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Abstract

This thesis proposes a map-based vehicle occlusion detection algorithm by utiliz-
ing a vehicle’s position on the road, maps of road features, and a forward-looking
camera to find obstacles on the roadway. The challenge is that the mapped fea-
tures must be rendered from the map database, registered to the image from the
front of the vehicle, and then processed to determine occlusions. The use of a map
simplifies the detection process by providing a known feature set of the road scene,
where other algorithms must determine these features in real-time. The advan-
tages of this approach include: confirmation of the vehicle’s position relative to
the road edge, updating of map information, rendering of map information through
occluded scenes (to allow ”see through” vehicles), optimization of image-processing
thresholds as a function of map/position/lighting information, and provide knowl-
edge of roads during harsh, low-visibility weather. This algorithm was successful
in detecting occlusions of various road scenes, based on rendered maps of the en-
vironment.
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Chapter 1
Introduction

The purpose of this thesis is to detect a vehicle’s position on the road and obstacles

on the roadway by matching maps of road features to images from a forward-

looking camera. The challenge is that the mapped features must be rendered from

the map database, registered to the image from the front of the vehicle, and then

processed to determine occlusions. A flow-chart of the process is shown in Figure

1.1.

Vehicle Localization
Rendering

Of Map Features
Image Registration Occlusion Detection

Figure 1.1: Flow-chart of the methods used for the occlusion detection process in
this thesis.

The benefit of this approach, versus prior research on occlusion detection, is

that the use of a map simplifies the detection process. Where most occlusion de-

tection algorithms must determine the static environment through multiple image

sequences [1, 2, 3, 4, 5, 6, 7], a map database provides these features quicker and

more accurately due to the preprocessing of road scenes. Also, the use of one map

database allows for multiple vehicles to share the same understanding of the local

environment, as opposed to the potential errors in feature detection from a single
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Figure 1.2: Gazebo rendering of camera
view.

Figure 1.3: Vehicle forward-looking cam-
era.

front-facing camera. These potential errors could be due to the mis-calibration, and

perceived lighting and perspective of the road scene. Vehicle localization within

the map provides insight into potential hazards ahead of the vehicle and provides

a better understanding of the road for vehicle guidance, such as lane markers and

turns within the road, prior to reaching those states.

An example of the proposed process is shown in Figure 1.2, which illustrates

the rendered map image corresponding to the forward-looking camera image in

Figure 1.3.

An advantage of this approach is that the occlusion detection process through

map registration allows many benefits including: confirmation of the vehicle’s po-

sition relative to the road edge, updating of map information, rendering of map

information through occluded scenes (to allow ”see through” vehicles), optimiza-

tion of image-processing thresholds as a function of map, position, and lighting

information, and provide knowledge of roads during harsh, low-visibility weather.
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The remainder of the thesis is organized as follows:

Chapter 2, Literature Review, provides the history and current work within

the fields of map-based vehicle informatics and occlusion detection. The methods

for this thesis are outlined as well.

Chapter 3, Image Acquisition, outlines the equipment and equipment specifica-

tions used in this thesis. Also, the programming environments used for the image

processing and map rendering are listed.

Chapter 4, Camera Calibration, specifically focuses on the underlying calcula-

tions of camera calibration including camera intrinsics, extrinsics, distortion coef-

ficients and homographies.

Chapter 5, Map Construction, discusses the use of a three-dimensional render-

ing of the world, developed from Google Earth/Google SketchUp and rendered in

Gazebo. Using collected vehicle data from a MEMS IMU and GPS, a virtual cam-

era is localized within the rendered environment in the location of the real vehicle

based on the east, north, up coordinates (ENU). This chapter also discusses the

image registration methods used to register the map and camera views.

Chapter 6, Occlusion Detection, develops an algorithm for processing the reg-

istered map and camera images for occlusion detections. The disparity image

represents the differences between what is expected in the world frame, and what

actual is in the field of view of the camera. Of the remaining features, occlusions

of sufficient size (width, length, area) are considered occlusions. This algorithm

specifically focuses on vehicle occlusions, but can be extended to determine pedes-

trian occlusions as well.

Chapter 8, Conclusions, discusses the results of the occlusion detection process

outlined in Figure 1.1, as well as future work to be completed to improve this

research.



Chapter 2
Literature Review

This work combines map-based information retrieval, lane detection and image

processing. All are mature areas of study, yet the combinations of these approaches

remains relatively new. This chapter presents a summary of each research field as

it applies to this thesis. Because each field has so much breadth, this thesis does

not seek to comprehensively describe all research; rather, it focuses on only the

most relevant contributions.

2.1 Map-based Vehicle Informatics

The implementation of map-based vehicle information systems have been devel-

oped to create a simulated driving environment. Past and current research has

focused on driver interaction with a driving simulator, specifically to study driver

decision making through behavioral studies [8, 9], as well as to assist in the reha-

bilitation of drivers to protect them from injuring themselves or others. [10] Also,

the idea of providing a person with important information of the scene ahead, in

the form of a heads-up display on the windshield, has been researched throughout

the last 50 years [11]. These technologies are outlined below.
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Figure 2.1: An example of a driv-
ing simulator developed in 1963. P.
Kesling, A New Driving Simulator
Including An Interactive Intelligent
Traffic Environment. Accessed Apr.
07, 2013.

Figure 2.2: An example of a driv-
ing simulator developed in 2011. N.
Fouladinejad, Modeling virtual driving
environment for a driving simulator.
Accessed Apr. 07, 2013.

2.1.1 Driving Simulators

A driving simulator is a virtual environment, focused on immersing an individual

into a driving scenario that is modeled to closely resemble a real world driving

scene. [12] This technology allows for the creation of low-cost simulation, where

physical implementation may be expensive and dangerous. [13] In more recent

work, the idea of a visual database of static terrain, such as roads and buildings,

environmental features, such as foliage, and dynamic features, such as other motor

vehicles has been researched to create a more realistic virtual environment. [12]

Figure 2.2 and 2.1 display a simulated driving environment, one created in 1963

and one created in 2011.

2.1.2 Augmented Reality & Heads-up Displays

A heads-up display provides pertinent information to a driver, such as lane depar-

ture warnings [14] and driving directions [15]. This allows for messages of vehicle

information to be projected onto a windshield, creating a form of augmented real-

ity. Heads up displays have been heavily researched in the past for aircraft cockpits
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[16], as well as motor vehicles [11], although generally only seeing implementations

in military-based vehicles. [17] Modern motor vehicles are beginning to implement

heads up displays for vehicle speed and driving directions[15].

2.2 Occlusion Detection

Past research in occlusion detection has focused on the segmentation of motion

within a sequence of images to determine what is static, and what is dynamic

within the images. This process is known as background modeling, or background

subtraction. By removing stationary objects, such as roads, signs, and foliage,

from an image, allows for the tracking of moving objects, or potential occlusions.

[6, 7] Figure 2.3 shows and example of background modeling. These algorithms

allowed for fast execution, given the limited amount of computational power at

the time.

As computational speeds of computers have exponentially increased, more com-

plex have been developed for image processing and occlusion detection that are

still able to give real-time performance. More recent approaches utilize algorithms

such template matching [18, 19, 20], three-dimensional modeling based on camera

perspective, and state estimation algorithms [4, 21, 22], as outline below.

Most algorithms of current research still perform background detection with

respect to a stationary camera based on the motion within the camera view

[1, 2, 3, 4, 5]. Pixel motion is determined by the comparison of two consecutive

image frames. Regions of minor or no pixel motion are assumed to be background

features. Regions of high activity are considered for potential occlusion features.

Background subtraction can be extended into the HSV-space for shadow elimina-

tion surrounding features of interest (Figure 2.4). [4]

Another approach in current research is template matching [18, 19, 20] based

on an initial training set of multiple views of a range of vehicles and pedestrians.
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Figure 2.3: Example of background modeling. S. Gupte, O. Masoud, R. Martin,
et al., Detection and classification of vehicles. Accessed Apr. 07, 2013.

Figure 2.5 shows an example of a training set used for vehicle detection. Each

image captured is compared to the training set to determine the likelihood of a

match. Template matching is also used in road sign detection (Figure 2.6). [23]

Features can be tracked throughout image sequences using state estimation

algorithms such as a Kalman filter (Figure 2.7) [4] or a Particle filter [21]. Also,

the Lucas Kanade algorithm has been used for feature tracking based on optical

flow [22]. These algorithms improve the accuracy of occlusion detection as features

are tracked throughout their entire motion, instead of each frame being considered
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Figure 2.4: Example of shadow elimination. J. Luo and J. Zhu, Improved Video-
Based Vehicle Detection Methodology. Accessed Mar. 22, 2013.

a new scenario.

Once the occlusions are identified, it can be beneficial to determine a three-

dimensional bounding box to represent the footprint of the occlusion in the world

space. Three-dimensional deformable models can be developed based on the ex-

pected size of the occlusion and thresholded based on the dimensions of the bound-

ing box. [5]
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Figure 2.5: Example of training set used for vehicle detection. C. Wang, and J.
Lien, Features A Statistical Approach. Accessed Mar. 27, 2013.

