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ABSTRACT 
 

This thesis provides an analysis of vehicle stability in time-delayed teleoperation. As 

teleoperation continues to grow as a field, it is important to ensure that the human operator of 

teleoperated vehicles is provided as much feedback as possible to maintain safe and high 

performance operation.  While it is unrealistic to believe that the operator will have feedback in a 

fully immersive environment, it is possible to provide the operator with the feedback cues 

primarily utilized during normal human driving. To determine how drivers use visual cues, a 

series of simulations and physical tests were run to provide both time domain and frequency 

domain analysis of vehicle stability under systems with either limited preview or increasing time 

delays. This research provides evidence of how drivers use previewed visual cues to control a 

vehicle along a path, along with how much delay a driver is able to withstand in the system. The 

results show that human drivers use the nearest visual information possible during path tracking 

and can control a vehicle up to about 0.35s of delay at 10m/s. This information is useful in the 

design of teleoperated systems in which high time delays are common. 
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CHAPTER 1  
 

INTRODUCTION 

This thesis presents an investigation of how human drivers use feedback to guide and 

control teleoperated vehicles, along with the design of an intervention architecture by which the 

remote vehicle can prevent instabilities in the event of delay or loss of feedback. The purpose of 

this work is to guide the design of vehicle teleoperation systems by identifying specific feedback 

cues that are most important for driver perception and stable vehicle operation. The motivation of 

this work is to develop the capability for remote driving of a robotic ground vehicle, such as 

could occur in space exploration, mining operations, hazardous chemical cleanup, or even 

defense operations. These examples share the operational attributes of expensive and highly 

challenging situations that are likely unable to provide all feedback cues that exist in the remote 

environment to a local driver. 

1.1 Telerobotics 

Telerobotics, one of the oldest subcategories in the field of robotics, refers to the control 

of a robot through a human controller at some physically separated distance [1] [2]. The distance 

separating the controller from the robot is arbitrary and can vary from being in the same room to 

being on a different planet. Teleoperation has been implemented since the 1940s when it was 

primarily used by Raymond C. Goertz for nuclear research to handle radioactive material while 

behind a shielded safety barrier [1]. Today, the purpose of teleoperation has expanded beyond the 

scope of just safety to include uses such as reaching remote environments like space or the deep 
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ocean, working with extremely large or small objects like in surgical operations, and even just for 

use as a toy like an RC car, among many others [1]. 

The teleoperated vehicle has been described as “…a fully-mobile, physical proximity (a 

‘real-world avatar’) for the operator” [3].  Teleoperation development has accelerated in recent 

years due to video and computing compression improvements, and the use of high quality Light 

Detection and Ranging (LiDAR) optical remote sensing technology [4]. The means of 

communication between the operator and robot has also changed with the emergence of new 

technologies. Communication protocols can be as simple as a radio signal like in an RC car, or a 

complex system that utilizes the most modern data capacity and transmission capabilities of the 

Internet [1]. Other options such as Bluetooth communication exist, but Wi-Fi and wired Internet 

communication will be the primary focus of this project. 

 

Figure 1-1. Telerobotic device for bomb disposal [1] 

There are a number of levels of control that can be achieved in telerobotics. The most 

simple is called direct control or manual control [1]. At this level, the human user controls the 
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robot directly without any automated assistance and little feedback. An example of this is shown 

in Figure 1-1 with a military bomb disposal robot that is directly controlled by a human user who 

receives video feedback to guide the robot while in a protected stance. On the other end of the 

spectrum is supervisory control [1]. At this level, the robot system has a very high level of 

automation and the human user only takes control of the system in case of a procedural error or 

safety hazard. Most teleoperation systems exist at some medium between these two extremes. 

