
 
 

THE PENNSYLVANIA STATE UNIVERSITY  
SCHREYER HONORS COLLEGE  

 
 
 

DEPARTMENT OF MECHANICAL & NUCLEAR ENGINEERING 
 
 
 

VEHICLE PATH FOLLOWING AND ROLLOVER PREVENTION USING 
PREVIEWED STATE INFORMATION 

 
 

PAUL STANKIEWICZ 
Spring 2013 

 
 
 

A thesis  
submitted in partial fulfillment  

of the requirements  
for a baccalaureate degree 
in Mechanical Engineering  

with honors in Mechanical Engineering 
 
 
 

Reviewed and approved* by the following:  
 

Dr. Sean Brennan 
Associate Professor of Mechanical Engineering  

Thesis Supervisor 
 

Dr. H. J. Sommer III 
Professor of Mechanical Engineering  

Honors Advisor 
 
 
 

* Signatures are on file in the Schreyer Honors College. 
  



 
 

 
 

 

 
We approve the thesis of Paul Stankiewicz: 
 
 
 

Date of Signature 
 
 

     
 

  Dr. Sean Brennan 
  Associate Professor of Mechanical Engineering  
  Thesis Supervisor 
 
 
 

     
 

  Dr. H. J. Sommer III 
  Professor of Mechanical Engineering  
  Honors Advisor 
  



i 
 

ABSTRACT 
 

The research in this thesis focuses on investigating methods of vehicle path 

following and rollover prevention with application towards autonomous vehicles.  

Statistics show that although rollover only occurs in 2.2% of total highway crashes, it 

accounts for 10.7% of total fatalities.  Autonomous vehicles must be able to remain 

within the bounds of the road, while also preventing rollover during emergency 

situations.  Vehicle path following is a mature problem and has been investigated 

several ways, one of which will be used and evaluated in this research.  There are also 

several dynamic rollover metrics in use that measure a vehicle's rollover propensity 

under specified conditions.  However, in order to prevent a rollover event from 

occurring, it is necessary to predict a vehicle's rollover propensity in the future.  This 

research uses a novel vehicle rollover metric, called the zero-moment point (ZMP), to 

predict the vehicle's rollover propensity.  Comparing different amounts of preview, the 

results show that short-range predictions - as little as 0.75 seconds ahead of the vehicle 

- are sufficient to prevent nearly all dynamics-induced rollovers in typical shoulders 

and medians.   
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Chapter 1 - Literature Review 

1.1 Introduction 

 
 Safety has long been recognized as one of the most important considerations in 

automobile design.  Although modern cars have made driving a mundane activity, 

many drivers tend to forget the inherent danger of traveling in an automobile at high 

speeds.  Over 5.5 million crashes were reported by the National Highway Traffic 

Safety Administration (NHTSA) [1] in the United States in 2009.  Almost 31,000 of 

these crashes were fatal.  While this number has steadily decreased by 14% since 2005, 

it is still an unacceptable statistic.  The emergence of autonomous vehicles in the near 

future demands reliable safety systems that are capable of protecting occupants without 

direct driver intervention. 

 The concern over automobile safety has led to the implementation of many 

design features such as air bags, restraints, etc.  The NHTSA estimated that in the past 

35 years, over 350,000 lives have been saved due to these safety features [1].  In the 

hopes of further increasing this number, there has been ongoing research on vehicle 

safety systems, particularly regarding vehicle rollover.  Vehicle rollover remains one of 

the deadliest types of automobile accident.  Although rollover occurred in only 2.2% of 

total crashes, it accounted for 10.7% of total fatalities [1].  Vans, trucks, and SUVs are 

especially prone to rollover due to their high center of gravity.  Therefore, investigating 

the roll stability of a vehicle is important in improving overall safety. 

 Much of the current research regarding vehicle rollover aims to measure or 

predict a vehicle's rollover propensity.  The most explicit method of determining 
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rollover propensity is full-scale vehicle testing.  This method permits the vehicle to be 

driven through a test suite of worst-case maneuvers to characterize potential rollover.  

However, full-scale testing is expensive and incomplete; it is impossible to recreate all 

possible driving situations when considering the road trajectory, vehicle speed, 

variations in terrain, weather conditions, and possible obstacles in the road.   

 Alternatively, research is also being performed to measure rollover propensity 

by establishing metrics that quantify the onset of rollover.  Several variations of 

rollover metrics exist including static or steady-state metrics, dynamic metrics, metrics 

utilizing the knowledge of ground-vehicle forces, and metrics considering the vehicle's 

states.  A commonly used static metric is known as the Static Stability Factor (SSF) 

[2].  The SSF is an important factor in the NHTSA's five-star rating system for vehicle 

rollover, which combines SSF values with crash data for the particular vehicle.  The 

SSF can be viewed as the lateral acceleration necessary for rollover to occur on a flat 

road during a steady-state turn [2].  The SSF is obtained by treating the vehicle as a 

rigid body and performing a sum of moments about the center of the right tire contact 

patch (point P in Figure 1.1).  

 

Figure 1.1: Free-body diagram of vehicle experiencing impending rollover [9]. 
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Solving the moment equation and rearranging the terms provides the SSF value, 

expressed as: 

     
  

 
 

 

  
 (1.1) 

where    is the steady-state lateral acceleration,   is the gravitational acceleration,   is 

the average of the vehicle's front and rear track widths, and   is the height of the 

vehicle's center of gravity from the ground.  Although the SSF and other static metrics 

provide useful information, their results are based on steady-state behavior and cannot 

fully characterize the roll stability of a vehicle during dynamic driving conditions, such 

as aggressive steering maneuvers.  These methods are also empirical in nature, making 

them difficult to use for design and warning capabilities.  

 These concerns are addressed when utilizing dynamic model-based rollover 

metrics.  Examples of these metrics include the Dynamic Stability Index (DSI) [3], the 

Time-To-Rollover (TTR) metric [4], the Load Transfer Ratio (LTR) [5], and the 

Stability Moment (SM) metric [6].  The first of these metrics, the DSI, utilizes the 

same rigid vehicle model as the SSF, but accounts for the inertia and angular 

acceleration of the vehicle as seen in Figure 1.2.  Once again, the vehicle is assumed to 

be symmetrical, rigid, and traveling on a flat surface.  The vehicle is also assumed to be 

on the threshold of rollover, resulting in negligible forces on the left tires.  Performing 

a sum of moments about the center of the right tire contact patch (point P in Figure 1.2) 

and rearranging the terms yields the following equation: 

     
 

  
 

  

 
  

      

   
 (1.2) 
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Figure 1.2: Free-body diagram experiencing impending rollover [9]. 

where    is the steady-state lateral acceleration,   is the gravitational acceleration,   is 

the average of the vehicle's front and rear track widths,   is the height of the vehicle's 

center of gravity,     is the x-axis mass moment of inertia,    is the roll acceleration, 

and   is the mass of the vehicle. 

 Another dynamic metric that anticipates future rollover is the Time-To-

Rollover (TTR) [4] which was originally proposed by Chen and Peng.  Essentially, the 

TTR is defined as the time it will take for the sprung mass of the vehicle to reach a 

critical roll angle (wheel liftoff) with respect to the vehicle's unsprung mass over a 

predicted time interval.  TTR calculates the vehicle's roll angle in the future and checks 

the value against a specified threshold.  If the value is larger than the threshold, the 

time-to-rollover is established.  This metric uses a 3-degree-of-freedom model and 

assumes that the steering angle remains constant throughout the predicted time interval.  

A flow chart of the TTR algorithm can be seen in Figure 1.3. 
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Figure 1.3: Flowchart of the Time-To-Rollover algorithm [4]. 

Finally, dynamic metrics can be derived by using vehicle-ground forces and 

moments.  The Load Transfer Ratio (LTR) [5] and the Stability Moment (SM) [6] are 

two examples of such metrics.  The LTR is defined as the ratio of the difference in 

normal forces of the right and left tires divided by the sum of the normal forces in the 

right and left tires.  This metric, proposed by Ervin [5] at the University of Michigan 

Transportation Research Institute, can be written as the following equation: 

     
       

       

 (1.3) 

where    is the normal force acting on the right tire and    is the normal force acting 

on the left tire.  The LTR can only vary between -1 and 1, where a value of 1 represents 

wheel liftoff on the left side of the vehicle and a value of -1 represents wheel liftoff on 

the right side of the vehicle.  

 Similar to the LTR, the Stability Moment (SM) also utilizes vehicle-ground 

forces.  This metric was proposed by Peters and Iagnemma [6] and can be viewed as an 

extension of the LTR.  The SM is defined as the moment produced by the vehicle-

ground contact forces about the tip-over axes of the vehicle.  The tip-over axes are the 

lines connecting the contact points of the tires.  The metric is then calculated as the 



6 
 

ratio of the difference in the SMs of the right and left side divided by the sum of the 

SMs of the right and left side, resulting in the following equation: 

     
       

       

 (1.4) 

where     is the Stability Moment on the left side of the vehicle and     is the 

Stability Moment on the right side of the vehicle.  Once again, the metric varies 

between values of -1 and 1 with the same implications.  Metrics such as the LTR and 

SM rely on the knowledge of vehicle-ground contact forces.  In practice, however, 

these forces are very difficult to measure.  Sensors capable of obtaining this data are 

expensive and uncommon on typical passenger vehicles.  These metrics also saturate at 

the onset of wheel liftoff, meaning they are unable to predict the severity of a potential 

rollover-inducing maneuver. 