Figure 2.6: Example of training set used for sign detection. S. Maldonado-bascon,
S. Lafuente-arroyo, P. Gil-jimenez et al., Road-Sign Detection and Recognition
Based on Support Vector Machines. Accessed Mar. 20, 2013.

2.3 Outline of Methods Used

In this thesis, the application of a map-based simulated environment is used to map

road features to a forward-facing camera. The map database provides important

information of the surrounding environment and can be used as a reference for

the feature comparisons of the map and forward-facing image features. The use

of basic image processing filters, such as morphological and binary filters, are

used for occlusion detection. These filters are computationally efficient, easy to

implement, and provide satisfactory results, as outlined above from past research in

occlusion detection. Occlusion contours are thresholded based on the width, height,
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Figure 2.7: Example of the use of a Kalman filter to track occlusions. A. Ghasemi,
R. Safabakhsh, A real-time multiple vehicle classification and tracking system with
occlusion handling. Accessed Mar. 15, 2013.

Figure 2.8: Example of deformable
three-dimensional model. C. Pang, A
novel method for resolving vehicle oc-
clusion in a monocular traffic-image
sequence. Accessed Mar. 15, 2013.

Figure 2.9: Example of deformable
three-dimensional model fit to road
scene. C. Pang, A novel method for
resolving vehicle occlusion in a monoc-
ular traffic-image sequence. Accessed
Mar. 15, 2013.

and area. This approach simplifies the analysis of potential occlusions, instead of

developing a three-dimensional model of occlusions based on the occlusion position

and perspective of the forward-facing camera, as discussed above. These are the

methods used within this thesis.



Chapter 3
Image Acquisition

3.1 Camera & Computer

For algorithm verification, testing was completed with an Apple iSight webcam

on a 2008 MacBook Pro and images taken with an iPhone. Video was obtained

using a Point Grey Firefly MV Mono USB camera (Figure 3.1) with a wide-angle

lens. Images were acquired at the default 15 frames per second at a resolution of

640x480. All testing was completed on a 2008 MacBook Pro 2.53 GHz Intel Core

2 Duo laptop with 4 GB RAM.

Figure 3.1: Point Grey Firefly MV Mono USB camera. ptgrey.com. Accessed Apr.
03, 2013.
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3.2 Programming Environment

All algorithms were implemented and tested in Python (v. 2.7.3) using the OpenCV

library (v. 2.4.3). All maps were constructed through Google Earth/SketchUp and

implemented through the Robot Operating System (ROS) and Gazebo.

3.3 Image Collection Environments

North Atherton Street Bridge

Figure 3.2: Location of out-of-vehicle image acquisition. Images were taken from
North Atherton Street Bridge in central Pennsylvania.

For initial algorithm testing, out-of-vehicle images were obtained from North

Atherton Street Bridge (Figure 3.2) in central Pennsylvania. Images were taken on

an overcast day in March 2013. This location was chosen because of the distinct

lane markers, abundance of multi-vehicle scenes, and unobtrusiveness for image

acquisition. The algorithms discussed in this thesis processed the images off-line

for initial algorithm verification.

Route 322 North

In-vehicle video, GPS, and MEMS IMU data was obtained on Route 322 North

(Figure 3.3) in central Pennsylvania on a sunny day in March 2013. This location

was chosen for the sparse, basic highway scenes for video and image based algorithm



13

Figure 3.3: Location of in-vehicle video/data acquisition. Video and data was
collected on Route 322 North in central Pennsylvania.

testing. All videos and images were processed off-line, as real-time performance

could not be achieved. In-vehicle video was chosen because a goal of the thesis is

to develop an in-vehicle occlusion detection system.



Chapter 4
Camera Calibration

Camera calibration allows for images to be undistorted and real world distances

to be determined. The approach explained in this chapter utilizes homogeneous

coordinates to determine the camera calibration matrix, distortion coefficients and

homography matrix.

4.1 Pinhole Projection with Homogeneous Co-

ordinates

The transformation of 3D world points to 2D image points is non-linear, as many

points in the world space correspond to the same pixel on the imaging sensor.

Therefore, the use of homogeneous coordinates simplifies the problem to a linear

transformation.

W =


X

Y

Z

⇒W =


X

Y

Z

W

 (4.1)

Any non-zero scalar multiple of a homogeneous vector pertains to the same
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Y

X

Z

y

x
O

f

F(x,y)

W(X,Y,Z)

Origin of Projection

Figure 4.1: Coordinate systems used to model a pinhole projection. This shows
the relation of the origin of projection to an arbitrary point in the world space.

image point.

4.2 Intrinsic Parameters

From Figure 4.1, the relationship between a point on the Film Plane, F (x, y),

to a point in the World Space, W (X, Y, Z), can be determined through similar

triangles. This relationship assumes a common center of projection, labeled as O

in Figure 4.1. The parameter f is known as the focal length, and is an inherent

property of the camera. [24, 25]

f

Z
=

x

X
=

y

Y
(4.2)

Solving 4.2 for x and y, the location of the three-dimensional point on the film
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Film/Image Plane

yv

u

x
t

x

t
y

Figure 4.2: Camera sensors present data starting from the top left of the Image
Plane.

plane can be determined:

x =
fX

Z
(4.3)

y =
fY

Z
(4.4)

In matrix notation: 
x

y

z

 =


f 0 0

0 f 0

0 0 1



X

Y

Z

 (4.5)

The conversion from the non-linear matrix to a homogeneous matrix is as fol-

lows: 
x

y

z

 =


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

W

 (4.6)

Most commercial CCD/CMOS imaging sensors do not consider the center of

the image plane as the origin of the image plane, but the top-left of the image.

Therefore, Image(0, 0) starts in the top-left, and Image(width, height) ends at the
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bottom-right of the image. This transformation introduces the translation from

the center of the image to the top-left.

u′ =
fX

Z
+ tx (4.7)

v′ =
fY

Z
+ ty (4.8)

In homogeneous matrix notation:


u′

v′

w′

 =


f 0 tx 0

0 f ty 0

0 0 1 0



X

Y

Z

W

 (4.9)

If the pixels of the CCD/CMOS sensor are not square, a scaling factor can be

introduced for each axis of the image.

u′ = mx
fX

Z
+mxtx (4.10)

v′ = my
fY

Z
+myty (4.11)

Note: mx/my is known as the aspect ratio.

In homogeneous matrix notation:


u′

v′

w′

 =


mxf 0 mxtx 0

0 myf myty 0

0 0 1 0



X

Y

Z

W

 (4.12)

If the pixel axes are not orthogonal, a skew parameter, s, can be introduced.
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
u′

v′

w′

 =


mxf s mxtx 0

0 myf myty 0

0 0 1 0



X

Y

Z

W

 (4.13)

Note: s is usually close to zero.

Equation 4.13 can be simplified to the following matrix multiplication.


u′

v′

w′

 =


βx s uo

0 βy vo

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0



X

Y

Z

W

 = K
[
I3 03

]
P (4.14)

Matrix K, is known as the intrinsic parameter matrix. This matrix is an upper

triangular matrix and has five degrees of freedom.

The actual pixel values are determined from the following ratios:

u =
u′

w′
(4.15)

v =
v′

w′
(4.16)

4.3 Extrinsic Parameters

While the intrinsic parameters are inherent to the imaging sensor, the extrinsic

parameters are the transformation from the world frame to the camera frame.

The transformation between these frames is a rotation and translation about the

three coordinate axes.

The rotation from the world frame to the camera frame is a matrix multiplica-

tion of the individual rotations about the corresponding axes. [25]
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Rx(θ) =


1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 (4.17)

Ry(α) =


cosα 0 sinα

0 1 0

−sinα 0 cosα

 (4.18)

Rz(φ) =


cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 (4.19)

R = RxRyRz (4.20)

T =


tx

ty

tz

 (4.21)

The combination of the rotation and translation matrices results in the extrinsic

parameter matrix, E:

E =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 =

R T

0T
3 1

 (4.22)

4.4 Camera Calibration

In real world application, it can be difficult to accurately model the camera in-

trinsic and extrinsic parameters, therefore it is easier to take point correspondents
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from the world frame and the image frame and solve for the transformation ma-

trices. The conversion from world to image coordinates can modeled with a linear

transformation with the use of homogeneous coordinates. [25]

xi = PXi (4.23)

where,

xi =


u

v

w

 (4.24)

Xi =


X

Y

Z

W

 (4.25)

With homogeneous coordinates, xi and PXi must be parallel.

xi ×PXi = 0 (4.26)

For ease of calculation, let pT
1 , pT

2 , pT
3 be the rows of P.

PXi =


pT
1Xi

pT
2Xi

pT
3Xi

 (4.27)

xi ×PXi =


vip

T
3Xi − wip

T
2Xi

wip
T
1Xi − uipT

3Xi

uip
T
2Xi − vipT

1Xi

 (4.28)

Breaking Equation 4.28 into matrix notation, the unknown vectors p1, p2, p3
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can be solved.