In all instances of teleoperation short of full autonomy there is some ability for the user to 

take direct control of the robot through some interface. This interface is traditionally referred to as 

the master-slave interface where the master is the human user and the slave is the robot [1]. A 

basic feedback loop is shown in Figure 1-2 where the master sends a command through a 

controller to the slave. The slave then performs the commanded task and sends feedback to the 

master. In a good master-slave system the slave will provide some amount of haptic feedback to 

the user, and in the best systems the slave will provide haptic feedback that is indistinguishable 

from direct interaction. This feedback could range from visual information like a video feed from 

the robot to a force feedback on the master’s control device. The end goal of this feedback is 

telepresence, which is the ability of the master to not only control the robot, but to fully perceive 

the environment in which the robot is operating [1] [2]. Full telepresence is extremely difficult to 

achieve; most remote environments can include cues for all senses including ones that are 

difficult to simulate, for example touch or smell. 
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Figure 1-2. Basic master-slave feedback loop 

It is even challenging to measure degrees of telepresence. A commonly used metric is 

one of transparency which is the human operator’s ability to distinguish between their operating 

environment and the actual robot’s environment [2]. This topic is discussed more fully in Chapter 

2’s review of literature on system latency. 

1.2 Driving simulators and HIL applications 

Driving simulators are of high interest to this work because of their ability to provide a 

large variety of feedback to human drivers from visual cues to force feedback on steering wheels 

and vehicle motion. Specifically, hardware-in-the-loop (HIL) simulators are of special interest 

because of their ability to interact with real hardware including full vehicles. This section 

provides a background on HIL driving simulators with a focus on their ability to create a high 

level of transparency to both the human driver, and to any physical hardware interacting with the 

driving software in order to emulate a real vehicle interface. 
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Driving simulators have been an object of increasing focus in recent years because of 

their many applications including vehicle/traffic control testing, testing of driver performance and 

driver training under various circumstances, and development of realistic driving games [5]. They 

come in many designs from small, home-built, open-source simulators to large scale, multi-

million dollar, commercial simulators like the one at Toyota’s Higashifuji Technical Center 

shown in Figure 1-3. 

 

Figure 1-3. Interior (left) and motion platform (right) of Toyota’s driving simulator [6] 

Controlled driving environments such as test tracks and driving simulators share the 

common purpose of evaluating human performance with minimal driving risk. Test track 

facilities allow the driver to interact with the road, providing a higher sense of realism but 

reducing the reproducibility of a traffic driving environment; in contrast, driving simulators allow 

high reproducibility of driving scenarios at the expense of realism [7]. This similarity between 

test tracks and driving simulators begs the question: what tools are needed to facilitate a 

combination of both experiences to achieve the goal of telepresence discussed in Section 1.1? 

To obtain realism, one assumption is that the simulator driver perceives risk similar to 

that of driving an actual vehicle. According to Risk Homeostasis Theory, drivers may adapt more 

risky behavior if the perceived consequences of the behavior are reduced. An example of this 
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effect would be how modern drivers are more likely to drive in a snow storm if their vehicle has 

four wheel drive. In driving simulators, because a driver’s action will not result in an accident, 

they may not behave in a simulator as they do on the road [8] unless exposed to particularly risky 

driving behaviors from other drivers rather than simply simulated traffic [9]. One means of 

improving a driver’s perceived realism is to use simulators as interfaces for humans to drive real 

vehicles, with real life consequences in terms of external safety and vehicle motion. Preliminary 

testing on rolling roadway simulators in which a driver remotely operates a physical vehicle 

driving on a treadmill nearby the operator showed that drivers appeared more cautious when 

driving real vehicles than if they were driving virtual vehicles. This  suggests that drivers are far 

more cautious driving actual systems knowing that physical damage will take place in the 

presence of poor driving choice, even if their own safety isn’t involved [10] [11] [12]. This is a 

key result supported by Risk Homeostasis theory [8]. 

Recently, simulators have moved beyond basic driver testing and training, and now many 

simulators are used for specialized purposes such as controlling hardware, allowing multiple 

drivers-in-the-loop, or interacting with real vehicles. Despite these simulation advances, 

automotive research using live HIL in combination with Human-in-the-Loop testing, sometimes 

called H2iL, has been underutilized [13]. Since all simulators are HIL testing systems, with the 

human being the “hardware” component, there is not a clear dividing line between human-HIL 

simulators and fully HIL simulators. In this thesis, the mention of a HIL simulator refers to a 

system where both the driver and another vehicle hardware component are interacting with each 

other. 