1.2 Zero-Moment Point 

 
 To address the limitations of the metrics presented above, previous work by the 

Intelligent Vehicles and Systems Research Group (IVSG) at Penn State [7-11] 

developed a dynamic rollover metric utilizing the concept of the Zero-Moment Point 

(ZMP).  The zero-moment point is defined as the point on the ground where the 

summation of the tipping moments acting on an object, due to gravity and inertia 

forces, equals zero [12].  This concept was originally developed by Vukobratovic [13] 

in 1968 and has been applied to maintain the dynamic stability of bipedal robots.  To 

remain in equilibrium, the location of the robot's ZMP must lie within its contact 

polygon; otherwise, the robot will overturn.  This concept can be applied to a general 

object for further understanding.  Figure 1.4(a) shows a mass resting on a tilt table.   
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Figure 1.4: Free-body diagrams of mass on a tilt table [9]. 

The table is assumed to have enough friction that the mass does not slip.  In Figure 

1.4(a), the reaction force      lies directly below the object's center of mass.  The point 

where this reaction acts is the ZMP.  As the object is progressively inclined as seen in 

Figure 1.4(b), 1.4(c), and 1.4(d), the reaction force shifts to the right to balance the 

moment created by gravity and satisfy the definition of ZMP.  Once the table is tilted to 

an angle that the ZMP is located outside the object's contact polygon as seen in Figure 

1.4(d), the object is no longer stable and will overturn. 

 Applying the concept of the zero-moment point as a vehicle rollover metric 

presents several advantages.  One advantage of the ZMP is that it explicitly accounts 
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for terrain effects in its derivation.  Another one of its more significant advantages is 

that calculation of the ZMP does not rely on knowledge of the vehicle-ground contact 

forces.  By treating the vehicle as a kinematic chain, it is possible to calculate each 

body's net moment contribution to the zero-moment point.  This calculation only 

requires measurement of the kinematic motion of all objects in the chain, information 

that is accessible through inertial measurement units and knowledge of the vehicle 

parameters. The formulation and application of the ZMP is discussed later in the paper. 

1.3 Vehicle Preview Models 

 
 It is the goal of this research to explore vehicle path following and rollover 

prevention strategies with application towards autonomous vehicles.  Ultimately, this 

research will help in optimizing a vehicle's road departure trajectory to prevent both 

collision and rollover.  To achieve this, a vehicle preview model is developed that 

predicts both the vehicle's position and rollover propensity at a fixed time in the future.  

The ZMP metric is used in this preview model to predict the threat of rollover.   

 Nearly all driver models implement previewed information, or put another way, 

knowledge of what lies beyond the driver.  Several preview control models have been 

developed that focus on vehicle path following, which predicts the vehicle's position at 

a fixed time or distance in the future.  Two approaches to the problem of linear optimal 

control were found in the literature: predictive control theory and linear quadratic 

regulator (LQR) theory.  Predictive control theory was used by MacAdam [14] in 1981 

to develop an optimal preview controller for vehicle steering.  This time-invariant 

controller uses a linear vehicle model and relies on the assumption that the steering 
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input remains constant over the preview interval.  Essentially, the controller minimizes 

the vehicle's lateral position error using a local performance index (cost function).  By 

projecting the current states and inputs of the dynamic system over the preview 

interval, this model calculates an optimal control (steering input) that minimizes the 

error between the previewed input (the road) and the previewed output (the predicted 

vehicle path), as seen in Figure 1.5.  Projection of the current vehicle states is done 

through the use of the system's state transition matrix [15].   

 

Figure 1.5: Error between road trajectory and predicted vehicle path over a specified preview 

interval. 

 Linear quadratic regulator (LQR) theory was used by Sharp and Valtetsiosis 

[16,17] in 2001 to develop another optimal preview controller.  This controller used 

previewed road geometry to minimize a similar cost function regarding lateral path 

error with the addition of yaw path error and steering input.  Use of the LQR theory 

assumed that the steering input could vary over an infinite horizon.  In 2006, Cole and 

Pick [18] compared controllers using the two different theories and drew several 

conclusions.  For predictive control theory, path-following errors are evaluated up to 

the preview horizon of the road path, while steering input is only calculated up to the 
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control horizon.  The control horizon must be less than or equal to the preview horizon 

for predictive control theory.  For LQR theory, road path is previewed up to the 

preview horizon, but path-following errors are evaluated up to the control horizon 

rather than the preview horizon.  The control horizon is independent of the preview 

horizon and can be set to any length.  In the controller developed by Sharp and 

Valtetsiotis [16], the control horizon is set to infinity.  While there are slight 

differences in the cost functions of the theories, both controllers approximate human 

behavior well and are identical when using preview and control horizons that are 

sufficiently long. 

 This research will make use of the MacAdam preview model in the path 

following problem.  The Zero-Moment Point (ZMP) rollover metric will also be 

implemented to predict the vehicle's rollover propensity over the preview horizon.  

Further explanation and derivation of the MacAdam preview model and ZMP are 

discussed in subsequent sections of the report.  This previewed information is then 

ultimately included in an overall output vector from the vehicle model.  Determining 

reliable methods for path following and rollover prevention is an important step in 

optimizing a vehicle's trajectory to minimize rollover and road departure.  

1.4 Outline of Remaining Chapters 

 
 The remainder of this thesis is organized as follows: Chapter 2 presents the 

derivations of the vehicle models used in this research.  This includes 2- and 3-degree-

of-freedom models with consideration of terrain influences and tire lag effects.  

Chapter 3 introduces the vehicle path following problem.  The methodology of 



11 
 

previewing the dynamic system is presented and then applied to the lateral position of 

the vehicle.  The closed-loop MacAdam model is them derived and implemented to 

determine its effectiveness.  Chapter 4 derives the concept of the zero-moment point as 

a vehicle rollover metric, which is then included as an output in the vehicle model.  

Previewed information about the ZMP is then explored and used to determine the 

minimum preview time needed to prevent rollover.  Finally, Chapter 5 presents the 

conclusions made from this research and plans for future work. 

 

  



12 
 

1.5 References 
[1] DOT, “2009 Traffic Safety Facts - Final Report,” U.S. Department of 

 Transportation: National Highway Traffic Safety Board, 2009. 

[2] Transportation Research Board, The National Highway Traffic and Safety 

 Administration’s Rating System for Rollover Resistance. Washington, D.C.: 

 National Academy Press, 2002. 

[3] Dukkipati, R. V., J. Pang, M. S. Qatu, G. Sheng, and Z. Shuguang, Road 

Vehicle Dynamics, Warrendale, PA: Society of Automotive Engineers, Inc., 

2008. 

[4] B.-C. Chen and H. Peng, “Differential-braking-based rollover prevention for 

sport utility vehicle with human-in-the-loop,” Vehicle System Dynamics: 

International Journal of Vehicle Mechanics and Mobility, vol. 36, no. 4-5, pp. 

359–389, 2001. 

[5] R. D. Ervin and Y. Guy, “The influence of weights and dimensions on the 

stability and control of heavy-duty trucks in Canada Volume I,” The University 

of Michigan Transportation Research Institute, Ann Arbor, MI, Tech. Rep. 

UMTRI-86-35/I, July 1986. 

[6] S. C. Peters and K. Iagnemma, “Stability measurement of high-speed vehicles,” 

Vehicle System Dynamics: International Journal of Vehicle Mechanics and 

Mobility, vol. 47, no. 6, pp. 701–720, 2009.  



13 
 

[7] S. Lapapong and S. Brennan, “Terrain-aware rollover prediction for ground 

vehicles using the zero-moment point method,” in Proc. American Control 

Conference, Baltimore, MD, June 2010, pp. 1501–1507. 

[8] S. Lapapong, A. A. Brown, and S. N. Brennan, “Experimental validation of 

terrain-aware rollover prediction for ground vehicles using the zero-moment 

point method,” in 10th International Symposium on Advanced Vehicle Control 

(AVEC2010), vol. 2, Longsborough, UK, Aug. 2010, pp. 1233–1237. 

[9] S. Lapapong, “Vehicle rollover prediction for banked surfaces,” Ph.D. 

dissertation, The Pennsylvania State University, 2010. 

[10] S. Lapapong and S. N. Brennan, “A novel comparative approach to evaluate 

vehicle rollover propensity,” in Proc. of 2011 IAVSD, Manchester, England, 

Aug 2011. 

[11] S. Lapapong, A.A. Brown, K.S. Swanson, and S.N. Brennan, "Zero-moment 

point determination of worst case maneuvers leading the vehicle wheel lift." in 

Vehicle System Dynamics: International Journal of Vehicle Mechanics and 

Mobility, vol. 50, sup. 1, pp. 191-214, 2012. 