0T
4 −wiX

T
i viX

T
i

wiX
T
i 0T

4 −uiXT
i

−viXT
i uiX

T
i 0T

4



p1

p2

p3

 = 0 (4.29)

Note: p1, p2, p3 creates a 12x1 vector.

The matrix in Equation 4.28 is rank two, with 12 unknowns. If scale is ignored

(the last entry of P is forced to be 1), there are 11 unknowns. Matrix P is

susceptible to noise error; therefore multiple point correspondents help to reduce

the noise error. With the use of a chessboard for calibration, each corner of each

square is one point, so using a fairly large chessboard will help mitigate the error,

but more importantly, different viewing angles of the same chessboard, with many

squares will more accurately approximate the transformation matrix, P. Each

new point correspondence is appended to the matrix in Equation 4.28. Singular

Value Decomposition (SVD) can be used to solve Equation 4.28, with the optimal

solution for matrix P corresponding to the last column of V and the smallest

singular value.

4.5 Camera Translation

The translation of the camera (C), from world to camera coordinates, can be

determined from the null space of matrix P.

PC = 0 (4.30)

Matrix P is a 3x4 matrix; therefore the solution to Equation 4.30 can be de-

termined through SVD of P. The translation vector C is the last column of V,

corresponding to the smallest singular value.
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4.6 Camera Pose and Intrinsic Parameters

The camera pose and intrinsic parameters can be determined through RQ decom-

position of the left 3x3 sub matrix (M) of P. RQ decomposition is similar to the

standard QR decomposition. QR decomposition forms an orthogonal matrix Q

from the column space of P, beginning with the first column of P. RQ decompo-

sition forms an orthogonal matrix formed from the row space of P, beginning with

the last row of P.

M =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 (4.31)

Let m1, m2, m3 be the rows of M. For RQ decomposition, matrix M must be

rotated 180◦ and transposed.

M′ =


...

...
...

m3 m2 m1

...
...

...

 (4.32)

Matrix M′ can be now be decomposed into Q and R using the Gram-Schmidt

method. Matrix Q is the intrinsic parameters matrix K described in (Section 4.2),

and matrix R is the rotational matrix R described in (Section 4.3).

4.7 Lens Distortion Model

Low-end cameras are susceptible to two types of distortion: radial and tangential

distortion. Radial distortion, also known as barrel or fish eye distortion, occurs

when the lens magnification is unequally distributed axially from the center of the

image. Tangential distortion occurs when the lens is not parallel to the imaging

sensor plane (CCD/CMOS sensor). [26]
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Figure 4.3: Uncalibrated image. Figure 4.4: Calibrated

xc − xo = L(r)(x− xo) (4.33)

yc − yo = L(r)(y − yo) (4.34)

r2 = (x− xo)2 + (y − yo)2 (4.35)

f(κ1, κ2) =
∑
i

(xi − xci)2 + (yi − yci)2 (4.36)

L(r) = 1 + κ1r
2 + κ2r

4 + . . . (4.37)

Radial Distortion Equations:

xcorrected = x(1 + κ1r
2 + κ2r

4 + . . .) (4.38)

ycorrected = y(1 + κ1r
2 + κ2r

4 + . . .) (4.39)

Tangential Distortion Equations:
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xcorrected = x+ [2t1xy + t2(r
2 + 2x2)] (4.40)

ycorrected = y + [2t2xy + t1(r
2 + 2y2)] (4.41)

The final distortion equations can be determined by combining the radial and

tangential distortion equations:

δ(x) = x(1 + κ1r
2 + κ2r

4) + [2t1xy + t2(r
2 + 2x2)] (4.42)

δ(y) = y(1 + κ1r
2 + κ2r

4) + [2t2xy + t1(r
2 + 2y2)] (4.43)

4.8 Planar Homography

The calibration process explained thus far allows for the projection of world points

to image points. The reverse, the projection of image points to world coordinates,

is impossible, as the matrix P is 3x4 and subsequently non-invertible. One way

to circumvent this issue is to assume a planar projection: the world space reduced

to a two-dimensional space from a three-dimensional space. An example of this to

assume the ground is flat, and therefore the z-direction of the world space is zero.

This allows for measurements to be made within the ground plane, but object

height is unattainable. [27]


u

v

w

 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



X

Y

0

W

 =


p11 p12 p14

p21 p22 p24

p31 p32 p34



X

Y

W

 (4.44)

The new matrix is known as the homography matrix, H.
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H =


p11 p12 p14

p21 p22 p24

p31 p32 p34

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4.45)

Note: Matrix H is invertible.

To convert from world coordinates to image coordinates:

p = HX (4.46)

To convert from image coordinates to world coordinates.

X = H−1p (4.47)

In some circumstances it may be beneficial to impose the extrinsic parameters

by hand and not through the iterative calculation of matrix P. For example, a

camera mounted on the windshield of a vehicle has a measurable pose and vertical

translation from the ground plane. This approach requires prior knowledge of the

camera intrinsic matrix K. Matrix P can be calculated from the following matrix

multiplication:

P = KE (4.48)

where, as explained in Section 4.3, E is the extrinsic parameters matrix. Matrix

P can be used to project 3D world points to the 2D image plane. Figure 4.5 depicts

a simple application of an imposed translation between the camera and the world

frame (t), and a specified point in the world frame (w) to be projected.

The calculation of the new homography is the same process explained earlier

in this section, where the ground plane (Z) is considered zero, and the system

reduces to a 3x3 invertible matrix H.

Camera calibration and homography code can be found in Appendix A.2.
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Figure 4.5: An application of an imposed translation, t = [0, 0,−5]T , between the
camera world frame, and a 3D point, w = [3,−2, 5]T .



Chapter 5
Map Construction

In this chapter, a procedure for developing a three-dimensional map rendering of a

local environment is outlined. Using vehicle data collected from a GPS and MEMS

IMU, a program is developed to position a virtual vehicle within the rendered

environment at the exact position as in the real world. By localizing a virtual

vehicle within the rendered environment, an approximate view of what should and

should not be in front of the vehicle can be determined. (See Figures 5.1 & 5.2)

In order to compare the two images, they must first be registered to each other.

The Speeded Up Robust Features and Lucas Kanade algorithms are implemented

for the image registration. The Lucas Kanade algorithm was used in the final

implementation of this thesis.

5.1 Data Acquisition

In order to localize the vehicle both within the world and the map, an accurate

position and orientation of the vehicle must be determined. Data was collected

from Route 322 using a MEMS inertia measurement unit (IMU) for vehicle velocity

and orientation, a global positioning system (GPS), and a Point Grey Firefly MV

Mono USB camera for image acquisition. The GPS coordinates (WGS84) were
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Figure 5.1: Gazebo rendering of camera
view.

Figure 5.2: Vehicle camera view image.

converted from latitude (φ), longitude (λ), and altitude (h) to local east (x), north

(y), up (z) coordinates (ENU) to position the vehicle within a local coordinate

system, instead of a global coordinate system. The WGS84 coordinates must first

be converted to the earth centered, earth fixed (ECEF) coordinate frame using the

following equations and constants: [28]

Figure 5.3: Coordinate conversion from WGS84 to Earth Centered, Earth Fixed.
NAL Research. http://www.nalresearch.com. Accessed Mar. 29, 2013.



29

a = 6378137m

f = 1/298.257223563

b = a(1− f) (5.1)

e =

√
a2 − b2
a2

(5.2)

X = (N + h)cosφcosλ

Y = (N + h)cosφsinλ

Z = (
b2

a2
N + h)sinφ

(5.3)

where, N is the radius of curvature of the earth, defined as:

N =
a√

1− e2sin2φ
(5.4)

After the coordinates are transformed to ECEF coordinates, they must be

transformed to local ENU coordinates using the following equation:


x

y

z

 =


−sinλref cosλref 0

−cosλrefsinφref −sinλrefsinφref cosφref

cosλrefcosφref sinλrefcosφref sinφref



X −Xref

Y − Yref
Z − Zref

 (5.5)

where Xref , Yref , and Zref is a reference point in the ECEF coordinate frame

for the origin of the ENU map and φref and λref is the corresponding WSG84

coordinates of the reference point.
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Example calculation of local ENU coordinates from WSG84 coordi-

nates:

Reference latitude, longitude, and altitude:

φref = 40.79115482216408

λref = −78.06739040855355

href = 328.5669250488281

Desired latitude, longitude, and altitude location:

φ = 40.79035174276196

λ = −78.06735719758326

h = 321.7445678710938

Note: All latitude, longitude, and altitude coordinates must be converted from

degrees to radians.

