longitudinal map registration,

and thus may not be able to provide significant improvement in state estimates

for the physical experiments in this dissertation, where coarse longitudinal regis-

tration and other error sources dwarf those contributed by causal concerns. To
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see if exact longitudinal registration combined with correct station registration is

indeed helpful, consider a simualtion of a vehicle and preview estimator traversing

a 50m radius right-hand turn at 10m
s

, approximating the AASHTO condition for a

25mph curve. The simulation was performed without corrupting measurements or

inputs with noise, and the resulting errors are shown in Figure 6.11. Even though

no measurement or input noise was added, some bias and periodic variation in

the error are still present due to mismatch between the shift register’s model and

the global motion of the vehicle, due to the approximations in the shift register

equations, discussed below.
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Figure 6.11. Errors in non-previewed states for a noiseless planar simulation of the
path-coordinate horizon preview filter for a 50m-radius right turn at 20ms with perfect
longitudinal map registration
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This simulation was performed with a simulated LQG controller following the

path at the specified offset, so error in path tracking along with the geometric ap-

proximations in the preview horizon motion model corrupt the estimates and keep

them from approaching zero, or from dipping to the level predicted by Figure 6.10.

This does indicate that for non-previewed states, using a path-based horizon is

likely superfluous. These errors combine to produce the “noise” apparent in figure

6.10, as a result of the prediction and correction steps in the Kalman filter. But

for a combined controller-estimator that needs accurate preview point estimates

as well as vehicle states, it is important as well to examine this method’s effect

on the preview point biases, which were quite high for this scenario as shown in

Figure 6.10. These are shown for the “ideal” simulation with no measurement or

input noise added in Figure 6.12. Note that the “noise” seen in this plot is due to

the disagreement between the shift register model’s Euler approximation of road

motion movement, which also prevents a complete disappearance of bias error.

While the non-previewed states do not enjoy reduction in bias error with the

path-based preview horizon modification, the preview points themselves, because

they are directly measured, are much more accurately portrayed. Figure 6.12 sug-

gests that even at the preview horizon, the error in preview point position resulting

from the estimator’s combination of inputs and measurements is corrupted by less

than 1cm. In filter/controller designs where very accurate odometry estimates are

available for longitudinal registration, this method could provide more accurate
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Figure 6.12. Errors in preview point states for a noiseless planar simulation of the
path-coordinate horizon preview filter for a 50m-radius right turn at 20ms

estimates than the straight preview horizon assumption. However, for the low-

cost GPS system used for longitudinal map registration in this dissertation, this

modification to the filter framework was deemed unnecessary.



Chapter 7
Validation of the Preview Estimation

Framework for Closed-Loop

Lane-Keeping

Chapter 1 reviewed a linear optimal preview controller as in [63]. More recent

efforts have offered extensions to this model of human drivers to include concepts

neuromuscular (actuator) dynamics [72] or control near the limit via linearization

[73], but applications of this control framework to physical vehicles in a semi-

autonomous capacity is scarce in the literature, with many autonomous vehicle

practitioners finding success with modified single-point preview PID [59] or model-

predictive control. Researchers interested in implementation of fully autonomous

driving tend to build dense maps, localize and plan paths using computationally

intensive methods as in [19, 32, 44, 45, 46, 47, 48, 49, 50], and attack the con-
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trol task without explicitly considering the limitations of the estimation scheme

on system performance. Even so, the performance of these guidance algorithms

can still be quite good because state and ego-motion estimates from sensors like

LIDAR scanners and differential GPS are very good. This is an excellent and ad-

equate approach given the vehicles and sensors used, as the sensor fusion methods

developed are high-quality.

However, problems arise when considering the jump from current driver-assist

technologies to full autonomy. Sensors available to production vehicles are often

less accurate than those employed by research-grade autonomous testbeds. There-

fore, a need exists to marry the ideas of high-speed vehicle guidance using simple,

linear preview-based control, like the method in [63], to an estimation framework

that allows for analysis of stability margins and minimum visibility for a closed-

loop perception and lateral tracking system, as well as the use of production-quality

sensors. This chapter investigates the feasibility of using the local-coordinate pre-

view estimator as a perception framework for a lane-keeping controller, including

issues with the transformation of the control framework from the global to the

local coordinate system, and results from four physical tests.
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7.1 Design and simulation of the optimal pre-

view controller-estimator

In [63], Robin Sharp showed that when designing the optimal preview controller

(reviewed in Chapter 1) in error-coordinates, the resulting steering angle under

closed-loop control, δ, is invariant under the transformation of the vehicle-road

system from error (global) to body-fixed (local) coordinates. This occurs through

the disappearance of the feedback gain on global yaw angle ψ and the vehicle’s

global y-position, since these states have no meaning in a vehicle-fixed framework.