There are many advantages to HIL testing versus simulation or in-vehicle testing. 

According to Fathy [14], these advantages include higher fidelity, faster simulation speed than 

purely virtual systems, and greater comprehensiveness than purely physical systems. To achieve 
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these advantages, the system must bring together many key factors including: real-time operating 

systems, high-fidelity dynamic models, high bandwidth networking, and low-latency 

hardware/software integration. This paper will aim to meet all of these goals in the development 

of the HIL simulator. 

1.3 Motivation and goal 

As discussed earlier in this chapter, full telepresence can be extremely difficult and costly 

to achieve. While a full creation of the remote environment would be an extremely powerful tool, 

it is not completely necessary as humans do not rely on all of their senses equally when operating 

a vehicle. This work seeks to obtain an understanding of which feedback cues human drivers rely 

on most heavily, and in particular the timing of those cues. This information is crucial to guide 

the design of vehicle teleoperation systems to achieve a higher level of telepresence with a lower 

total cost. 

The specific goal of this thesis is to limit a driver’s feedback cues in a safe testing 

environment and monitor the response of a teleoperated vehicle in order to determine which are 

most heavily relied upon during teleoperation. 

1.4 Thesis organization 

The remainder of this paper will be organized as follows: Chapter 2 provides an extensive 

review of past research surrounding vehicle teleoperation and transparency in HIL simulators, 

along with a discussion on common testing methods for validating system latency. Chapter 3 

discusses the software platform, Robot Operating System (ROS), which is primarily utilized in 

this paper. Chapter 4 presents the testing procedures including the physical vehicle used in 
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testing. Chapter 5 presents simulated experiments with either varying preview time for a constant 

delay or varying delay for a constant preview time. Chapter 6 presents physical experiments to 

verify the simulation results. A conclusions chapter then provides a summary and conclusion of 

all work performed.  
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CHAPTER 2  
 

REVIEW OF EXISTING TECHNOLOGIES AND RESEARCH 

This chapter provides a review of past work performed in the areas of vehicle and robot 

teleoperation and hardware-in-the-loop simulations, along with currently available technologies 

known to be presently fielded for ground vehicle operation. Additionally, it covers the primary 

testing procedures to find system latency and prove fidelity that have been utilized in past work. 

2.1 Review of vehicle and robot teleoperation 

2.1.1 The human role in telerobotics 

Aracil [15] states that the human role in telerobotics has traditionally been to act as the 

operator of a robot driving in some remote environment. In its simplest form, the operator takes 

control by pressing some button or moving a lever, observes the motion in the remote 

environment, and then responds accordingly. This type of control is typically referred to as 

master-slave control. One example of this control architecture is force-velocity control in which 

the operator sends a force signal to the robot, and the robot responds with its local velocity [16].  

Figure 2-1 shows the full operation of a master-slave system. At its most basic, a command is 

sent from an operator’s controller through a command processor to an actuator controller on a 

robot through some communication protocol, which in turn moves an actuator. The remote device 

then sends sensor data back through the sensor processor to a feedback processor at the operator 

through some communication protocol, which then provides some amount of haptic feedback. 

The local controller in each the operator and remote environment are not standard to all master-

slave systems, but it used can provide some amount of autonomy through a dynamic model in the 
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case when communication between the operator and remote environment is dramatically slower 

than the actuator movement. 

 

Figure 2-1. Operation of a master-slave system 

Aside from master-slave control, there are other types of control including supervisor-

subordinate, partner-partner, teacher-learner, and full autonomy [17]. In all of these control 

methods the robot has some amount of autonomy. In supervisor-subordinate control, shown in 

Figure 2-2, the robot is automated to perform a pre-planned sequence of tasks. Primary 

computing occurs in the remote environment’s task algorithm, but feedback is still sent back to 

the operator’s environment to enable potential overrides. In the figure, dotted lines are provided 

to indicate actions that do not occur continuously, but on an “as needed” basis. This method is 

used by Manuaba [18] to control to movement of a block through an environment laden with 

obstacles using both a direct motion method and a queuing method. 
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Figure 2-2. Operation of a supervisor-subordinate system 

The next remote operation paradigm, partner-partner control, is unique in that the task is 

not performed in the remote environment, but in the operator’s environment. The robot exists to 

support the operator’s actions through perception and actions to aid in the performance of a task. 