[12] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. center of 

pressure–zero moment point,” IEEE Trans. Syst., Man, Cybern. A, vol. 34, no. 

5, pp. 630–637, Sept. 2004. 



14 
 

[13] M. Vukobratovic and D. Juricic, “Contribution to the synthesis of biped gait,” 

in Proc. IFAC Symp. Technical and Biological Problem on Control, Erevan, 

USSR, 1968. 

[14] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of 

Closed-Loop Automobile Driving," IEEE Transactions on Systems, Man, and 

Cybernetics, SMC-11(6), pp. 393-399, 1981. 

[15] F. Golnaraghi and B. Kuo, Automatic Control Systems, 9th ed. New York: John 

Wiley & Sons,  Inc. 2010. 

[16] Sharp, R. and V. Valtetsiotis, "Optimal preview car steering control," Vehicle 

System Dynamics, 35, pp. 101-117, 2001. 

[17] Sharp, R. S. and H. Peng, "Vehicle Dynamics Applications of Optimal Control 

Theory," Vehicle System Dynamics, 49(7), pp. 1073-1111, 2011. 

[18] Cole, D., A. Pick, and A. Odhams, "Predictive and linear quadratic methods for 

potential application to modelling driver steering control," Vehicle System 

Dynamics, 44(3), pp. 259-284, 2006. 

  



15 
 

Chapter 2 - Vehicle Dynamic Models 

2.1 Two-Degree-of-Freedom Bicycle Model 

 
 A simple dynamic vehicle model commonly used is the two-degree-of-freedom 

(2DOF) bicycle model.  This section will introduce the nomenclature and coordinate 

system used in vehicle models and derive the equations of motion of the bicycle model.  

These equations are then be used to develop a state-space representation of the vehicle.   

 The 2DOF bicycle model only considers the vehicle's lateral and yaw 

dynamics.  The body-fixed coordinate system used to derive this model was developed 

by the Society of Automotive Engineers (SAE) [1] and is shown in Figure 2.1 (looking 

at the back of the vehicle).  The nomenclature used in the derivation is listed in Table 

2.1 and illustrated in Figure 2.2. 

 

 

Figure 2.1: SAE Body-Fixed Vehicle Coordinate System. 
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Table 2.1: Bicycle model nomenclature. 

Parameter Definition 

U Longitudinal velocity at CG (body-fixed frame) 
V Lateral velocity at CG (body-fixed frame) 
r Yaw rate 
m Vehicle mass 
Izz Mass moment of inertia about vehicle z-axis 
a Distance from CG to front axle along the x-axis 
b Distance from CG to rear axle along x-axis 
L Length of vehicle 
T Track width of vehicle 
Ff Front tire force 
Fr Rear tire force 
Cαf Front cornering stiffness 
Cαr Rear cornering stiffness 
αf Front tire slip angle 
αr Rear tire slip angle 
δf Front steering angle 

 

 

 

Figure 2.2: Free-body diagram of bicycle model in body-fixed coordinates. 
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The simplified bicycle model relies on several assumptions that are listed below: 

 In the nature of a bicycle, the vehicle is assumed to be symmetrical along its 

longitudinal axis. 

 No motion exists in the roll and pitch directions. 

 The vehicle is steered by the front wheel. 

 Longitudinal velocity, U, is assumed to be constant. 

 Small angle approximation apply such that sin(θ) ≈ θ and cos(θ) ≈ 1. 

 A linear tire model is applied such that F = Cα α.  This statement says that the 

lateral force acting on the tire is linearly proportional to the tire side-slip angle. 

 All components of the model are assumed to be rigid bodies. 

 The tires are assumed to roll without slipping in the longitudinal direction. 

 Aerodynamic effects are assumed to be negligible. 

These assumptions allow the vehicle to be analyzed by the model shown in Figure 2.2.  

It should be noted that although this model is termed the bicycle model, it does not 

represent the dynamics of an actual bicycle. 

 Using the SAE body-fixed coordinate system described previously, the angular 

velocity and angular acceleration of the vehicle can be written as the following: 

          (2.1) 

         (2.2) 

The linear velocity of the vehicle's center of gravity can be expressed as: 
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             (2.3) 

 To apply Newton's equations, however, the accelerations of the vehicle must be 

written with respect to a global, Earth-fixed coordinate system.  The Earth-fixed 

acceleration of a moving object can be written by the general equation 

                                (2.4) 

where    is the Earth-fixed acceleration of the object.  Solving this equation yields the 

following for the total acceleration of the vehicle in Earth-fixed coordinates: 

                        (2.5) 

                      (2.6) 

where      due to the constant velocity of the vehicle in the body-fixed longitudinal 

direction.  Now the equations of motion for the vehicle can be written.  The constant 

longitudinal velocity of the vehicle also means that the sum of forces in the 

longitudinal direction is equal to zero.  Therefore, referring back to Figure 2.2, a sum 

of forces in the lateral direction and a sum of moments about the z-axis yield the 

equations of motion for the bicycle model. 

                        (2.7) 

                   (2.8) 

 Applying the assumption of the linear tire model, the front and rear tire forces 

can be expressed as Ff = Cαf αf and Fr = Cαr αr respectively.  Substituting these forces 

into Equations 2.7 and 2.8 yields the following: 
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                      (2.9) 

                     (2.10) 

The geometry of Figure 2.2 allows the tire slip angles to be written as functions of the 

velocities of each tire and the front steering angle in the form 

          
   

   

      
   

   

     
    

 
    (2.11) 

          
   

   

   
   

   

  
    

 
 (2.12) 

Small angle approximations assume that the inverse tangent function is approximately 

equal to the angle itself.  Substituting Equations 2.11 and 2.12 into Equations 2.9 and 

2.10 yields the final equations of motion for the bicycle model. 

              
    

 
         

    

 
  (2.13) 

            
    

 
          

    

 
  (2.14) 

Rearranging to solve for    and    yields the following: 

     
       

  
    

         

  
      

   

 
    (2.15) 

     
         

    
    

           

    
    

    

   
    (2.16) 

 Representing Equations 2.15 and 2.16 in matrix notation allows the equations 

of motion to be written as a state-space model with states of   and  .  The state-space 

vehicle dynamic bicycle model is: 
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(2.17) 
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2.2 Three-Degree-of-Freedom Roll Model 

 
 Although the bicycle model is useful for understanding the lateral and yaw 

accelerations of the vehicle, it does not provide any information about the vehicle's roll 

characteristics.  This section introduces a three-degree-of-freedom roll model 

mathematically consistent with the vehicle model developed by Mammar [2] in 1999, 

with the exception of the coordinate system location.  This model is considered an 

extension of the bicycle model to understand the effects of the vehicle's suspension by 

including roll dynamics. 

 The nomenclature and coordinate system used to derive this roll model are 

listed in Table 2.2 and illustrated in Figure 2.3.  The equations of motions will be 

derived and written in mass-damper-spring from.  These equations will then be used to 

develop a state-space representation of the vehicle. 

 

Figure 2.3: Free-body diagram of roll model in body-fixed coordinates. 
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Table 2.2: Roll model nomenclature. 

Parameter Definition 

U Longitudinal velocity at CG (body-fixed frame) 
V Lateral velocity at CG (body-fixed frame) 
ϕ Roll angle of sprung mass 
p Roll rate of sprung mass 
r Yaw rate 
m Total vehicle mass 
mu Unsprung vehicle mass 
ms Sprung vehicle mass 
Ixx Mass moment of inertia about vehicle x-axis 
Izz Mass moment of inertia about vehicle z-axis 
Ixz Product mass moment of inertia 
a Distance from CG to front axle along the x-axis 
b Distance from CG to rear axle along x-axis 
L Length of vehicle 
T Track width of vehicle 
hr Height of roll center 
hs Height of sprung mass CG 
hsr Height of sprung mass CG from roll center 
Ff Front tire force 
Fr Rear tire force 
Cαf Front cornering stiffness 
Cαr Rear cornering stiffness 
αf Front tire slip angle 
αr Rear tire slip angle 
δf Front steering angle 
Kϕ Roll stiffness 
Dϕ Roll damping constant 
g Gravitational acceleration 
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 Similar to the bicycle model, the three-degree-of-freedom roll model relies on 

the following assumptions to aid in its derivation: 

 The vehicle is assumed to be symmetrical along its longitudinal axis (Ixy = 0). 

 No motion exists in the pitch direction. 

 The vehicle is steered by the front wheel. 

 Longitudinal velocity, U, is assumed to be constant. 

 Small angle approximation apply such that sin(θ) ≈ θ and cos(θ) ≈ 1. 

 A linear tire model is applied such that F = Cα α.  This statement says that the 

lateral force acting on the tire is linearly proportional to the tire side-slip angle. 

 All components of the model are assumed to be rigid bodies. 

 The tires are assumed to roll without slipping in the longitudinal direction. 

 Aerodynamic effects are assumed to be negligible. 

 The torsional spring and torsional damper acting at the roll center are linear. 

 The roll center is fixed with respect to the vehicle's body 

 The unsprung mass only rotates in the yaw direction. 