Determine the earth centered, earth fixed coordinate:

b = a(1− f) = 6356752.31m

e =

√
a2 − b2
a2

=

√
(6378137m)2 − (6356752m)2

(6378137m)2
= 0.08181919084

Reference coordinate conversion to ECEF:

Nref =
a√

1− e2sin2φref

= 6387268.38m
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Xref = (Nref + href )cosφrefcosλref = 999850.85

Yref = (Nref + href )cosφrefsinλref = −4731285.07

Zref = (
b2

a2
Nref + h)sinφref = 4144895.53

Desired coordinate conversion to ECEF:

N =
a√

1− e2sin2φ
= 6387268.08m

X = (N + h)cosφcosλ = 999865.62m

Y = (N + h)cosφsinλ = −4731341.41m

Z = (
b2

a2
N + h)sinφ = 4144827.94m

Determine the local east, north, up coordinate:


x

y

z

 =


−sinλref cosλref 0

−cosλrefsinφref −sinλrefsinφref cosφref

cosλrefcosφref sinλrefcosφref sinφref



X −Xref

Y − Yref
Z − Zref

 =


11.479m

17.116m

−86.813m


The vector containing x, y, and z represents the local east, north, and up

coordinates relative to the reference coordinate.

5.2 ROS & Gazebo

Robot Operating System (ROS) provides an operating system for the simulation

and development of robotic control. For testing, vehicle data was recorded on
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Route 322 in Pennsylvania using the sensors outline in Section 5.1. ROS was used

to process the images for the occlusion detection algorithm, as well as process

vehicle positioning data from the MEMS IMU and GPS. The ENU coordinates

calculated from the equations in Section 5.1 were passed through to Gazebo to

position a virtual camera within a rendered map environment.

Gazebo is a three-dimensional robot simulator, capable of simulating various

sensors and robot models with rigid-body physics. [29] A camera sensor was used

within Gazebo to virtually simulate a camera mounted on a vehicle. Figure 5.1

shows the Gazebo rendering of the environment from the perspective of a virtual

camera mounted on a virtual vehicle. Terrain maps were developed using aerial

photos from Google Earth, stitched together using Google SketchUp, and imported

into the Gazebo environment. Figure 5.4 shows the three-dimensional rendering

of the maps in Google Sketchup.

5.3 Image Registration

Occlusions can be determined by the comparing the rendered camera view and the

actual camera input. These images may contain minor discrepancies between the

perceived orientation and position of the Gazebo renderings and the camera input.

This means that the rendered image may not exactly match camera input and

therefore the two images must be registered to each other. Two approaches used

for image registration are the Speeded Up Robust Features (SURF) algorithm, as

well as the Lucas Kanade algorithm.

5.3.1 Feature Selection

Often times there is too much information within an image, either due to noise

or non-unique textures. Therefore, it is beneficial to determine key features, such

as corners and edges within the image to use for registration. The corners and
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Figure 5.4: 3D map generation in Google Sketchup using Google Earth images.

edges are determined by calculating the eigenvectors and eigenvalues of the co-

variance matrix, G, of local derivatives within a neighborhood of each pixel. The

neighborhood derivatives are calculated through a Sobel operator. [30]

G =

 ∑
I2x

∑
(IxIy)

2∑
(IxIy)

2
∑
I2y

 (5.6)

The minimum eigenvalue of G at each pixel is computed and thresholded based

on a maximum allowable eigenvalue. The local maximum of the pixels within

the window size are calculated and reduced by non-maximum suppression in the

window size neighborhood. [30] Non-maximum suppression searches the adjacent

pixels in the direction of the local gradient within the window. Of these selected

pixels, the pixel with the highest intensity is determined to be an edge point
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and the intensity of the other pixels are set to zero. The algorithm progresses

perpendicular to the maximum local gradient of the previous window in search

for the next edge pixel. [25] The remaining pixels are considered good features to

track. The goodFeaturesToTrack() function within the OpenCV library was used

to compute the features to be tracked.

5.3.2 SURF & Nearest Neighbor

The Speeded Up Robust Features (SURF) algorithm was used as an initial image

registration approach. The algorithm utilizes integral images to determine the

image registration. An integral image is defined by the following equations: [31]

I(x) =

i≤0∑
i=0

j≤0∑
j=0

I(i, j) (5.7)

where x = (x, y)T , a specific pixel location.

Features are determined in the image, such as edges and corners, by summing

the 2D Haar wavelet responses of the integral images. Figure 5.5 shows the Haar

wavelet filters. The matching of features is determined based on the Euclidean

distance between two feature vectors. This algorithm is scale-invariant and can

compute the registration translation, rotation, and skew accurately. While the

algorithm was successful in registering nearly any two input images, it was compu-

tationally slow, running between 0.5 Hz to 0.7 Hz. Figure 5.8 shows the results of

the algorithm. [31] The surf feature detector functions within the OpenCV library

were used to compute the SURF image registration.

5.3.3 Lucas Kanade

The second algorithm used for image registration was the Lucas Kanade method.

This algorithm attempts to minimize the image disparities between two images

using a similar iterative approach like the Newton-Raphson method. Image F (x+



35

Figure 5.5: 2D Haar wavelet filters used in the SURF algorithm. H. Bay and A.
Ess and T.Tuytelaars et al., Speeded-Up Robust Features (SURF). Accessed Apr.
04, 2013.

Figure 5.6: Image to be registered to Fig-
ure 5.7.

Figure 5.7: Base image for Figure 5.6 to
be registered to. Results can be found in
Figure 5.9.

h) represents the image to be registered to, where h represents the image disparity,

and image G(x) represents the image to be registered.

The algorithm can be expanded into n-dimensional space, where x and h are

n-dimensional row vectors. x represents a vector of corresponding pixel locations

in F (x+h) and G(x). The algorithm attempts to reduce the l2 norm of the error,

E, between the image disparities with respect to h. [32]

E =
∑

x
[F (x + h)−G(x)]2 (5.8)

By assuming each pixel displacement is within a small neighborhood from image

to image, the following first-order linear approximation can be used to represent

the image F .
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Figure 5.8: Registration of Figure 5.6 and Figure 5.7 using SURF algorithm.

F (x + h) ≈ F (x) + h
∂

∂x
F (x) (5.9)

Substituting 5.8 into 5.9, differentiating with respect to h:

0 =
∂

∂h
E

≈ ∂

∂h

∑
x
[F (x) + h

∂F

∂x
−G(x)]2

=
∑

x
2
∂F

∂x
[F (x) + h

∂F

∂x
−G(x)]

(5.10)

And solving for the disparity h:

h ≈
[∑

x
(
∂F

∂x
)T [G(x)− F (x)]

][∑
x
(
∂F

∂x
)T (

∂F

∂x
)
]−1

(5.11)
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Within Equation 5.11, G(x)− F (x) represents the error, (∂F
∂x

)T represents the

point motion, and [(∂F
∂x

)T (∂F
∂x

)]−1 represents the local spatial gradient. [30]

The derivation above is only applicable to linear translation between the image

disparities. The algorithm can be extended to accommodate any linear transfor-

mation including shear, rotation and scaling. Matrix A from 5.12 represents this

generic linear transformation.

G(x) = F (xA + h) (5.12)

Thus the l2 norm equation becomes a function of A:

E =
∑

[F (xA + h)−G(x)]2 (5.13)

Utilizing the assumption that pixel motion is small between two sequential

images, a linear approximation can be applied to Equation 5.13.

F
(
x(A + ∆A) + (h + ∆h)

)
≈ F (xA + h) + (x∆A + ∆h)

∂

∂x
F (x) (5.14)

Differentiating Equation 5.14 with respect to h and A results in a system of

two equations and must be solved simultaneously.

The Lucas Kanade method was successful in registering the images together

as seen in Figure 5.9, when the image disparities were sufficiently small and edges

were prominent within the two images. The algorithm nearly registered the Gazebo

rendering to the camera image, although struggled to find adequate edges on the

map rendering image as the lane marker edges were blurred. The computation

time for this algorithm was between 16 Hz and 17 Hz, out performing the SURF

algorithm significantly. The Lucas Kanade algorithm was implemented in the final

occlusion detection algorithm.
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Figure 5.9: Registration of Figure 5.6 and Figure 5.7 using Lucas Kanade method.

Figure 5.10: Registration of Figure 5.1 and Figure 5.2 using Lucas Kanade algo-
rithm.



Chapter 6
Occlusion Detection

Following the registration of the map and camera images, occlusions can be deter-

mined by the difference between the two images. Where most occlusion detection

algorithms require background approximation, the approach of this thesis is to as-

sume that the map representation provides the underlying road and features, less

the occlusions. Figure 6.1 presents the image subtraction.

Two image filtering techniques were tested: morphology and basic thresholding.

The techniques were evaluated based on the accuracy of occlusion detection and

computation time.

6.1 Morphology

A basic morphological algorithm for image filtering is outline in Figure 6.2. First,

the image is eroded and thresholded to reduce any spurious artifacts from the

image subtraction. The remaining features are dilated to return the features to

their original size. This approach was able to detect occlusions at a rate of 7-8 Hz.

The result of this can be found in Figure 6.6.
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Figure 6.1: Image subtraction after the image registration.

Image Subtraction Erode Binary Thresholding

Threshold Contours

Based On Area,

 Width, and Height

Dilate

Figure 6.2: Morphological algorithm used for occlusion detection.