In this way, Sharp suggests that the optimal preview control law described by eq.

1.31 be modified to retain only the feedback gains on lateral velocity V and yaw

rate r, followed by the preview gains on previewed road geometry as given in [63].

This idea was tested at Penn State’s Test Track, where there is a long straight

followed by the smaller-radius turn on the track’s East end. Semi-autonomous tests

are reasonably easy to perform in this area, with the only obstacles to safety being

the unavoidable steep dropoff on the outside of the turn, and changing pavement

quality on the transition from straight to curved road section. This lies in stark

contrast with the North West end of the test track, which features a narrow bridge

and constant bus traffic.

With safety in light of the steep bank on the outside of the turn in mind, sim-

ulations and tests for validation were performed at a modest 25mph target speed.
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At this speed, the preview filter was run with 1.5s of preview, an experimentally

determined balance between achieving non-previewed state accuracy and avoiding

lane measurement corruption due to causal errors as discussed in Chapter 6, along

with camera measurement errors due to elevation changes on corner entry. The

theoretical variances on the non-previewed states as a function of preview horizon

length are shown in Figure 7.1.
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Figure 7.1. Local-coordinate preview estimator variance on non-previewed states as a
function of preview time for U = 11ms and dT = 0.02s

Note that at 1.5s of preview, or np = 75 in this test, most of the achievable

accuracy in non-previewed states is achieved, but not all. Also note that because

of the lower speed, more preview points are obscured by the car’s body, so the

measurement matrix H in the preview filter is more sparse, and the occluded
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preview points near the vehicle must be propagated backwards through the shift

register without correction. This is an interesting conundrum, with the preview

filter framework showing increasing utility at higher, rather than lower speeds. As

discussed previously, this is due to a combination of the differences in spacing in

the temporal horizon and the higher signal-to-noise ratio of small states like V at

higher speeds.

With the preview horizon in the preview filter framework constructed with

1.5s of preview, the Sharp optimal preview control gains for Big Red are shown in

Figure 7.2. This figure shows that for this control weighting scheme, the optimal

preview gains level out to zero at the preview horizon, so that “full preview”

has been achieved by the controller, and it needs no further road information for

guidance as long as previewed road geometry estimates are bounded. The weight

on lateral position error, qy, was tuned specifically to achieve this result, so that

the preview filter’s “visible space” was not exceeded. If it was, it is possible that

mapped lane features could be used for preview points needed by the controller

beyond the filter’s horizon.

To see qualitatively how the gains acting on the position of each preview point

estimate in a controller-estimator framework relate to those points’ expected statis-

tics, consider Figure 7.3. This figure shows the Sharp optimal preview gains in

black, bounded in grey by the theoretical variance of each preview point’s position

estimate from a steady-state Kalman filter design of the preview filter. It shows
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Figure 7.2. Sharp optimal preview feedback gains on each preview point for U =
11ms ,R2 = 0.05,qy = 1,qψ = 0, and dT = 0.02s

very clearly how growing uncertainty in preview point measurements relates to

their “importance” to the optimal preview controller. Subjectively, it makes sense

that if the optimal preview controller is designed so that the preview point vari-

ances grow significantly only after the control gains on the preview points have died

out, controller performance should be good. Remember, however, that errors in the

previewed state estimates must be bounded to ensure a bounded steering angle via

the Sharp optimal preview control law. Outliers, even at preview distances where

the control gains are small, could still cause problematic closed-loop behavior. In

the tests performed, this was not an issue, but in cases where large outliers are

a concern, the preview filter framework could be used to check for unexpectedly

large innovations in the measurement update step to determine whether outliers

may be present.
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Figure 7.3. Sharp optimal preview feedback gains on each preview point with steady-
state 1−σ bounds on preview point estimate error for U = 11ms ,R2 = 0.05,qy = 1,qψ = 0,
and dT = 0.02s

To see how the controller performs under ideal circumstances, a closed-loop

simulation of Big Red following the South straight and East turn of the test track

was performed. In contrast to the simulation results shown in Figure 3.4, this

simulation was performed inclusive of the superelevation value e of the road, which

provides an exogenous disturbance that the preview filter “knows about” through

an input model, but the controller has no special provision for rejecting. The road

bank angle versus the station coordinate S is shown in Figure 7.4, and was obtained

from the high-fidelity LIDAR/GPS mapping procedure as outlined in Chapter 4.