 Referring to Figure 2.3, the roll model can be described as dividing the vehicle 

mass into a sprung mass (Gs) and an unsprung mass (Gu).  The sprung mass represents 

the mass of the vehicle that sits on top of the suspension while the unsprung mass 

represents the mass of the vehicle that is located under, and thus is unaffected by, the 

vehicle's suspension.  These two masses are connected at a joint called the roll center, 

which is defined as the virtual point about which the suspension rolls with respect to 

the unsprung mass.  A torsional spring and torisonal damper have been included at the 
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roll center to simulate the vehicle's suspension dynamics.  As indicated in the model 

assumptions, the roll center only allows rotation about the vehicle's longitudinal axis.  

For this derivation, the vehicle coordinate system has been attached to the unsprung 

mass. 

 Considering the coordinate system shown in Figure 2.3, the angular velocity of 

the unsprung mass can be written as: 

           (2.18) 

while the angular velocity of the sprung mass can be written as: 

                (2.19) 

Similarly, the linear velocity of the unsprung mass can written as: 

             (2.20) 

while the linear velocity of the sprung mass can be written as: 

                     (2.21) 

Equation 2.21 was derived by utilizing relative velocity and assuming a small roll 

angle.  To determine the accelerations of the sprung and unsprung masses, the 

velocities must be converted to a global, Earth-fixed coordinate system.  This allows 

Newton's equations to be used to describe the system.  The Earth-fixed acceleration of 

a moving object can be written by the general equation 

                                (2.22) 
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where    is the Earth-fixed acceleration of the object.  Solving this equation for the 

unsprung mass and assuming the roll center is coincident with the unsprung mass's CG 

yields the following equation: 

                         (2.23) 

                       (2.24) 

where      due to the constant velocity of the vehicle in the body-fixed longitudinal 

direction.   The acceleration of the sprung mass can be calculated as 

                                               (2.25) 

                                          (2.26) 

 Now the equations of motion for the vehicle can be written.  The inclusion of 

roll dynamics adds another equation of motion, obtained by performing a sum of 

moments about the vehicle's x-axis.  Therefore, the three equations are obtained 

through a sum of forces in the lateral direction, a sum of moments about the vehicle's z-

axis, and a sum of moments about the vehicles x-axis.  Summing the forces in the 

lateral direction yields the following equation: 

                       (2.27) 

                        (2.28) 

 The next equation of motion is obtained by summing the moments about the 

roll center in the x-direction.  Assuming the vehicle's roll center is close to the ground, 

the equation can be written as 
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                                        (2.29) 

                                                   (2.30) 

 The last equation of motion is developed by summing the moments in the yaw 

direction about the sprung mass CG to produce the following: 

                                               (2.31) 

                     (2.32) 

Equations 2.28, 2.30, and 2.32 represent the three equations of motion for the roll 

model.  These can be organized in the standard mass-damper-spring (MDK) form of 

                (2.33) 

where 

    

 
 
 
  (2.34) 

defines the states of the MDK equation.  These are the three-degrees-of-freedom of the 

roll model;   is the lateral position,   is the yaw angle, and   is the roll angle.  By 

rearranging the three equations of motion, the mass, damper, and spring matrices are 

defined as 

    

       

                  
 

        

  (2.35) 
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  (2.36) 

    
   
           

   

  (2.37) 

The input to the model is defined as the front and rear tire forces in the lateral direction 

such that 

    
  
  

  (2.38) 

and the force matrix is defined as 

    
  
   
  

  (2.39) 

 The equations of motion for the roll model can also be represented in general 

state-space form, which allows easier numerical simulation of the system.  The state-

space form can be derived from the MDK form by first breaking down the lateral 

forces acting on the system by applying the assumption of the linear tire model such 

that Ff = Cαf αf  and Fr = Cαr αr.  Referring back to Figure 2.2, the tire slip angles can be 

written as functions of the velocities of each tire and the front steering angle. 

          
   

   

      
   

   

     
    

 
    (2.40) 

          
   

   

   
   

   

  
    

 
 (2.41) 

Substituting Equations 2.11 and 2.12 into the lateral forces produces the three 

equations of motion after some rearrangement in the following form: 
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          (2.42) 

 
          

                               

                
(2.43) 

              
            

 
    

         

 
           (2.44) 

By introducing a fourth equation, 

       (2.45) 

an intermediate MDK model can be introduced in the form 

                     (2.46) 

The state vector of this intermediate model, and ultimately the state-space model, is 

then defined as 

    

 
 
  

 

  (2.47) 

Writing the equations of motion in the form of Equation 2.46 results in the following 

matrices: 

       

        

                  
  

         
    

  (2.48) 
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 (2.49) 

The input to the intermediate model is the front steering angle, δf, with a force matrix 

of 

       

    

 
     

 

  (2.50) 

The general state-space form of  

          (2.51) 

with a state vector described in Equation 2.47, can easily be obtained from this 

intermediate form through the relationship  

        
       (2.52) 

       
       (2.53) 
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2.3 Bicycle Model with Road Bank Angle Input 
 

 In many cases, the road profile is not perfectly level in the lateral direction.  

This is also the case just outside the road boundaries, as the terrain typically slopes 

down as it moves away from the road.  Therefore, it is necessary to take the road bank 

angle into consideration for these driving situations.  The terrain angle, ϕt  as seen in 

Figure 2.4, will now be considered when developing the equations of motion. 

 For the two-degree-of-freedom bicycle model with small angle approximations, 

the terrain angle affects the equations of motion in the following manner: 

                              (2.54) 

                   (2.55) 

Only the sum of forces in the lateral direction is affected by the inclusion of terrain 

angle; it has no contribution towards the sum of moments about the vehicle's z-axis. 

 

Figure 2.4: Rigid vehicle model on banked slope. 
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 To maintain a linear system, the terrain angle is treated as a linear input to the 

system dynamics.  The equations of motion with bank angle input result in the 

following state-space representation of the bicycle model: 

 

  
 

  
  

 
 
 
 

       

  

         

  
  

         

    

           

     
 
 
 

 
 
 
   

    

 
 

     

 
 

  
  
  

  

   
  
  

  
 
 
   

  
  

  
  
  

  

(2.56) 

 The terrain bank angle is typically defined in units of degrees or as a percent 

superelevation.  When defined as a percent superelevation, this research uses the 

following equation: 

                           
    

   
  (2.57) 
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2.4 Roll Model with Road Bank Angle Input 

 
 Similar to the bicycle model, the equations of motion for the three-degree-of-

freedom roll model are also affected by the inclusion of terrain angle, ϕt.  A diagram of 

the roll model on a banked slope can be seen in Figure 2.5. 

 The terrain angle affects the equations of motion in the following manner: 

                              (2.58) 

                          (2.59) 

                   (2.60) 

Once again, the terrain angle is assumed to not affect the sum of moments about the 

vehicle's z-axis and small angles approximations apply.  These equations also assume a 

positive roll angle is measured clockwise from the roll center, as shown in Figure 2.5. 

 

Figure 2.5: Roll model on a banked surface. 
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The terrain angle is treated as a linear input to the system dynamics, which can be 

written in the form 

                   
  
  

  (2.61) 

 where x is the state vector expressed in Equation 2.47.  The matrices      and      

are identical to those derived for the roll model without terrain angle and are expressed 

in Equations 2.48 and 2.49 respectively.  The new      matrix includes the effects of 

the terrain angle and is written as 

       

      

       
      

  

  (2.62) 

The general state-space form of  

          (2.63) 

with a state vector described in Equation 2.47, can easily be obtained from this form 

through the relationship  

        
       (2.64) 

       
       (2.65) 
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2.5 Bicycle Model with Tire Lag Dynamics 

 An assumption of the models above was that the tires respond to and generate 

lateral force instantly from changes in steering input.  In realistic driving situations, 

however, this is not true; due to deformation of the tire sidewall, there is a lag between 

the steering input and the force generated by the tires.  Tire lag can affect the roll 

behavior of a vehicle and is important to consider in this work. 