Figure 2-3 shows that, while actuation and sensing do occur in the remote environment, they are 

used as feedback to assist in the performance of the operator’s task. 
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Figure 2-3. Operation of a partner-partner system 

Teacher-learner control is a mix between a pure master-slave system and a supervisor-

subordinate system where the operator controls the robot, but the robot learns from the operator’s 

commands. This method is shown in Figure 2-4. 
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Figure 2-4. Operation of a teacher-learner system 

Finally, fully autonomous remote control of robots, shown in Figure 2-5, are able to 

operate completely independent of operator interference and are able to guide themselves through 

their tasks without any assistance. Still, feedback may be sent back to an operator to monitor the 

robot. 
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Figure 2-5. Operation of a fully autonomous system 

This thesis will test both a pure master-slave system and a combination of a master-slave 

system and partner-partner system. While the majority of the teleoperation performed is pure 

master-slave, instances of remote vehicle intervention is a partner-partner system, with the remote 

vehicle assisting the human operator with additional local data, especially when such data is not 

directly available to the human operator. Additionally, it is important to note that, since this work 

focuses on vehicle teleoperation, the human operator is referred to as the human driver and the 

remote environment is referred to as the remote vehicle when specifically discussing the 

teleoperated vehicle. 

2.1.2 Haptics 

In teleoperation, haptics is essentially the physical, visual, or other feedback received by 

the operator to increase telepresence [2]. Haptic feedback comes in many forms, from visual 
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feedback from a camera to control the position of a robotic arm [19], to physical feedback from a 

vibration [2]. The necessity of feedback varies by devices, but some amount of feedback is 

necessary in all applications. For example, in the application of robotic hand, visual stimulation 

may be less important than physical stimulation when making minute movements, but it is very 

difficult to emulate the precise nerve feelings in a hand [2]. In this case some creative sensors 

must be utilized like vibration that changes strength as pressure increases or three dimensions of 

actuators on the fingertips that press against the user to mimic the pressure on the robot. 

There are many mechanisms for feedback in remote driving. For example, at Carnegie 

Mellon University’s Robotics Institute, Fong uses a combination of camera and range sensor data 

on a six-wheeled skid-steer vehicle to create force feedback on the operator’s joystick [20]. To 

test the effectiveness of this haptic feedback, untrained operators were tasked with driving the 

robot through a maze in two conditions: with video feedback alone, and with video and force 

feedback on the joystick. They found that with the force feedback all operators were able to 

precisely navigate the maze, but only visual feedback resulted in numerous crashes and some 

were unable to accomplish the task. 

Another study was performed by Toffin at the Renault Technical Center for Simulation, 

where a feedback torque was provided on a driving simulator steering wheel based solely on 

steering wheel angle [21]. A series of feedback models was provided, varying from a linear to a 

highly non-linear relationship between steering wheel angle and feedback torque. The plot 

showing the relationship between provided steering wheel angle and feedback torque is shown in 

Figure 2-6. The response from several human subjects showed that, while not fully realistic, 

feedback generated by a simple linear relationship improved the driving experience while driving 

with no feedback was very difficult. The full results from the experiment are shown in Table 2–1. 
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Table 2–1. RMS variations obtained in driving simulation experiment [21] 

 

 

Figure 2-6. Plot of force feedback laws used by Toffin [21] 

It is usually impossible to completely replicate all motions and forces acting on a remote 

robot, especially when considering all design aspects [22]. The choices of feedback types must be 

considered against each other in the full design process. One example of this creative design is 

performed by Shoval [23] who experimented with a way to detect pressure as the operator 

manipulated a robot without physical feedback. Similarly to a robotic hand, surgery tools were 
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being controlled remotely and required precise controls. Since physical feedback in this case can 

be extremely difficult to mimic, visual feedback was used in the form of a heads up display that 

showed the operator vital information such as time and tool pressure. 