Figure 6.3: Eroded image. Figure 6.4: Thresholded image.
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Figure 6.5: Dilated image.
Figure 6.6: Remaining contours thresh-
olded by width, height, and area.

6.2 Basic Thresholding

The second occlusion detection algorithm tested used a basic Gaussian blur and

threshold. This approach reduced the computation time slightly, increasing the

rate to 11-12 Hz and was successful in determining the occlusions. Figure 6.7

represents the algorithm progression. It should be noted that in Figure 6.10, nearly

all the remaining features represent vehicles, but the results are thresholded based

on area, height, and width to remove any potential false positives. The result of

this approach can be found in Figure 6.11. The algorithm was also run on the

Gazebo map rendering images (Figures 5.1 & 5.2) and the results are in Figure

5.10. While the two images did not perfectly register, the occlusion was still able

to be detected.

Image Subtraction Gaussian Blur Binary Thresholding

Threshold Contours

Based On Area,

 Width, and Height

Figure 6.7: Second algorithm used for occlusion detection.
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Figure 6.8: Gaussian blurred image. Figure 6.9: Thresholded image.

Figure 6.10: All contours.
Figure 6.11: Contours thresholded by
width, height, and area.
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Figure 6.12: Occlusion detection based on Figure 5.10.



Chapter 7
Field Implementation

Often times, most publications on image processing fail to present examples of

where their research fails. This is unfortunate, because these failures often present

key limitations of the research and sometimes reveal even more important informa-

tion than the successful attempts! In this chapter, examples of both successes and

failures of the algorithm developed are presented and discussed. In each example,

the left image is registered to the middle image. The right image is the result of

the image registration and occlusion detection algorithms.

Figure 7.1: A successful attempt at registering the left image with the middle
image. The right image displays the occlusions found within the image.

Figure 7.1 represents a near perfect registration and occlusion detection. Both

images contain defined image features, such as lane markers and road edges. Since

there is only a small disparity between the left and middle images, the image regis-

tration process only required minor adjustments. The successful image registration
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allowed for proper occlusion detection.

Figure 7.2: A failed attempt at registering the left image with the middle im-
age. The right image displays the mis-registration and the determination of some
occlusions.

In Figure 7.2, the Lucas Kanade algorithm failed to accurately match the first

two images together. This is the result of features in both images not correctly

matching. The algorithm registered the left edge of the road near the bottom of the

image. Progressing up the image, the left road edge and yellow line deviates from

the edge. As seen in the third image, the occlusion detection algorithm still picked

up most of the occlusions, but caution should be taken with trusting these results.

Occlusions could be missed or even falsely produced by the failure in registering

the images.

Figure 7.3: A successful attempt at registering the left image (generated map
image) with the middle image (forward-facing camera). The right image displays
the occlusion found within the image.

In Figure 7.3, the left image is a rendered map image from Gazebo and is

registered to the forward-facing camera image in the middle. The right image shows

the successful image registration and occlusion detection. The image registration
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relied on the road edges primarily for registration, as the center dashed lane marker

does not properly align.

Figure 7.4: A failed attempt at registering the left image with the middle image.
The Lucas Kanade algorithm completely failed to find enough feature matches
between the left and middle images to produce a registration.

Figure 7.4 displays an attempt to register a generated map image to a forward-

facing camera image. The Lucas Kanade algorithm failed to find enough feature

matches to produce a homography projection to overlay the images. This shows

that the failure to determine any image registration, subsequently causes the oc-

clusion detection process to fail, even though there are occlusions present. As with

Figure 7.2, this could be potentially dangerous.

Of the approximately 20 image sequences analyzed, 17 produced unsatisfactory

results in both image registration and occlusion detection. In most cases, the im-

age registration failed due to an insufficient amount of matched features between

the map and camera images. On real-time video, the algorithm was unable to con-

sistently register the map image. As stated before, this is primarily due to the lack

of distinct feature matching, but the algorithms tested in this thesis attempted to

register each new image sequence, with no knowledge of the previous registration.

By starting with an initial registration guess, only minor adjustments would need

to be made.



Chapter 8
Conclusions

The goal of this thesis was to detect a vehicle’s position within a road to determine

occlusions, based on the matching of map features and features within a forward-

facing camera. The results of this thesis are discussed below based on the thesis

flow-chart introduced in the Introduction, Chapter 1.

8.1 Vehicle Localization

The data collected from the GPS and MEMS IMU provided sufficient accuracy

to localize the vehicle within both the world and the map rendering. Issues arose

when the rendered map inaccurately reported the elevation of the mapped terrain,

causing a bias in the yaw angle and lateral position of the virtual vehicle with

respect to the map. These biases were offset by hard coding values that realigned

the system. These biases could be improved with a more accurate representation

of the mapped terrain, more specifically the elevation measurements.
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8.2 Rendering Of Map Features

Gazebo and ROS provided an quick development process for rendering the maps.

This programming environment provided low-level access to the computer hard-

ware, so map rendering was efficient. The accuracy of map features were dependent

upon the image quality of the Google Earth aerial photos. Lane features, at times,

lacked strong edges which later caused issues with image registration (discussed

later).

8.3 Image Registration

The Lucas Kanade image registration accuracy was highly dependent on the quality

of the maps generated from Google Earth. If the forward-facing map representation

lacked a high contrast between road features, like lane markers and road edges,

the registration failed. This meant that the image thresholding values needed

to be modified to compensate for the lack of contrast. Also, the accuracy of

the Lucas Kanade method depended primarily on small disparities between the

real image and the generated image. This meant that algorithm struggled to

register the images during real-time video implementations, due to differences in

localization of the vehicle in the world and the map. A hybrid approach of using

the SURF and Lucas Kanade image registration methods may allow for better

image registration: initialize the registration with the SURF method, then make

minor updates with the Lucas Kanade method. This would reduce the search

space for image registration algorithm, and speed up the registration process so

the occlusion detection could be done faster.
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8.4 Occlusion Detection

The algorithm described in this thesis was successful in determining occlusions

within the forward-facing camera on the vehicle, as well as stationary photos.

To more accurately determine occlusions, further modeling of occlusions within a

three-dimensional setting, as described in past research, would improve the accu-

racy of this algorithm. This would allow for the determination of the space they

encompass in the three-dimensional world, not just the two-dimensional image

plane as developed in this thesis. With the lack of real-time image registration, it

was difficult to determine occlusions in real time.

Overall, the map-based approach for occlusion detection provided enticing re-

sults. Future research to expand on the map-based research would be to improve

algorithms speed and accuracy of both image registration and occlusion detection.

The use of a Kalman filter to track occlusions would reduced the search region

within the images, as specific regions are occupied by known occlusions. Also, as

suggested in the Occlusion Detection section above, the occlusion detection pro-

cess could be improved by developing a three-dimensional model of the occlusions

with respect to the vehicles frame of reference. This research can be extended into

the development of autonomous control, as the matching of road features to map

features creates a coupling for path planning, collision avoidance, and the ability

to see through occlusions for navigational cues displayed on a heads-up display.



Appendix A
Python/OpenCV Code

A.1 Image Acquisition

This code connects to a camera in OpenCV. This code was used to connect to the
webcam used for testing.

Listing A.1: Image Acquisition Class
#!/usr/bin/python

import cv
import cv2
import numpy as np # for array math

class Camera(object):

def connectCamera(self,port=0):

# Connect to the camera
self.capture = cv2.VideoCapture(port)

def getFrame(self):

cam = self.capture

# Get the next image frame
ret, img = cam.read()

return img

if name == ’ main ’:

# Create class instances
cam = Camera()

# Connect to the camera
cam.connectCamera(0)

while True:

# Grab the current image
img = cam.getFrame()

# Show the image
cv2.imshow(’Camera Output’, img)
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A.2 Camera Calibration
This code calibrates a camera using a checkerboard pattern. It determines the
intrinsic and homography matrices, as well as the distortion coefficients.