 Tire lag is most commonly modeled as a first-order differential equation [3] in 

the form 

     
 

 
         (2.66) 

     
 

 
         (2.67) 

where    and    are the front and rear tire forces, respectively,     is the steady-state 

tire force, and    is the tire relaxation length.  As previously defined, the steady-state 

tire force is written as 

         (2.68) 

where 

    
    

 
    (2.69) 

    
    

 
 (2.70) 

Substituting Equations 2.68, 2.69, and 2.70 allows the equations for the front and rear 

tire forces to be written in the form 
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         (2.71) 

     
 

 
     

    

 
      (2.72) 

 Inclusion of tire lag dynamics is done by adding the front and rear tire forces as 

states in the vehicle model.  Using Equations 2.7 and 2.8, with the addition of 

Equations 2.71 and 2.72, results in an augmented state-space model in the following 

form: 

 

 
 
 
 
  

  
   

    
 
 
 

 

 
 
 
 
 
 
 
 
    

 

 

 

 

  
 

   

  

   
   

 

    

 

  

 
 

   

 

     

 
 

  

  
 
 
 
 
 
 
 
 

 

 
 
  
  

  

 
 
 
 
 

 
 

     

 
  

 
 
 
 

   (2.73) 

 When bank angle input is also considered, the model given by Equation 2.73 is 

slightly modified as 

 

 
 
 
 
  

  
   

    
 
 
 

 

 
 
 
 
 
 
 
 
    

 

 

 

 

  
 

   

  

   
   

 

    

 

  

 
 

   

 

     

 
 

  

  
 
 
 
 
 
 
 
 

 

 
 
  
  

  

 
 
 
 
 

  
  

     

 
 

   
 
 
 
 

 
  
  

  (2.74) 
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2.6 Roll Model with Tire Lag Dynamics 

 Similar to the bicycle model, the tire lag effects of Equations 2.71 and 2.72 can 

be included in the vehicle roll model.  Once again, the front and rear tire forces are 

added as states in the model.  Using Equations 2.28, 2.30, 2.32, and 2.45, with the 

addition of Equations 2.71 and 2.72, the     ,     , and      matrices of  

                     (2.75) 

can be modified in the following form:  
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 (2.77) 

      

 
 
 
 
 
 
 

 
 
 
 

     

 
  

 
 
 
 
 
 

 (2.78) 

where the state vector,  , of this intermediate model is given as 
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 (2.79) 

As discussed in Section 2.2, the general state-space form of  

          (2.80) 

can easily be obtained from this intermediate form through the relationship  

        
       (2.81) 

       
       (2.82) 

 When bank angle input is also considered as a second input, the intermediate 

     matrix is written as 
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Chapter 3 - Vehicle Path Following 
 

 This chapter focuses on developing and implementing a vehicle path following 

preview model that is representative of a driver.  The model presented in this chapter 

utilizes the work of MacAdam [1] in 1981 which predicts the vehicle's lateral position 

in the future and uses the information to develop a closed-loop steering controller.  

MacAdam's preview model uses the linear bicycle model and relies on the assumption 

of a constant steering input over the preview interval. 

 First, the methodology of calculating a fixed point preview of the vehicle's 

lateral position is discussed.  This previewed information is then used to develop and 

check the validity of the MacAdam controller. 

3.1 Fixed Point Preview 

 
 Predicting the states of a dynamic system in the future is necessary to develop 

preview controllers.  Previewed information can be obtained by extending the current 

states and inputs of the system over a specified preview interval.  Considering the 

following linear system, 

 
               

              
(3.1) 

the general solution is given by 

                              
   

 

           (3.2) 
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 where   is the preview time and   is the system's state transition matrix [2].  The state 

transition matrix is determined by the Peano-Baker series, which for a linear time-

invariant system, reduces to the matrix exponential in the form 

           
        

  

 

   

         (3.3) 

 This solution given by Equation 3.2 allows the calculation of the state vector at 

time     using the current state vector and the input during the preview time.  To 

utilize this solution, several approximations of the state transition matrix exist.  Euler, 

bilinear (Tustin), and numerical approximations of the state transition matrix were 

considered.  Euler approximation results in the following: 

               (3.4) 

where   is the identity matrix.  The bilinear approximation, also known as the Tustin 

transformation, provides greater accuracy and is given by 

          
       

       
 (3.5) 

Numerical approximation of the state transition matrix is achieved by calculating the 

matrix exponential within MATLAB.  This is considered an approximation because 

embedded function code within MATLAB does not calculate the matrix exponential to 

an exact solution. 

 The general solution given by Equation 3.2 can be applied to the vehicle path 

following problem.  For this application, the desired output of the system is the 

previewed lateral position of the vehicle.  When calculating the lateral position of the 
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vehicle, the two-degree-of-freedom bicycle model and the three-degree-of-freedom roll 

model provide identical solutions.  Therefore, only the simpler bicycle model is 

presented in this section.  There were also negligible differences in lateral position 

when including tire lag effects; therefore, tire lag is not considered in this section. 

 To calculate the lateral position of the vehicle, the bicycle model is modified to 

include lateral position and yaw angle as states in the form  

    

 
 
 
 

  (3.6) 

The   and   matrices of the state space model then become 

   

 
 
 
 
 
 
    

 
       

  

         

  
   

 
         

    

           

    
 

     
 
 
 
 
 

 (3.7) 

   

 
 
 
 
 
 

 
    

 
     

   
  

 
 
 
 
 

 (3.8) 

 The previewed lateral position of the vehicle is then obtained by selecting the 

appropriate   and   output matrices in the state-space model.  Recognizing that the   

and   matrices are time invariant and utilizing the assumption that the steering input 

remains constant over the preview interval, the general solution of Equation 3.2 for the 

previewed state vector can be written as the following: 
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   (3.9) 

Equation 3.9 can also be rewritten in the form of an infinite series resulting in the 

following: 

                          (3.10) 

where   is the steering input and 

      
     

      

 

   

 (3.11) 

Using Equation 3.10 and the various state transition matrix approximations discussed 

previously results in the previewed state vector.  Therefore, the previewed lateral 

position is obtained by simply pulling out the lateral position from the previewed state 

vector as an output of the system.  It should be noted that Equation 3.11 does not 

quickly converge when elements of the   matrix are large.  An alternate method of 

calculating the previewed input term for these situations is presented in Chapter 4. 

 To test the validity of the previewed lateral position calculation, MATLAB 

simulations were performed for a sinusoidal lane change maneuver steering input of 

amplitude 0.05 rad and frequency of 2 rad/s.  The longitudinal velocity of 13.5 m/s (30 

mph) is assumed to remain constant throughout the maneuver.  This results in a 

standard 3.5 m lane change over 3 seconds.  Vehicle parameters for a laden 1989 GMC 

2500 pick-up truck were used in the simulations and are listed in Table 3.1.     

 The previewed lateral position of the vehicle for each of the state transition 

matrix approximations is compared against the current lateral position of the vehicle,  
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Table 3.1: Vehicle parameters of 1989 GMC 2500 pick-up truck. 

Symbol Value Unit 

m 3255 kg 
a 1.895 m 
b 1.459 m 
h 1.234 m 
T 1.615 m 

Cαf -120,000 N/rad 
Cαr -120,000 N/rad 
Ixx 1830 kg-m2 
Iyy 6488 kg-m2 

Izz 7913 kg-m2 

which has been artificially shifted into the past by the preview time.  Shifting the 

current lateral position into the past by the preview time designates the "correct" 

previewed lateral position.  Figures 3.1, 3.2, and 3.3 show this relationship for preview 

intervals of 0.5 seconds, 0.75 seconds, and 1.0 seconds respectively.   

 As can be seen, a shorter preview interval results in better agreement between 

the previewed lateral position and the "correct" lateral position.  This is an intuitive 

relationship, as it is more difficult for the system to predict the vehicle states farther in 

the future.  It should also be noted that for greater longitudinal velocities and more 

aggressive steering maneuvers, the previewed lateral position will not agree as well.  In 

these circumstances, a shorter preview interval may prove to be necessary.  The 

MATLAB simulations indicate that the numerical approximation of the state transition 

matrix provides the closest match to the "correct" previewed lateral position.  

Therefore, only the numerical approximation will be presented in following sections to 

prevent overcrowded plots. 
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Figure 3.1: Comparison of previewed lateral positions for preview interval of 0.5 sec. 

 

Figure 3.2: Comparison of previewed lateral positions for preview interval of 0.75 sec. 
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Figure 3.3: Comparison of previewed lateral positions for preview interval of 1.0 sec. 

 

3.2 Closed-Loop Vehicle Path Following 

 
 The previous section demonstrated how to predict a vehicle's position over a 

specified preview interval with an open-loop steering setup.  This information will now 

be used to develop a closed-loop controller, mathematically identical to the controller 

developed by MacAdam.  In his work, MacAdam specified a local performance index 

for the vehicle's lateral position of the form 

   
 

 
                     

   

 

   (3.12) 
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where   is the previewed input,   is the previewed output,   is the preview time, and 

  is an arbitrary weighting function over the preview interval.  Minimizing this 

performance index reduces the error between the previewed input (the road) and the 

previewed output (the predicted vehicle path), as seen in Figure 3.4, and results in the 

optimal control of the system.  If the weighting function is specified as the Dirac delta 

function where all preview information is taken at the preview time, MacAdam shows 

that the optimal control is given by 

       
             

  
 (3.13) 

where 

         
    

      

 

   

   (3.14) 

Essentially, this input is the optimal steering from the controller to best maintain path-

following.  A block diagram of the controller function can be seen in Figure 3.5.  

 

 

Figure 3.4: Controller error between predicted road and predicted vehicle path. 
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Figure 3.5: Block diagram for MacAdam controller. 

 MATLAB simulations were performed to test the performance of the controller.  

A standard sinusoidal lane change road of amplitude 3.5 m and frequency 1 rad/s (lane 

change over 3 seconds) was used as the input.  Once again, the longitudinal velocity of 

13.5 m/s (30 mph) is assumed to remain constant throughout the maneuver.  It is also 

assumed that information about the road is known to the controller, as in the form of 

stored GPS data in the vehicle's computer.  Therefore, the vehicle "knows" where the 

road will be at the preview time, shown in the simulation as the previewed road.  