With the superelevation as described by the map feeding a disturbance into

the vehicle states (and estimation framework, which has access to superelevation

via map data), the optimal preview controller/estimator outlined above was able
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Figure 7.4. Larson Transportation Institute road bank angle (deg) as a function of
path-coordinate S

to maintain extremely good path tracking in simulation. Non-previewed state

estimates for the simulation are shown in Figure 7.5, where the controller was

instructed to maintain a 1.625m lateral offset from the right lane line. The con-

troller described exhibits the expected anticipatory behavior, and maintains this

offset very well, even in the face of the superelevation disturbance.

One interesting thing to note about the simulation is that the the lateral ve-

locity V and the yaw rate r have the same sign, even though the simulated Big

Red is traveling above its “zero-crossing” speed, which, in vehicle dynamics termi-

nology, basically indicates that the sideslip angle β should be negative, resulting

in a negative V . The lateral velocity V is not negative, however, because of the

road superelevation. This is important information, and indicates that in this case,

superelevation is important to the estimator. To show this effect on estimator per-
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Figure 7.5. Simulation of 11ms traversal of test track East turn under preview con-
trol/estimation, where controller attempted to maintain a 1.625m offset from the right
lane edge

formance, consider Figure 7.6. This figure shows filter state estimates versus true

states for a test case wherein the preview filter had no access to the superelevation

disturbance. During that simulation, the preview controller was able to reject the

superelevation disturbance with only a 10cm bias in tracking performance, but

lateral velocity estimates were exceptionally noisy, and biased from truth.
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Figure 7.6. Simulation of 11ms traversal of test track East turn under preview con-
trol/estimation, with assumed zero superelevation in the preview filter.

7.2 Physical testing of the optimal preview controller-

estimator

As mentioned in the preceding chapters, the Larson Transportation Institute Test

Track is home to “Big Red,” a retrofitted 1989 GMC2500 4x4 often used for tele-

operation during vehicle dynamics tests where human operation would be far too

dangerous. As such, it is outfitted with an Aerotech rotary stage that acts as

a servomotor for controlling the steering, and linear motors to control throttle

and brake. All sensors are ROS-enabled, so their control via preview control and

estimation was straightforward.

For the four runs shown in this section, forward speed was the responsibility

of the “backup driver,” who monitored the test for safety, and possessed a “dead
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man’s switch” to disable the motor and halt the test as soon as his/her hands

left a two-handed grip on a repurposed gaming controller. The backup driver was

responsible for maintaining a 25mph speed throughout the test while the optimal

preview estimator/controller steered the vehicle around the same turn simulated

in the preceding section. A view from inside of the cockpit during one of the test

runs is shown in Figure 7.7.

Figure 7.7. First-person view of 11ms traversal of test track East turn under preview
control/estimation

The tests were each run with the same control law as shown in Figure 7.2,

and as before, the coarse longitudinal map registration for finding yr,i was accom-

plished with a low-cost 10Hz GPS module on the ROS-enabled Beaglebone, and

measurements of yaw rate came from the IMU on the same. Aside from the expen-

sive ($100k) sensor suite needed for map generation, the entire cost of the sensing

equipment needed for the tests, including the PointGrey camera, was roughly $230.

Preview filter estimated states for four separate traversals of this same area on the

track are shown in Figure 7.8.

The temporal variation in the ŷ0 position may seem troubling when observed as
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Figure 7.8. Experimental states during 11ms traversal of test track East turn under
preview control/estimation versus time

a time series, since it suggests that the controller’s performance was highly initial-

condition dependent. It is indeed true that the preview controller-estimator is

essentially a Linear Quadratic Gaussian (LQG) controller, and these are notorious

for having uncertain robustness. However, several possible sources of this bias were

present:

1. The backup driver was responsible for longitudinal speed control, certainly

not maintaining a perfect 11m
s

.

2. There are errors as discussed in Chapter 6 with the known approximations

in the vehicle dynamics and shift register.

3. No actuator dynamics were considered.

4. The test featured nearly constant violation of the planar road assumption
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due to undulations in the test track surface and the banked turn.

Because of this, and despite the fact that the vehicle was able to maintain a

satisfactory position in the lane, the oscillations in the vehicle position should be

the subject of further study. In fact, work is ongoing to quantify robustness of the

optimal preview LQG under certain assumptions, but is beyond the scope of this

dissertation.