Listing A.2: Camera Calibration Class
#!/usr/bin/python

import cv
import cv2
import numpy as np
import time
from camera import Camera

class Calibration(object):

# Parameters:
# − num of imgs : How many images of the chessboard do we want to use to calibrate the

camera? More the better.
# − square size : What is the length of one square? Default is 1 in. but divide this by 12 to

get results in feet. (e.g. 1/12 = 0.0833...)
# − pattern size : What are the dimensions of the chessboard? Make sure to only include

INNER squares, not the outer boundary of squares.
def calibrate(self,num of imgs,square size=0.0833,pattern size=[6,9]):

# Check to see if we already have camera calibration data
self.findCameraCalibrationFiles()

# If the user wants to overwrite prior data, we need to calibrate again so this validates
if (self.ovrt int == 1 or self.ovrt dst == 1):

# Create camera class instance
cam = Camera()

# Connect to camera
cam.connectCamera()

# We’re ready to calibrate
print ”Please place the chessboard in front of the camera.”

# Set some initial parameters
self.pattern width = pattern size[0] # number of chessboard squares in one direction (e.g

. 6)
self.pattern height = pattern size[1] # number of chessboard squares in the other

direction (e.g. 9)
self.pattern size = (self.pattern width,self.pattern height) # create an array of the

pattern size (e.g. (6,9))
self.pattern n = np.prod(self.pattern size) # total number of corners to detect (e.g. 6∗9

= 54)

# Allocate memory for camera parameters
if(self.ovrt int == 1):

self.intrinsic matrix = np.zeros((3, 3))
if(self.ovrt dst == 1):

self.distortion coeffs = np.zeros((5,1))

# Allocate memory for camera matrices
self.pattern pts = np.zeros((self.pattern n,3),np.float32)
self.pattern pts[:,:2] = np.indices(pattern size).T.reshape(−1,2)
self.pattern pts ∗= square size # Uses real world distances

# This while loop:
# − Grabs a new image
# − Finds the chessboard corners
# − If we found enough corners, add it to the corner array
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# − Increase successes by 1, increase until we reached num of imgs
successes = 0
self.object pts = []
self.image pts = []
while (successes < num of imgs):

# Grab the current image
#img = cam.getFrame()
img = cv2.imread(’distorted−img.jpg’) # DELETE

# Get the size of the image
size = img.shape[1],img.shape[0]

# Show the image
cv2.imshow(’Distorted’, img)

# Get the corners of the chessboard
corners = self.findChessboard(img)

# Do we have any corners?
if(corners is not None):

# If so, do we have enough?
if(len(corners) == self.pattern n):

# Add the image points to the total image array
self.image pts.append(corners.reshape(−1,2))
# Add the object points to the total object array
self.object pts.append(self.pattern pts)
successes += 1
print ”Chessboards found:”, successes
time.sleep(2)

if(successes == num of imgs):

# We got enough images to get the camera parameters
print ”Obtaining calibration parameters...”

# This is the calibrateCamera function.
rms, intrinsic matrix, distortion coeffs, rvecs, tvecs = cv2.calibrateCamera(

self.object pts,
self.image pts,
size

)

# Save the camera parameters
if(self.ovrt dst == 1):

self.distortion coeffs = distortion coeffs
cv2.cv.Save(”distortion.xml”,cv.fromarray(self.distortion coeffs))

if(self.ovrt int == 1):
self.intrinsic matrix = intrinsic matrix
cv2.cv.Save(”intrinsics.xml”,cv.fromarray(self.intrinsic matrix))

# Print out the camera data
print ”RMS:”, rms
print ”Intrinsic Matrix:\n”, self.intrinsic matrix
print ”Distortion Coefficients: ”, self.distortion coeffs.ravel()

cv.DestroyWindow(’Distorted’)

def findChessboard(self,img):

# Convert image to grayscale
gray img = cv2.cvtColor(img,cv.CV BGR2GRAY)

# Find the chessboard corners with the findChessboardCorners function
# Function requirements:
# image : image to find the chessboard
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# patternSize : chessboard width x chessboard height e.g. 5x7
# flags (optional) : adaptive thresholding
# quads filter
# fast check
self.found, corners = cv2.findChessboardCorners(

image = gray img,
patternSize = self.pattern size,
flags = cv2.CALIB CB ADAPTIVE THRESH|cv2.

CALIB CB FILTER QUADS|cv2.CALIB CB FAST CHECK
)

# Did we find any corners? If not, return None
if not self.found:
return None

# If we did find enough corners (board size), let’s be more accurate (subpixel accuracy)
# Function requirements :
# image : original image from before
# corners : the corners we found above from findChessboardCorners
# winSize :
# zeroZone :
# criteria :

cv2.cornerSubPix(
image = gray img,
corners = corners,
winSize = (11,11),
zeroZone = (−1,−1),
criteria = (cv.CV TERMCRIT EPS|cv.CV TERMCRIT ITER,30,0.1)

)

# We were successful at finding corners, now lets return them
return corners

def undistort(self,img,intrinsic matrix=None,distortion coeffs=None):

# Undistort the image

if(intrinsic matrix == None and distortion coeffs == None):
img = cv2.undistort(img,self.intrinsic matrix,self.distortion coeffs)

else:
img = cv2.undistort(img,intrinsic matrix,distortion coeffs)

return img

def findHomography(self,square size=0.0833,pattern size=[6,9]):

# See if we already have a homography matrix (’homography.xml’) in the folder.
self.findHomographyFiles()

# See if we already have an intrinsic matrix (’intrinsic.xml’), and
# the distortion coefficient matrix (’distortion.xml’) in the folder.
self.findCameraCalibrationFiles()

if(self.ovrt hom == 1):

# Create camera class instance
cam = Camera()

# Connect to camera
cam.connectCamera()

# We’re ready to calibrate
print ”Please place the chessboard in front of the camera.”

# Set some initial parameters
self.pattern width = pattern size[0] # number of chessboard squares in one direction (e.g

. 6)
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self.pattern height = pattern size[1] # number of chessboard squares in the other
direction (e.g. 9)

self.pattern size = (self.pattern width,self.pattern height) # create an array of the
pattern size (e.g. (6,9))

self.pattern n = np.prod(self.pattern size) # total number of corners to detect (e.g. 6∗9
= 54)

# Allocate memory for camera parameters
if(self.ovrt hom == 1):

self.homography matrix = np.zeros((3, 3))

# Allocate memory for camera matrices
self.pattern pts = np.zeros((self.pattern n,2),np.float32)
self.pattern pts[:,:2] = np.indices(pattern size).T.reshape(−1,2)
self.pattern pts ∗= square size # Uses real world distances

# This while loop:
# − Grabs a new image
# − Finds the chessboard corners
# − If we found enough corners, add it to the corner array
# − Increase successes by 1, increase until we reached num of imgs
successes = 0
self.object pts = []
self.image pts = []
while (successes < 1):

# Grab the current image
img = cam.getFrame()

# Get the size of the image
size = img.shape[1],img.shape[0]

# Undistort the image
img = self.undistort(img)

# Show the image
cv2.imshow(’Undistorted’, img)

# Get the corners of the chessboard
corners = self.findChessboard(img)

# Do we have any corners?
if(corners is not None):

# If so, do we have enough?
if(len(corners) == self.pattern n):

# Add the image points to the total image array
self.image pts.append(corners.reshape(−1,2))
# Add the object points to the total object array
self.object pts.append(self.pattern pts)
successes += 1
print ”Chessboards found:”, successes
time.sleep(2)

if(successes == 1):

# We got enough images to get the homography matrix
print ”Obtaining homography matrix...”

print self.object pts[0]
print self.image pts[0]
# This is the findHomography function.
homography matrix, mask = cv2.findHomography(

self.object pts[0],
self.image pts[0],
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cv2.RANSAC
)

# Save the homography matrix
if(self.ovrt hom == 1):

self.homography matrix = homography matrix
cv2.cv.Save(”homography.xml”,cv.fromarray(self.homography matrix))

# Print out the homography matrix
print ”Homography Matrix:\n”, self.homography matrix

cv.DestroyWindow(’Undistorted’)

def homographyProjection(self,img,homography matrix,inverse=False):

# Projects the input image with the supplied homography matrix.

# Get the size of the input image
size = img.shape[1],img.shape[0]

# This corrects the output position on the screen. This needs to be fixed. TODO
# DPI correction? Aspect ratio.
T = np.mat([[1, 0, −500],[0, 1, −180],[0, 0, 200]])
T inv = np.linalg.inv(T)

# Warp the image
if(inverse == False):

img = cv2.warpPerspective(img,np.dot(homography matrix,T),size,flags=cv2.
WARP INVERSE MAP | cv2.INTER LINEAR)

else:
img = cv2.warpPerspective(img,np.dot(T inv,homography matrix),size,flags=cv2.