Simulations were performed for preview intervals of 0.5 seconds, 0.75 seconds, and 1.0 

seconds in Figures 3.6, 3.7, and 3.8 respectively. 

 The results show that the controller performs fairly well at keeping the vehicle 

on the desired trajectory, even for preview times up to 1.0 second.  Although the 

vehicle overshoots the desired trajectory, it remains within the bounds of the lane in all 

cases (average lane width of 3.5 m, as defined by the Federal Highway Administration 

[3] is assumed).   

 The conditions used in this section do not represent an emergency maneuver; 

the aggressiveness of the road input is based on a standard lane change over 3 seconds 

at any given speed.  An emergency steering maneuver would be more aggressive and  
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Figure 3.6: Performance of controller for preview interval of 0.5 sec. 

 

Figure 3.7: Performance of controller for preview interval of 0.75 sec. 
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Figure 3.8: Performance of controller for preview interval of 1.0 sec. 

result in a more under-damped system with greater overshoot.  An emergency situation 

will be explored in Chapter 4 when rollover is considered. 

3.3 Closed-Loop Path Following with Bank Angle 

 
 This section now explores the inclusion of bank angle within the closed-loop 

system.  The model now considers bank angle as an explicit input in the linear system, 

as seen in the block diagram of Figure 3.9.  Here, the bank angle of the terrain is 

assumed to remain constant.  A constant bank angle would be present in driving 

situations when the vehicle is going around a highway turn or when the vehicle has left 

the road and is driving on the shoulder or median.  As derived in Chapter 2, the   

matrix of the state space bicycle model then becomes 
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Figure 3.9: Block diagram for controller with bank angle input. 

   

 
 
 
 
 
 

  
    

 
 

     

   
 

   
 
 
 
 
 

 (3.15) 

 MATLAB simulations were performed for the same vehicle parameters as the 

previous section, with the addition of a severe 8-degree bank angle, equivalent to a 

14% superelevation.  Once again, a sinusoidal lane change road input was used in two 

scenarios: the vehicle turns up the slope during the lane change (Figure 3.10) and the 

vehicle turns down the slope during the lane change (Figure 3.11).  Both simulations 

used a preview interval of one second.  

 The results show that the controller is able to maintain path following, even 

with the addition of a constant terrain bank angle.  The overshoot is slightly greater in 

the case when the vehicle turns down the slope, but the vehicle is still able to stay 

within the bounds of the lane. 
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Figure 3.10: Controller performance for 14% superelevation bank angle (turning up the slope). 

 

Figure 3.11: Controller performance for 14% superelevation bank angle (turning down the slope). 
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 Another interesting scenario considers when the driver model does not have 

prior knowledge of the terrain bank angle.  Therefore, although the model accounts for 

the terrain's influence on vehicle dynamics, it is here assumed that the driver is unable 

preview the bank angle on the road.  To simulate this situation, the terrain input column 

of the previewed   matrix was set to zero in the form 

           

  
  
  
  

  (3.16) 

 The controller performance when the driver model does not have knowledge of 

the terrain bank angle is seen in Figure 3.12.  Once again, a preview time of one second 

was used.  Unable to predict the bank angle, the plot shows that the lateral position has 

greater bias down the slope of the terrain.  This results from the fact that the driver 

model does not provide the correct steering input to compensate for the bank angle.  A 

similar effect would also occur if information about the terrain gathered from the 

vehicle's sensors was incorrect. 

 Even without this knowledge, the vehicle is able to maintain path-following and 

stay within the bounds of the lane, as seen in Figure 3.13.  In this image, the plot of 

Figure 3.12 has been overlaid with representations of the standard lane width of 3.5 m 

and the vehicle's track width of 1.6 m. 
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Figure 3.12: Controller performance without preview of terrain effects. 

  

Figure 3.13: Controller performance overlaid with vehicle width and lane width.  
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Chapter 4 - Detection of Rollover 
 

 This chapter focuses on introducing the concept of the Zero-Moment Point 

(ZMP) [1-5] as a vehicle rollover metric.  The ZMP is then used to predict an 

impending rollover event in the future during a worst-case driving scenario using the 

same methods presented in Chapter 3.  The results of the vehicle model are also 

compared to predictions from the commercial driving software CarSim.  Finally, tire 

lag effects are considered to determine if they affect the roll predictions. 

4.1 Concept of Zero-Moment Point 

 
 As discussed previously, the zero-moment point is defined as the point on the 

ground where the summation of the tipping moments acting on an object, due to 

gravity and inertia forces, equals zero [6].  If this point moves outside the object's 

support polygon, the object will overturn.  This concept can be applied to a general 

object for further understanding.  Figure 4.1(a) shows a mass resting on a tilt table.  

The table is assumed to have enough friction that the mass does not slip.  In Figure 

4.1(a), the reaction force      lies directly below the object's center of mass.  The point 

where this reaction acts is the ZMP.  As the object is progressively inclined as seen in 

Figure 4.1(b), 4.1(c), and 4.1(d), the reaction force shifts to the right to balance the 

moment created by gravity and satisfy the definition of ZMP.  Once the table is tilted to 

an angle that the ZMP is located outside the object's contact polygon as seen in Figure 

1.4(d), the object is no longer stable and will overturn. 
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Figure 4.1: Free-body diagrams of mass on a tilt table [3]. 

 Applying the concept of the zero-moment point as a vehicle rollover metric 

presents several advantages.  One advantage of the ZMP is that it explicitly considers 

terrain effects in its derivation.  Another one of its more significant advantages is that 

calculation of the ZMP does not rely on knowledge of the vehicle-ground contact 

forces.  By treating the vehicle as a kinematic chain, it is possible to calculate each 

body's net moment contribution to the zero-moment point.  This calculation only 

requires measurement of the kinematic motion of all objects in the chain, information 

that is accessible through inertial measurement units and knowledge of the vehicle 

parameters. 
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 Although the location of the zero-moment point exists in three-dimensional 

space, only the coordinate of its lateral position on the ground from the vehicle 

centerline, called     , is necessary for the application to vehicle rollover.  In a 

vehicle, the contact polygon is defined where the four tires touch the ground.  The 

distance of      from the edge of the contact polygon is used as the metric for the 

vehicle's rollover propensity.  If      is located outside the track width of the vehicle, 

the vehicle will begin to overturn. 

4.2 Formulation of Zero-Moment Point 

 
 The derivation for the location of the ZMP within a vehicle will now be 

presented.  Consider the general kinematic chain shown in Figure 4.2.  The ith body of 

the kinematic chain has a mass    and an inertia tensor    about its center of mass.  It is 

also assumed that this body has a translational velocity    , a translational acceleration 

   , an angular velocity      , and an angular acceleration    .  Using the general equations 

of motion of the chain [7-9] and D'Alembert's principle [10], the moment equation 

about point A in Figure 4.2 can be written as 

            
 

            
 

                        
 

       (4.1) 

where              .  Point A then becomes the zero-moment point when       = [0 0 

  ]T. 
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Figure 4.2: Generalized kinematic chain [3]. 

 This generalized moment equation can be applied to the two-degree-of-freedom 

bicycle model.  Previous work by the IVSG research group at Penn State [3] derived 

the ZMP for both the two-degree-of-freedom bicycle model and the three-degree-of-

freedom roll model.  The results of the two models proved to be nearly identical; 

therefore, the      derivation will only be done for the simpler bicycle model. 

 The symbols and nomenclature used in the derivation are shown in Table 4.1. 

Figure 4.3 shows the two-degree-of-freedom model on a terrain bank angle.  The 

location of the zero-moment point is given by the vector 

                            (4.2) 
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Table 4.1:      nomenclature. 

Parameter Definition 

m Vehicle mass 
Ixx Mass moment of inertia about vehile x-axis 
Iyy Mass moment of inertia about vehicle y-axis 
Izz Mass moment of inertia about vehicle z-axis 
Ixz Mass product of inertia about CG 
Iyz Mass product of inertia about CG 
a Distance from CG to front axle along the x-axis 
b Distance from CG to rear axle along x-axis 
h Height of CG from the base of the wheels 
T Track width of vehicle 
ϕt Bank angle of terrain 
ϕr Roll angle of vehicle 
θ Pitch angle of vehicle 
ψ Yaw angle of vehicle 
p Roll rate of vehicle 
q Pitch rate of vehicle 
r Yaw rate of vehicle 
αx Roll acceleration of vehicle 
αy Pitch acceleration of vehicle 
αz Yaw acceleration of vehicle 

aGx,y,z Acceleration of CG in x-, y-, and z-direction 
 

Given the definition that the zero-moment point must lie on the ground,      can be 

expressed in terms of the terrain and vehicle properties given in Figure 4.3.  For the 

case of Figure 4.3 in which ϕr > ϕt, it can be shown that 

         
 

 
                  (4.3) 
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Figure 4.3: Bicycle model on banked terrain, ϕr > ϕt. 