Human interactions with the environment are bi-directional. We simultaneously perceive 

and manipulate the environment at all times. However, manipulation and perception do not 

happen at the same rate. According to Tanner [22], manipulation occurs between 1-10Hz while 

tactile perception occurs around 1000Hz. While these are general guidelines, actual human 

response rate is dependent on its current function [24]. For example, while the human body may 

be able to detect vibrations at 50-400Hz, it can only detect compression on the body at ~10Hz. 

Brooks found that both proprioceptive feedback where receptors sense muscle contraction and 

tension, along with kinesthetic feedback where receptors sense angle and velocity of joint 

movement occur around 20-30Hz [24]. These are the functions primarily used in telerobotic 

response and vehicle steering haptic feedback. For full transparency within a remote vehicle 

context, it is necessary to meet these 30 Hz requirements to fully mimic the natural driving 

environment. 

Along with possible slow performance, stability issues can arise during force feedback. 

Al-Mouhamed [25] performed an experiment using a master-slave robotic arm to create and 

maintain contact on a surface. The contacted material and the gain of the force feedback were 

altered to examine the performance of the operator.  Al-Mouhamed found that stability is difficult 

to maintain during the initial point of contact and the point of release. The cause of this instability 

was a combination of the stiffness of the material, the feed forward gain, and the round trip delay 

which remained about constant at 183ms. The results from this work are shown in Figure 2-7 

where (a), (c), and (e) are the force plot for contact with rubber, human, tissue, and a rigid object, 

respectively. Plots (b), (d), and (f) are the motion plots for the same materials. The instabilities at 
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the pre-contact and post-contact phases are evident, especially when in contact with a rigid 

material. 

 

Figure 2-7. Force feedback responses with various materials [25] 

2.1.3 Vehicle based teleoperation 

Vehicle based teleoperation first became popular in the 1970’s and currently covers many 

different domains including air, ground, and underwater [3]. Today, air vehicles, also known as 

Unmanned Air Vehicles (UAVs), are the most common type of teleoperated vehicles and are 



 

19 
 

used for many purposes from surveillance to combat [3]. One of the most common UAVs, the 

Predator drone, is shown in Figure 2-8. 

Underwater vehicles, also known as Remotely Operated Vehicles (ROVs), are rapidly 

becoming the largest market for teleoperated vehicles, due to the difficulty of human survivability 

in deep water and the increasing interest in deep-water oil drilling. For example, Chouiten [26] 

performs augmented reality work on ROVs by integrating an existing map with an onboard 

camera on the vehicle. His ROV is shown in Figure 2-9. ROVs are usually tethered to another 

vehicle on the water surface and are used for tasks like surveillance, mapping, and oceanography 

[3]. 

 

Figure 2-8. Predator drone UAV [27] 
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Figure 2-9. ROV used by Chouiten [26] 

Ground vehicles, also known as Unmanned Ground Vehicles (UGVs) perform tasks from 

exploration to hazardous duties [3].  Exploration vehicles includes those like NASA’s Lunokhod 

1 moon rover, shown in Figure 2-10, while hazardous duty vehicles are ones that clean up 

hazardous chemicals or defuse bombs. Haptics has become one of the preliminary focuses of 

UGVs in recent years to increase the transparency of the system. In the work by Nguyen [28], 

multiple haptic feedback patterns are proposed based on a joystick steering system including 

position-position matching, position-velocity matching, and a mix of the two. This allows the 

operator to simultaneously send commands via the joystick and receive haptic feedback on the 

actual UGV position or velocity. According to the same researcher’s earlier paper, haptic 

feedback could be achieved in the same way with a traditional steering wheel by performing 

position-position control on the angle of the steering wheel [29]. 
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Figure 2-10. Lunokhod 1 moon rover [3] 

2.1.4 Transparency in driving simulators 

As the end goal of teleoperation is full transparency, or the complete immersion of the 

operator into the remote environment, the same is true for HIL simulators with the simulated 

environment. The difficulties in reaching full transparency are discussed extensively by Ersal 

[30]; specifically, transparency must minimize problems caused by delay, jitter, and packet loss. 