Because the test vehicle was driven with slightly different initial conditions in

each traversal, it is wise to consider the variation in states during the traversals

as a function of the S-coordinate rather than time. This will expose, at least

to a degree, whether road-specific disturbances are contributing to the oscillations

observed. This is shown in Figure 7.9. When the runs are compared with each other
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Figure 7.9. Experimental states during 11ms traversal of test track East turn under
preview control/estimation versus station

this way, it becomes clear that, apart from some initial errors as each estimator
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converges, the oscillations in vehicle lateral offset from the desired position of

1.625m correlate strongly with position on the track, suggesting that they are the

result of map errors. These errors could manifest in the filtered estimate of road

position due to violation of the lane measurement node’s flat road assumption, or

possibly the result of the controller attempting to respond to small lateral lane

position variations unsuccessfully due to deadband or rod-end compliance in the

steering rack, which is quite significant for Big Red at 24 years old.

Even with the increase in variation about the reference offset of 1.625m from

simulation to experiment, however, it is clear that the preview estimator offers a

reliable source of vehicle and road states to the optimal preview controller, and

allows the vehicle to navigate an appreciably sharp turn with heavy banking. This

paves the way for detailed investigations into the true nature of the relationship

between previewed state perception and path tracking for semi-autonomous lane-

keeping systems.



Chapter 8
Conclusions and Future Work

This dissertation looked at a novel paradigm to use temporally previewed infor-

mation to obtain sub-lane-level lateral positioning accuracy, using a combination

of a map and other sensors to allow the estimation framework to track its en-

vironment in a control-relevant, receding horizon. First, two realizations of the

map-based preview estimation scheme were derived, each with its own particular

benefits. Each provided a-priori predictions of estimate errors for a given looka-

head distance. These estimation frameworks’ theoretical simplicity and flexibility

improved upon the point-based limitations of a SLAM approach for lane finding

and vehicle motion recovery, the rigid map registration requirements of traditional

map-based localization, and the parametric fitting assumptions of older lane-based

vehicle state estimators. Treating the mapped road location at the edge of the pre-

view horizon as a model input allowed these estimators to correct lane goemetry

where measurements were available. Lane measurements simultaneously improved
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lateral vehicle state estimates, and using current vehicle states to propagate “un-

seen” but mapped lane features in occluded regions of the temporal shift register.

After deriving each of these estimation frameworks, the body-fixed coordinate

version of the estimator was tested in two locations and three separate test events

using maps generated from either high-accuracy LIDAR data or coarse Google

Earth breadcrumbs. Google Earth data were determined not to provide sufficient

global accuracy in lateral vehicle position, but did not harm local offset estimates

significantly. LIDAR-generated lane line maps, in conjunction with the preview

filter, offered between 3cm (straight-line driving) and 17cm 1−σ error bounds with

very small bias errors in lateral position. The accuracy of the estimator clearly

depended on the degree to which vehicle dynamics were excited and the degree

to which the path at hand was followed in accordance with the temporal preview

horizon assumption.

Then, to address the error sources unique to the temporal preview estimation

paradigm, the special case of constant-radius turning as a source of bias error in

the preview filter was considered. Bias values resulting from the causal violation of

the assumed temporal preview horizon for a range of expected driving conditions

suggested that these effects are larger on roads with higher design lateral accel-

erations (lower design speeds), but that biases on non-previewed states are small.

For a preview filter designed as in Chapter 5, with 20m of preview and a 20m
s

for-

ward speed, and a road with a 45mph design speed like the Larson Institute Test
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Table 8.1. Preview Estimation Error Budget

State σexp σpred ēcausal

ŷ0(m) 0.17 0.058 -0.0025

V̂ (m
s

) 0.11 .12 0.00025

r̂( rad
s

) 0.02 0.08 0.0057

Track, the predicted accuracy, constant-curve bias, and actual accuracy during the

aggressive one-lap traversal are shown in Table 8.1.

In Table 8.1, ēcausal is the expected causal bias error in each state for the

track’s turn radii as examined in Chapter 6. From this table, it is clear that for

non-previewed states V and r, the preview filter framework as designed performs

similarly to predictions using a steady-state Kalman filter analysis like the one

that generated Figure 5.14. For the test track’s constant-radius curves, biases

expected from violation of causality in the temporal preview horizon assumption

are very small compared to other error sources. Unmodeled measurement error

sources in the camera, such as roll and pitch motion of the vehicle (which will add

input-correlated bias), non-planarity of the road on turn entry/exit (which will add

location-dependent measurement bias), and errors in the preview horizon resulting

from the euler model of relative road motion and the non-constant forward speed

U are likely at fault for the disparity in predicted versus observed error in y0.