WARP INVERSE MAP | cv2.INTER LINEAR)

return img

def intrinsic(self):

# Load the intrinsic matrix if it exists.

while True:
try:

self.intrinsic matrix = cv2.cv.Load(’intrinsics.xml’)
self.intrinsic matrix = np.asarray(self.intrinsic matrix[:,:])
print ”Intrinsic Matrix:\n”, self.intrinsic matrix
break

except TypeError:
break

return self.intrinsic matrix

def distortion(self):

# Load the distortion coefficients if it exists.

while True:
try:

self.distortion coeffs = cv2.cv.Load(’distortion.xml’)
self.distortion coeffs = np.asarray(self.distortion coeffs[:,:])
print ”Distortion Coefficients: ”, self.distortion coeffs.ravel()
break

except TypeError:
break

return self.distortion coeffs

def homography(self):

# Load the homography matrix if it exists.

while True:
try:
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self.homography matrix = cv2.cv.Load(’homography.xml’)
self.homography matrix = np.asarray(self.homography matrix[:,:])
print ”Homography Matrix: ”, self.homography matrix
break

except TypeError:
break

return self.homography matrix

def invHomography(self):

# Load the homography matrix if it exists, then invert it.

while True:
try:

self.inv homography = cv2.cv.Load(’homography.xml’)
self.inv homography = np.asarray(self.inv homography[:,:])
self.inv homography = np.linalg.inv(self.inv homography)
print ”Inverse Homography Matrix: ”, self.inv homography
break

except TypeError:
break

return self.inv homography

def findCameraCalibrationFiles(self):

### Intrinsic Matrix ###

# Check to see if we have a ’intrinsics.xml’ file already in the folder
# Otherwise, we need to create one.

while True:
try:

self.intrinsic matrix = cv2.cv.Load(’intrinsics.xml’)
self.intrinsic matrix = np.asarray(self.intrinsic matrix[:,:])
print ”Intrinsic Matrix:\n”, self.intrinsic matrix
self.ovrt int = raw input(’Would you like to overwrite the intrinsic matrix? y/n ’)
while True:
if(self.ovrt int == ’y’ or self.ovrt int == ’Y’):

self.ovrt int = 1
break

elif(self.ovrt int == ’n’ or self.ovrt int == ’N’):
self.ovrt int = 0
break

self.ovrt int = input(’Would you like to overwrite the intrinsic matrix? y/n ’)
break

except TypeError:
self.intrinsic matrix = None
break

### Distortion Coefficients ###

# Check to see if we have a ’distortion.xml’ file already in the folder
# Otherwise, we need to create one.
while True:
try:

self.distortion coeffs = cv2.cv.Load(’distortion.xml’)
self.distortion coeffs = np.asarray(self.distortion coeffs[:,:])
# self.distortion coeffs[0,0] = 1
# self.distortion coeffs[0,1] = −1
# self.distortion coeffs[0,2] = 0
# self.distortion coeffs[0,3] = 0
# self.distortion coeffs[0,4] = 0
print ”Distortion Coefficients: ”, self.distortion coeffs.ravel()
self.ovrt dst = raw input(’Would you like to overwrite the distortion coefficients? y/n

’)
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while True:
if(self.ovrt dst == ’y’ or self.ovrt dst == ’Y’):

self.ovrt dst = 1
break

elif(self.ovrt dst == ’n’ or self.ovrt dst == ’N’):
self.ovrt dst = 0
break

self.ovrt dst = input(’Would you like to overwrite the distortion coefficients? y/n ’
)

break
except TypeError:

self.distortion coeffs = None
break

def findHomographyFiles(self):

# Check to see if we have a ’homography.xml’ file already in the folder
# Otherwise, we need to create one.
while True:
try:

self.homography matrix = cv2.cv.Load(’homography.xml’)
self.homography matrix = np.asarray(self.homography matrix[:,:])
print ”Homography Matrix: ”, self.homography matrix
self.ovrt hom = raw input(’Would you like to overwrite the homography matrix? y/n

’)
while True:
if(self.ovrt hom == ’y’ or self.ovrt hom == ’Y’):

self.ovrt hom = 1
break

elif(self.ovrt hom == ’n’ or self.ovrt hom == ’N’):
self.ovrt hom = 0
break

self.ovrt hom = input(’Would you like to overwrite the homography matrix? y/n ’)
break

except TypeError:
self.homography matrix = None
break

if name == ’ main ’:

# Create class instances
cal = Calibration()
cam = Camera()

# Connect to the camera
cam.connectCamera()

# Calibrate the camera
cal.calibrate(num of imgs=10,square size=0.08333,pattern size=[6,9])

# For homography matrix calculation, comment the above command and uncomment below
cal.findHomography(square size=0.08333,pattern size=[6,9])

while True:

# Grab the current image
img = cam.getFrame()

# Undistort the image
original = cal.undistort(img)

# Use homography for inverse perspective
original = cal.homographyProjection(img,self.homography matrix)

# Show the image
cv2.imshow(’Undistorted Image’, original)
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A.3 Lucas Kanade Image Registration

This code using the Lucas Kanade method for image registration. The output is
one image of the two input images registered and overlaid.

Listing A.3: Lucas Kanade Image Registration Class
#!/usr/bin/python

import cv2
import numpy as np

# Lucas Kanade Parameters
# − winSize : Window size for local variations
# − maxLevel : Number of pyramidal steps for the algorithm
# − criteria :
lk params = dict( winSize = (5, 5),

maxLevel = 5, # 1
criteria = (cv2.TERM CRITERIA EPS | cv2.TERM CRITERIA COUNT,

10, 0.03))

# Good Features To Track Parameters
# − maxCorners : Total number of corners to return
# − quality level :
# − minDistance : Minimum distance between two good features
# − blockSize : Window size for iterating across the image
feature params = dict( maxCorners = 1000, # 2000

qualityLevel = 0.01,
minDistance = 8, # 8
blockSize = 19 )

# Image Registration Class
class ImageRegistration:
def init (self):

# Homography/Ransac Settings
self.use ransac = True
self.ransac iter = 10.0

# Canny Settings for camera
self.cam canny min threshold = 50
self.cam canny max threshold = 150

# Canny Settings for map
self.map canny min threshold = 50 # 250
self.map canny max threshold = 150 # 350

# Gaussian Blur Settings for camera
self.cam gaussian blur size = 3
self.cam gaussian blur sigma = 1

# Gaussian Blur Settings for map
self.map gaussian blur size = 3
self.map gaussian blur sigma = 1

# Lucas Kanade Settings
self.back threshold = 1.0

# Overlay Settings
self.overlay color = (0,0,255)

def checkedTrace(self, cam img, map img, p0, back threshold = 1.0):
# cam img : Camera Image
# map img : Map Image
# p0 : Good feature points found in the camera image
# back threshold : Minimum distance between forward and backward flow vectors

# Calculate forward and backward Lucas Kanade Optical Flow
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p1, st, err = cv2.calcOpticalFlowPyrLK(cam img, map img, p0, None, ∗∗lk params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(map img, cam img, p1, None, ∗∗lk params)

# Calculate the max distance between the original and final vectors
d = abs(p0−p0r).reshape(−1, 2).max(−1)

# Determine ”good” point correspondents by thresholding (back threshold)
status = d < back threshold

# Return the new points and whether they were good or bad.
return p1, status

def filterCamImage(self,img):

# Gray scale the image
img gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

# Apply a Gaussian blur
img gaus = cv2.GaussianBlur(img gray, (self.cam gaussian blur size, self.

cam gaussian blur size), sigmaX=self.cam gaussian blur sigma, sigmaY=self.
cam gaussian blur sigma)

# Apply a Canny filter for edge detection
img canny = cv2.Canny(img gaus, threshold1=self.cam canny min threshold, threshold2=

self.cam canny max threshold)

return img canny

def filterMapImage(self,img):

# Gray scale the image
img gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

# Apply a Gaussian blur
img gaus = cv2.GaussianBlur(img gray, (self.map gaussian blur size, self.

map gaussian blur size), sigmaX=self.map gaussian blur sigma, sigmaY=self.
map gaussian blur sigma)

# retval, img thresh = cv2.threshold(img gray, 245, 255, cv2.THRESH BINARY)

# Apply a Canny filter for edge detection
img canny = cv2.Canny(img gaus, threshold1=self.map canny min threshold, threshold2=

self.map canny max threshold)

return img canny

def registration(self, map img, cam img):

# Filter both images (Gaussian/Canny)
map filt = self.filterMapImage(map img)
cam filt = self.filterCamImage(cam img)

# Find good feature points in the camera image
p0 = cv2.goodFeaturesToTrack(cam filt, ∗∗feature params)

p1 = p0

# Use the Lucas Kanade algorithm to determine the optical flow the the features
p2, trace status = self.checkedTrace(cam filt, map filt, p1, self.back threshold)

# Store the ”good” new features
p1 = p2[trace status].copy()

# Only keep the good ”old” features.
p0 = p0[trace status].copy()

print trace status, len(p0), len(p1)

# Calculate the homography between the the map features and the camera features
if len(p0) >= 4:
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# Calculate the homograpy matrix
H, status = cv2.findHomography(p1, p0, cv2.RANSAC, self.ransac iter)

print H

# Get the width and height of the map image
h, w = map img.shape[:2]

# Warp the map image to match with the camera image using the homography
map reg = cv2.warpPerspective(map img, H, (w, h))

# Create tint overlay for registered map
overlay = np.zeros((h,w,3), np.uint8)
cv2.rectangle(overlay,(0,0),(0+w,0+h),self.overlay color,−1)
overlay = cv2.warpPerspective(overlay, H, (w, h))

else:
map reg = None
overlay = None
status = None

return map reg, overlay, status

A.4 SURF Image Registration

This code uses the Speeded Up Robust Features algorithm for image registrations.
The output is one image of the two input images registered and overlaid.