It can also be shown for the case where ϕr < ϕt that 

         
 

 
                   (4.4) 

Unifying Equations 4.3 and 4.4 to account for both conditions results in the following: 

        
 

 
                              (4.5) 

This results in the location of the zero-moment point expressed as 

                        
 

 
                                 (4.6) 

 Now that the vector location of the zero-moment point is defined in terms of 

     and     , the remaining terms of Equation 4.1 can be discussed.  In the case of 

the bicycle model, the coordinate system is located at the vehicle's center of gravity.  

This means that       and that           . 



61 
 

 The vehicle's motion is not constrained in any direction; therefore the angular 

velocity, angular acceleration, and linear acceleration at the center of gravity can be 

expressed as 

                  (4.7) 

                   (4.8) 

                       (4.9) 

Looking at the properties of the vehicle, an inertia tensor can be defined as the 

following: 

    

        
        

           

  (4.10) 

where       due to the assumption that the vehicle is symmetric about the xz-plane.  

The final term in Equation 4.1 is the gravitational acceleration vector.  When converted 

from global-fixed coordinates to body-fixed coordinates, the gravitational acceleration 

vector takes the form 

                                                      (4.11) 

 Substituting Equations 4.6 - 4.11 into Equation 4.1 and setting the x and y 

components equal to zero (due to the fact that       = [0 0   ]T ) allows      to be 

solved for in the form 



62 
 

 

                                          

                                      

       
                        

                                

                      

(4.12) 

A linearized equation of the rigid model-derived     , found in [5], is expressed as: 

       
   
  

                     
   

 
    (4.13) 

where     is the height of the sprung mass center of gravity from the roll center as 

defined in Table 2.2 and    is the roll angle of the sprung mass.  Because the y    

equations for both the rigid vehicle model and the roll model produce nearly identical 

results when applied to a real vehicle, the simpler form of the y    equation given in 

Equation 4.13 is applied to the roll model for this study. 

4.3 Inclusion of      in Vehicle Model 

 

 Now that the equation for      has been derived, it can be added as an output 

of the state space model.  Equation 4.13 can be written in terms of the vehicle states of 

the three-degree-of-freedom roll model without tire lag (tire lag effects are explored in 

Section 4.6).  The state vector used for the roll model is given as 

   

 
 
 
 
 
 
 
 
 
  

 
  
 
 
 
 
 

 (4.14) 
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where   and   have been added to the ends of the state vector as shown in Chapter 3.  

Recognizing the general state space notation of 

          (4.15) 

the roll acceleration and lateral acceleration can be written in terms of the   and   

matrices of the roll model in the form 

                     (4.16) 

                       (4.17) 

Similarly, Equation 4.13 can then be written in terms of the   and   matrices of the 

roll model in the form 

         
   

 
  

   
  

                     
  

 
  (4.18) 

where       due to the assumption that the terrain bank angle is constant.  

4.4 Inclusion of Previewed      in Vehicle Model 

 

 Prediction of      is possible using the same methods that were used to predict 

the vehicle's lateral position in Chapter 3.  Equation 4.18 is capable of calculating the 

vehicle's rollover propensity at the current time.  To prevent a rollover event, however, 

possibly in the form of an early warning system or corrective action, it is necessary to 

predict the vehicle's rollover propensity over the preview time based on the current 

states and inputs. 

 The state vector at the preview time,  , was given in Chapter 3 as 
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                          (4.19) 

where 

      
     

      

 

   

 (4.20) 

Once again, it should be noted that Equation 4.20 does not quickly converge when 

elements of the   matrix are large.  An alternate method of calculating the previewed 

input coefficient for these situations is presented in Section 4.6.  The numerical 

approximation of the state transition matrix is used because it provides the best 

accuracy, hereafter referred to as the discrete   matrix,   .  Similarly, the previewed 

approximation of the input term is hereafter referred to as the discrete   matrix,   , 

such that 

                (4.21) 

        (4.22) 

and Equation 4.19 is written as  

                   (4.23) 

 Now that the previewed state vector is once again defined, Equation 4.18 can be 

previewed.  Roll acceleration at the preview time is given by 

                                 (4.24) 

Recognizing that all inputs are assumed constant over the preview interval such that 

            and substituting Equation 4.23 gives 
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                               (4.25) 

Similarly, the previewed roll angle and previewed lateral acceleration can be written in 

this manner as 

                        (4.26) 

 
                            

                    
(4.27) 

Substituting Equations 4.25, 4.26, and 4.27 into Equation 4.13 gives      at the 

preview time as 

 

             
   

 
  

   
  

                  

     
    

 
                      

(4.28) 

 Just as in the case of previewed lateral position, Equation 4.28 can be used to 

add the previewed      as an output of the state-space vehicle model.  

4.5 Rollover Prevention with Corrective Steering 

 

 An important application of previewed      could be to detect when a driver’s 

present steering input will soon result in wheel lift.  By identifying impending rollover 

in the near future, warnings or corrective steering inputs can be applied to mitigate the 

risk.  For implementation of this approach, it is necessary to determine the minimum 

preview time needed to predict and prevent a rollover event.  This section examines the 

use of previewed      to determine the necessary preview time to prevent rollover.  
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 A worst-case driving situation as defined in [5] was considered for the 

MATLAB simulation in order to maximize the vehicle's rollover propensity. The 

parameters for the 1989 GMC 2500 pick-up truck, introduced in Chapter 3, were used 

due to the vehicle's high center-of-gravity.  A highway speed of 26.8 m/s (60 mph) was 

used, as well as the introduction of an 8-degree bank angle (14% superelevation), a 

value representative of the designed bank angle in a sharp highway curve.  The steering 

input was designed so that the vehicle turns up the slope of the terrain.  This driving 

scenario is not uncommon; a vehicle that travels onto the shoulder or median of a 

highway would experience similar circumstances and a similar steering input as the 

driver tried to correct his/her path. 

4.5.1  Corrective Steering  Maneuver  #1 

 

 Ultimately, closed-loop control is intended for wheel-lift prevention; however, 

the preview horizon is best examined and understood using open-loop analysis.  To this 

end, a simple open-loop steering maneuver was used as the input, where the steering 

angle of the tires follows a sinusoidal path to the desired steering magnitude and then 

remains constant in the form:  

    

 
 

 
 

 
          

 

 
  

 

 
              

 

 

             
 

 

  (4.29) 

where   is the steering angle magnitude, and   is the steering frequency.  The rollover 

prevention control considered here is simple as well and also open-loop in nature.  If 

the system detects that previewed      has gone outside the vehicle's track width 

(indicating wheel lift), it will implement a corrective steering input where the steering 
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angle of the tires follows a sinusoidal path (of the same frequency) from its current 

value back to a zero steering input in the form:  

 

              
  
 

            

   

 
 

 
 

 
          

 

 
  

 

 
                 

 

 

                
 

 

  

(4.30) 

where    is the track width of the vehicle.  Figure 4.4 shows a graphical example of 

corrective steering maneuver #1. Various steering angles and frequencies were 

considered to determine the preview time needed to prevent wheel lift.  It is assumed 

that there is no tire skidding for the given maneuvers.  Previous work by the IVSG 

research group [5] showed that wheel lift will occur before the tires skid for steering 

frequencies below 0.8 Hz.  Therefore, results for steering frequencies above this value 

should be considered questionable as skidding is likely to precede rollover. 

 

Figure 4.4: Example corrective steering maneuver #1. 
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 To understand how the aggressiveness of the driver’s steering input affects the 

preview time needed for a successful corrective maneuver, the limiting preview time to 

prevent wheel lift was calculated for various driver steering inputs.  For this study, 

     has been normalized such that values greater than 1 or less than -1 represent 

wheel lift.  The minimum acceptable preview time was determined as follows: for each 

combination of steering angle and steering frequency, the preview time was iteratively 

increased from zero until the extreme value of the normalized current      fell 

between 0.97 and 0.98 (or -0.97 and -0.98).  At this point, rollover prevention was 

considered to have occurred and the preview time was recorded. The vehicle 

simulation software, CarSim, was also used to compare the results of the linear system. 

In CarSim, the preview time was recorded when the vertical force of any tire fell 

between 200 N and 300 N (range of 2-3% of the static load on each tire), a value low 

enough to indicate that wheel lift is imminent.  The results are shown in Figure 4.5. 

Representative plots showing the value of      with and without corrective rollover 

steering at the limiting preview time can also be seen in Figure 4.6(a) and 4.6(b) 

respectively. These plots include      for the linear system and for CarSim.  

 The results show that previewed      information is capable of preventing 

rollover.  When the corrective steering algorithm is active in Figure 4.6(a), the current 

     remains within the track width of the vehicle.  When the corrective steering 

algorithm is not active in Figure 4.6(b), the current      rises well above the threshold 

for wheel lift.  There is also very good agreement between the linear prediction of      

and the CarSim prediction of     .  The results indicate that the roll model prediction 

is more conservative than CarSim, as shown by the higher preview times. This is an  
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Figure 4.5: Minimum preview times required to prevent rollover; corrective steering maneuver #1.  