These error sources are not discussed in detail in this dissertation, but are targets

of ongoing work. Recall, too, that the preview filter outperformed estimated error

bounds on y0 for a straight-line traversal of the test track’s North straightaway,
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where it achieved a 1-σ error of 3cm when compared to the ground truth DGPS

system. This test also suggested, via Figure 5.16, that even with the preview filter’s

experimental accuracy under significant lateral vehicle dynamics excitation, 17cm

accuracy is on the same order as a human’s lane-keeping error when driving a

straight portion of road.

Finally, the preceding chapter showed, through simulation and physical exper-

iment, that it is possible to design a perception and lateral state control system

with explicit knowledge of how the length of the spatiotemporal horizon affects

both the perception and control tasks individually, so that they may be designed

to work in concert. Additionally, the experimental results have shown that it is in-

deed possible to obtain lateral states sufficient for lateral control with very low-cost

sensors.

8.1 Further developments of the preview filter

framework

However, by no means is the preview filter concept developed here complete as

delivered. This dissertation’s primary goal was to develop the preview estimation

framework, but many extensions, improvements, and further studies are possible.

Any number of additional sensors, measuring any of the states or linear combi-

nations thereof, could be added with appropriate noise models to improve state
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estimates even further. The measurement of multiple lane features is also a possi-

bility, especially if the map specifies what each of these features should look like,

and the lateral offset from the lane center of each one. In this way, the mathemati-

cal dimension of the filter could be maintained with one shift register, and the only

change would be the addition of rows to the measurement matrix H. In this way,

the measurements of each lane feature would appear as repeated measurements

of the lane center via map-specified offsets. These repeated measurements would

likely reduce the variance in the state estimates in a very predictable manner given

by the Central Limit Theorem.

The use of map information to relax the planar road assumption used in this

dissertation for forward-facing monocular cameras is also possible. Using mapped

elevation profiles for a road in combination with the coarse longitudinal map reg-

istration procedure could provide the lane measurement system with a 1:1 lookup

of scan-lines for every preview distance, even for roads with non-planar geometry.

This could aid in the estimation process while avoiding bootstrapping issues, since

the longitudinal map registration procedure is decoupled from the lateral states

corrected by the preview filter. It would also allow the framework to avoid looking

for road features over the crest of a hill, for instance.

In an application where speeds may vary slowly, such as an Adaptive Cruise

Control (ACC) and autonomous lane-keeping system for a vehicle on the highway,

a compromise in preview filter shift register size and accuracy concerns would be
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necessary in maintaining a constant number of previewed features, np. Statisti-

cal analysis of visibility on roads is possible, and is a candidate for inclusion in

the map. Additionally, it is possible for a perception/control system designer to

use multiple cameras for preview point measurement (such as a side-view camera)

to make lane measurements possible at both close and far ranges. In [37], Dick-

manns recommends the use of multiple cameras with differing zoom levels to aid

in perception on different scales. This is also a wonderful idea for the preview filter

framework, as multiple lane features could be tracked at different lookahead scales,

and is planned for future work.

Finally, because the physically implemented preview filter algorithm as pre-

sented in this document was programmed in Python for simplicity and rapidity of

development, it may not be especially suited for migration in whole to a low-cost

single-board computer like the Beaglebone. With that said, the algorithm itself

is simple, and requires only a finite dimension in the system matrices, so it may

be possible to implement it entirely on a very low-cost ARM-powered computer

with translation to C++. The low-cost computer already handles all of the requi-

site sensor data acquisition, so migration would be of the filter pieces only. This

would allow for a self-contained perception system with a very low price tag, and

exceptional accuracy.
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8.2 Relating visibility and driveability

As the preceding chapter hinted, the use of the preview-based LQR in practice,

with output feedback, requires much more study before it could be implemented

on a production vehicle. Because sensor selection and preview horizon length are

tunable parameters, as are the LQR control weights in the preview controller,

it is likely possible to develop concrete guidelines for the deployment of coupled

perception and lateral control systems using the preview filter in conjunction with

an optimal preview controller, in a manner similar to the analysis presented in [43]

for a different class of vision-based controller/estimators.

A thorough robustness analysis could uncover issues that bound the types of

sensors that should be used in a closed-loop lane-keeping system. Additionally,

this same sort of analysis could be very useful for an implemented system with a

set amount of visibility, where a driver-assist or semi-autonomous system would

have to make decisions about whether automated steering of a vehicle is feasible

for a given driving situation. The preview filter framework, with its ability to

link preview sensor noise models to bounds on state estimate accuracy, offers the

system a way to determine this. Work in this area is ongoing.
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