Listing A.4: SURF Image Registration Class
import cv2
import numpy as np
import time
import sys
from camera import Camera

class SurfRegistration(object):

def registration(self,needle,haystack):

# Input images:
# haystack : image to be searched
# needle : image to find
self.needle = needle
self.haystack = haystack

# Grayscale the images
ngrey = cv2.cvtColor(self.needle, cv2.COLOR BGR2GRAY)
hgrey = cv2.cvtColor(self.haystack, cv2.COLOR BGR2GRAY)

# build feature detector and descriptor extractor
detector = cv2.FeatureDetector create(”SURF”)
descriptorExtractor = cv2.DescriptorExtractor create(”SURF”)
hkeypoints = detector.detect(hgrey)
nkeypoints = detector.detect(ngrey)
start = default timer()
(hkeypoints, hdescriptors) = descriptorExtractor.compute(hgrey,hkeypoints)
(nkeypoints, ndescriptors) = descriptorExtractor.compute(ngrey,nkeypoints)

# extract vectors of size 64 from raw descriptors np arrays
rowsize = 128
hrows = np.array(hdescriptors, dtype = np.float32).reshape((−1, rowsize))
nrows = np.array(ndescriptors, dtype = np.float32).reshape((−1, rowsize))

# kNN training − learn mapping from hrow to hkeypoints index



61

samples = hrows
responses = np.arange(len(hrows), dtype = np.float32)
knn = cv2.KNearest()
knn.train(samples,responses,maxK=10)

good = 0
bad = 0
hpoints = []
npoints = []
# retrieve index and value through enumeration
for i, descriptor in enumerate(nrows):

# Reorganize the descriptor array
descriptor = np.array(descriptor, dtype = np.float32).reshape((1, 128))

# Find the nearest neighbors
retval, results, neigh resp, dists = knn.find nearest(descriptor, 1)

# Separate out the results and the distances between points.
res, dist = int(results[0][0]), dists[0][0]

# If the distances is less than this value, we like it...
if dist < 0.1:

# draw matched keypoints in red color
color = (0, 0, 255)
good += 1

# Else we hate it
else:

# draw unmatched in blue color
color = (255, 0, 0)
bad += 1

# draw matched key points on haystack image
x,y = hkeypoints[res].pt
center = (int(x),int(y))
# cv2.circle(self.haystack,center,2,color,−1)
hpoints = np.append(hpoints,(x,y))
# draw matched key points on needle image
x,y = nkeypoints[i].pt
center = (int(x),int(y))
# cv2.circle(self.needle,center,2,color,−1)
npoints = np.append(npoints,(x,y))

# Reshape the good corresponding point arrays for the homography function below.
hpoints = hpoints.reshape(−1,2)
npoints = npoints.reshape(−1,2)

# Calculate the homograpy matrix
H, status = cv2.findHomography(npoints, hpoints, cv2.RANSAC, 10.0)

# Get the width and height of the map image
h, w = self.needle.shape[:2]

# Warp the map image to match with the camera image using the homography
self.needle = cv2.warpPerspective(self.needle, H, (w, h))

# Create tint overlay for registered map
overlay = np.zeros((h,w,3), np.uint8)
cv2.rectangle(overlay,(0,0),(0+w,0+h),(0,0,255),−1)
overlay = cv2.warpPerspective(overlay, H, (w, h))

# How good did we do?
accuracy = round(100∗good/float(good+bad),2)

return self.needle, self.haystack, accuracy, overlay

if name == ’ main ’:
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# Declare the input images.
haystack =cv2.imread(’haystack.jpg’)
needle = cv2.imread(’needle.jpg’)

# Initialize the SurfRegistration class
reg = SurfRegistration()

while True:

# Register the images
needle, haystack, accuracy, overlay = reg.registration(needle, haystack)

# Overlay the results
cam und = cv2.addWeighted(haystack, 0.7, needle, 0.7, 0.0)
cam und = cv2.addWeighted(overlay, 0.2, cam und, 1 − 0.2, 0.0)

# Show the results
cv2.imshow(’Haystack’,cam und)

A.5 Occlusion Detection
This code determines occlusions within an image, based on the input of two regis-
tered images.

Listing A.5: Occlusion Detection Class
#!/usr/bin/python

import cv2
import numpy as np
from projectPoint import ProjectPoint

class OcclusionDetection:

def init (self):

self.cvt = ProjectPoint()

# Car Modeling Parameters
self.car box color = (0,255,0)
self.car width min = 12
self.car width max = 120
self.car height min = 12
self.car height max = 120
self.car area min = 30
self.car area max = 20000

# Truck Modeling Parameters
self.truck box color = (255,0,0)
self.truck width min = 50
self.truck width max = 200
self.truck height min = 30
self.truck height max = 200
self.truck area min = 30
self.truck area max = 200

# Pedestrian Modeling Parameters
self.pedestrian box color = (0,0,255)
self.pedestrian width min = 30
self.pedestrian width max = 200
self.pedestrian height min = 30
self.pedestrian height max = 200
self.pedestrian area min = 100
self.pedestrian area max = 300

## Thresholding Settings ##
# Regular Thresholding
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self.threshold min = 80 # 50
self.threshold max = 255 # 255

# Gaussian Blur Settings
self.gaussian blur size = 3 # 7
self.gaussian blur sigma = 1 # 3

def filterImage(self, img):

# Grayscale the image
img gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

# Morphological Filtering
# element = cv2.getStructuringElement(cv2.MORPH CROSS,(3,3))
# img erode = cv2.erode(img gray,element)
# retval, img thresh = cv2.threshold(img erode,self.threshold min,self.threshold max,cv2.

THRESH BINARY)
# img dilate = cv2.dilate(img thresh,element)

# Basic Thresholding
img gaus = cv2.GaussianBlur(img gray, (self.gaussian blur size,self.gaussian blur size),

sigmaX=self.gaussian blur sigma, sigmaY=self.gaussian blur sigma)
retval, img thresh = cv2.threshold(img gaus, self.threshold min, self.threshold max, cv2.

THRESH BINARY)

return img thresh

def subtractImages(self, map img, cam img):

sub = cv2.subtract(map img,cam img)
return sub

def findContours(self, img):

contours, hierarchy = cv2.findContours(img,cv2.RETR EXTERNAL,cv2.
CHAIN APPROX SIMPLE)

return contours

def drawOcclusions(self, img, contours):

for cnt in contours:

# status = True
cnt, status = self.groupObjects(cnt)

if status is True:

# Properties of the contour
x,y,w,h = cv2.boundingRect(cnt)
left = tuple(cnt[cnt[:,:,0].argmin()][0])
right = tuple(cnt[cnt[:,:,0].argmax()][0])
top = tuple(cnt[cnt[:,:,1].argmin()][0])
bottom = tuple(cnt[cnt[:,:,1].argmax()][0])
x middle = int((right[0] − left[0])/2 + left[0])
y middle = int(bottom[1])

# Uncomment to show all contours
# cv2.rectangle(img,(x,y),(x+w,y+h),self.pedestrian box color,2)

# Corners
top right = np.array([right[0], top[1]])
bottom right = np.array([right[0], bottom[1]])
bottom left = np.array([left[0], bottom[1]])
top left = np.array([left[0], top[1]])
center = np.array([x middle, y middle])

# Convert points/measurements to world coordinates
top right world = self.cvt.project2Dto2D(top right)
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bottom right world = self.cvt.project2Dto2D(bottom right)
bottom left world = self.cvt.project2Dto2D(bottom left)
top left world = self.cvt.project2Dto2D(top left)
center world = self.cvt.project2Dto2D(center)
w world = bottom right world[0] − bottom left world[0]
h world = bottom left world[1] − top left world[1]
a = w world∗h world # Area

# TODO Can be removed
w world = bottom right[0] − bottom left[0]
h world = bottom left[1] − top left[1]
a = w world∗h world # Area

#print w world, h world

x1 = bottom left world[0]
y1 = bottom left world[1]
w1 = w world
h1 = h world
# cv2.rectangle(img,(x1,y1),(x1+w1,y1+h1),self.car box color,2)

# Check to see if the contour is a car
if( w world > self.car width min and w world < self.car width max and

h world > self.car height min and h world < self.car height max and
a > self.car area min and a < self.car area max):

cv2.rectangle(img,(x,y),(x+w,y+h),self.car box color,2)

# Check to see if the contour is a truck
if( w world > self.truck width min and w world < self.truck width max and

h world > self.truck height min and h world < self.truck height max and
a > self.truck area min and a < self.truck area max):

cv2.rectangle(img,(x,y),(x+w,y+h),self.truck box color,2)

# Check to see if the contour is a pedestrian
if( w world > self.pedestrian width min and w world < self.pedestrian width max

and
h world > self.pedestrian height min and h world < self.pedestrian height max and
a > self.pedestrian area min and a < self.pedestrian area max):

cv2.rectangle(img,(x,y),(x+w,y+h),self.pedestrian box color,2)

return img

def groupObjects(self, contour):

hull = cv2.convexHull(contour)

status = cv2.isContourConvex(hull)

return hull, status

def findOcclusions(self, map img, cam img):

sub img = self.subtractImages(map img, cam img)

sub filt = self.filterImage(sub img)

contours = self.findContours(sub filt)

cam occ = self.drawOcclusions(cam img, contours)

return cam occ
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