 

Figure 4.6:      (a) with and (b) without corrective steering maneuver #1. 
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acceptable outcome, as it is more desirable to have a conservative system for rollover 

prevention.  Figure 4.5 also shows that the limiting preview time for the roll model is 

greatly influenced by the frequency of the steering input (higher frequency means more 

severe steering input). The preview time is also dependent on the steering angle, 

although not as much as the frequency. This trend agrees with intuition: since 

previewed      assumes a constant steering input, more severe steering inputs will 

result in earlier detection and correction through a previewed      value that rises 

quickly.  Impending rollover from a less severe steering input, however, will not be 

detected as quickly and requires more preview to correct the action.  The limiting 

preview times for CarSim are much less affected by changes in the steering frequency 

and magnitude, but still remain less than the roll model preview times. 

4.5.2  Corrective Steering  Maneuver  #2 

 

 A second scenario with a more severe corrective steering input was also 

simulated.  All conditions and parameters remain the same, but the corrective steering 

input now follows a sinusoidal path to the opposite steering magnitude once impending 

rollover is detected.  This corrective steering input opens up the possibility of the 

vehicle experiencing rollover on its opposite side. Therefore, if the vehicle detects 

impending rollover on its opposite side, it will implement a second corrective steering 

input back to zero in the form: 
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(4.31) 

Figure 4.7 shows a graphical example of corrective steering maneuver #2. 

 

 

Figure 4.7: Example corrective steering maneuver #2. 
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 Once again, various steering angles and frequencies were considered to 

determine the minimum acceptable preview time to prevent wheel lift.  These preview 

times were determined with the same procedure as the previous scenario and are 

presented in Figure 4.8.  Representative plots showing the value of      with and 

without corrective steering at the limiting preview time can be seen in Figure 4.9(a) 

and 4.9(b) respectively.  

 As expected, slightly less preview time was required for the roll model 

predictions due to the more severe corrective steering input.  It is interesting to note, 

however, that slightly longer preview times were required for the higher frequency 

steering inputs of the roll model and CarSim.  This results from the greater overshoot 

of      in the corrective maneuver to the opposite steering angle, where the 

suspension dynamics cause wheel lift on the opposite side.  Although this occurrence is 

important, these effects are still dominated by the need for a higher preview time in the 

initial steering correction up the slope of the bank. 

 In this study, the minimum preview time needed to predict and prevent vehicle 

rollover was determined.  The maximum required preview time for all conditions tested 

was found to be 0.66 sec.  These results consider one particular worst-case vehicle 

scenario and configuration.  Other vehicles and driving situations should also be tested. 

Limiting preview times of 0.75 sec or 1.0 sec may be used as a baseline for further 

study to encompass a wider variety of driving situations and provide a more 

conservative system.  It should be noted that while a more severe corrective steering 

input requires slightly less preview, it also has a greater effect on the desired path of 

the vehicle.  Further study should determine the optimal corrective steering magnitude  
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Figure 4.8: Minimum preview times required to prevent rollover; corrective steering maneuver #2.  

 
Figure 4.9:      (a) with and (b) without corrective steering maneuver #2. 
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and frequency to prevent rollover while best maintaining path-following.  It should also 

be noted that tire lag dynamics were not considered in the vehicle model for these 

simulations.  The effect of tire lag on the preview time needed to prevent rollover is 

now explored. 

4.6 Tire Lag Effects on Rollover Prevention 

 
 When considering vehicle rollover, it is important to consider the effects of tire 

lag.  This is especially true for corrective steering maneuvers, as the vehicle does not 

respond as quickly to changes in steering.  Therefore, the simulations performed in 

Section 4.5 were repeated for the roll model with tire lag dynamics included.  Tire 

relaxation values of 0.7 m and 0.23 m were used for the front and rear tires, 

respectively. 

 As foreshadowed previously in the report, initial simulations showed that the 

infinite series in the previewed input coefficient,   , converged too slowly to be 

applied to the tire lag model.  This was due to the fact that the modified terms in the 

state-space matrices had values several orders of magnitude larger than the matrices 

that did not include tire lag.  Further testing showed that this also occurred for large 

preview times, even in the model without tire lag. 

 To address this problem, an alternate method [11] calculated the    matrix of 

Equation 4.23 in discretized form with small time steps,  , added up to the preview 

time in the form 

        
      

   

   

    (4.32) 
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where      .  If the chosen time steps are small enough (a value of 0.001 sec was 

used for this research), Euler approximation of    can be used such that Equation 4.32 

becomes 

                  

   

   

    (4.33) 

Equation 4.33 provides a more robust solution for the previewed input coefficient and 

allows the vehicle models with tire lag to be utilized. 

 The results of the rollover simulation, with tire lag dynamics included, showed 

that the preview time needed to prevent rollover only increased by approximately 0.01 

- 0.02 sec.  This increase in preview time occurred for all steering combination inputs 

and for both corrective steering maneuvers.  Therefore, the maximum required preview 

time for all conditions tested was 0.67 sec, as opposed to 0.66 sec when tire lag was not 

included. 

 The influence of tire lag on the dynamics of the vehicle is dependent on the 

longitudinal velocity.  Tire lag effects become less important as the speed of the 

vehicle is increased.  This is an intuitive relationship; as the tires revolve faster, they 

are able to generate lateral force more quickly from steering changes.  Thus, at slower 

speeds, the effects of tire lag become more pronounced.  To this end, simulations were 

performed to determine the preview times for various longitudinal velocities.  Only the 

steering input that resulted in the maximum preview time (magnitude of -23 deg; 

frequency of 0.2 Hz; corrective steering maneuver #1) was simulated.  The preview 

times needed to prevent rollover were compared for the various longitudinal velocities 

for the roll model with and without tire lag as seen in  Figure 4.10. 
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Figure 4.10: Preview times needed to prevent wheel lift for varying longitudinal velocities. 

 As expected, slightly longer preview times were needed when considering the 

effects of tire lag.  Also as predicted, the need for longer preview times was slightly 

greater at slower speeds.  As speed is decreased, however, the threat of rollover 

decreases as well.  Therefore, when considering rollover at high speeds, it can be seen 

that the effect of tire lag on the necessary preview time is very small. 
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Chapter 5 - Conclusions & Future Work 
 

 This chapter summarizes the important conclusions found from the work in this 

thesis.  Conclusions are discussed for both the vehicle path following problem and the 

vehicle rollover problem.  The direction of future work in this research is then 

discussed. 

5.1 Vehicle Path Following 

 
 For the vehicle path following problem, a closed-loop steering controller 

developed by MacAdam was implemented.  This controller was evaluated at different 

preview times and road conditions to determine its effectiveness.  The two-degree-of-

freedom bicycle model was used as the vehicle model and the parameters for a 

modified 1989 GMC 2500 pick-up truck were used in simulations. 

 The results of a standard lane change simulation showed that the MacAdam 

controller performed fairly well up to preview times of 1.0 sec.  Even at this preview 

time, the vehicle was able to follow the road well enough to remain within the bounds 

of the lane.  This was true even after the inclusion of a severe terrain bank angle on the 

road.  

5.2 Vehicle Rollover 

 
 For the vehicle rollover problem, the concept of the Zero-Moment Point (ZMP) 

was introduced and implemented as a rollover metric.  Previewed information about 

the location of the ZMP was then used to identify impending rollover in the future 

during worst-case driving scenarios and steering inputs.  Using this information, 
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corrective steering maneuvers were executed in simulations to mitigate the threat of 

rollover and determine the minimum preview time needed to prevent wheel lift.  The 

three-degree-of-freedom roll model was used as the vehicle model and the parameters 

for a modified 1989 GMC 2500 pick-up truck were used in simulations. 

 The results of the simulations showed that for the worst-case steering input, a 

minimum preview time of 0.67 sec was needed to prevent wheel lift.  It is suggested 

that a preview time of 0.75 sec be used as a baseline for further study to encompass a 

wider variety of driving situations and provide a more conservative system. 

5.3 Future Work 

 
 There are several directions that future research could take in this area.  One 

option is to combine the path following and rollover problems into a closed-loop 

model.  Research could then be done optimizing the controller steering input, and thus 

vehicle trajectory, to prevent both lane departure and rollover.  A situation such as this 

may occur if an autonomous vehicle detects an obstacle ahead of its path.  The system 

would then need to determine the optimal steering input to avoid the object and stay on 

the road, all while preventing the vehicle from rolling over.  It may also prove useful to 

investigate the use of yaw rate trajectory as a reference signal rather than lateral 

position.  Using yaw rate would prevent the controller from overriding the driver in 

determining the future path of the vehicle. 

 Another option for future work would be to employ Model Predictive Control 

(MPC), as opposed to the MacAdam controller, in the system.  MPC uses a receding 

horizon technique, making it a more iterative approach than fixed point preview of the 
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system.  An approach such as this would provide greater accuracy in the previewed 

vehicle states and result in a more robust controller. 

 A third option for future work would be full-scale vehicle testing of the 

MacAdam model and corrective steering maneuvers.  The 1989 GMC 2500 pick-up 

truck used in the simulations is available at the Penn State test track.  Previous work by 

the research group has automated the truck to be used for rollover testing.  Obtaining 

experimental results is critical in validating the approaches used in this research.  These 

tests would also undoubtedly reveal potential concerns that are unable to be addressed 

when performing simulations. 
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