Delay is the time between data being sent and data being received, jitter is the variability in delay, 

and loss is the dropping of data packets. One way to mitigate these problems is to implement an 

observer model on the operator side, robot side, or both. The goal of this observer is to estimate 

states and control the robot in the event of data transmission problems [30]. Further, the coupling 

point between the HIL simulator and its hardware can be used as a design metric to minimize data 



 

22 
 

transmission issues [31]. Unfortunately, there are many cases where the hardware’s physical size 

or location limits the ability to design around the coupling point. 

There is a direct tradeoff between the transparency in the system and the expense of 

system implementation [32], meaning that full telepresence generally requires expensive 

equipment in most systems. This leads to a new design criteria in simulators and teleoperated 

systems: achieve the highest telepresence with minimum cost. In other words, the designer must 

consider the effect of telepresence on top of traditional design objectives like cost and safety 

when creating a new simulator. 

2.1.5 Further areas of research 

It is important to note other areas in which teleoperation has been implemented. One 

popular use of teleoperation, especially Internet-based teleoperation, is to connect students for 

real-time collaborative control of robots. Goldstain conducted experiments over a number of 

years to determine the best telerobotic interface with which to educate engineering students [33]. 

These experiments required Internet-connected students to move an object together using robotic 

arms, resulting in a set of procedures that best helps students understand the operation of robots.  

In a separate study, Tanaka linked young school children in Japan and the United States to 

cooperatively interact with robotic arms, finding that a delay up to 500ms exists in the 

communication [34]. This delay dramatically reduced the effectiveness of the program, but no 

expansion has yet been made on this experiment. 

One unique application of teleoperation is the goal of creating telepresence in an art 

museum [35]. While this work is seemingly unscientific on the surface, it discusses many ideas 

that are applicable to creating a high level of transparency in any teleoperation situation. 

Specifically, the project utilizes a combination of virtual reality to give users an ability to explore 
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the museum and interact with others and direct camera view to get a full realistic view of the 

paintings via high definition camera on a teleoperated robot. This combination of realities allows 

users to get a fuller experience of exploring the museum and immersion into the environment 

than to implement a purely virtual or a purely camera based reality. 

2.2 Latency issues and testing procedures in telerobotics 

2.2.1 Internet based teleoperation 

As stated in Section 1.1 there are many ways to communicate with a teleoperated robot, 

for example, via radio or Bluetooth communication. This thesis will rely primarily on Internet 

communication, so a brief review will be performed focusing on the tradeoffs between each 

communication medium for teleoperation. 

Internet communication has been used in both wired and wireless cases of teleoperation. 

One work by Marin uses a wired Ethernet connection to control a robotic arm [36]. Using Java, 

Java3D, and CORBA, commands are sent over this wired connection and a camera image is sent 

back as feedback to simulate the robotic arm in both virtual and augmented reality. Other 

researchers like Moutaouakkil [37] rely on a wireless Internet connection to simply send 

commands to a Lego Mindstorms robot. While Moutaouakkil [37] may be a short-distance 

example of wireless Internet communication, similar wireless connectivity can be done over any 

distance. In one piece of research by King, et al., six Universities world-wide participated in a 24 

hour event to test and demonstrate teleoperated surgical tools [38]. Unfortunately, exact 

bandwidth values are not provided in any of these works. 

Vehicle teleoperation has been performed using wireless Internet based platforms. 

Grange [39] developed a platform called WebDriver to allow vehicle teleoperation minimizing 
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bandwidth usage, providing sensor fusion displays, and optimizing human-computer interfacing. 

The same research group also developed PdaDriver which uses a Personal Digital Assistant 

(PDA) to teleoperate a vehicle in low-bandwidth/high-latency communication links, although 

specific values for bandwidth and latency were not presented [20]. All of these works emphasize 

a need to develop low-bandwidth systems due to cost restrictions; however none provide 

numerical benchmarks for achieving low-bandwidth. 

Since many sources do not reference exact bandwidth values achieved during testing, 

alternative sources were consulted to determine standard data transmission rates for a variety of 

transmission mediums. Modern wireless interfaces to the Internet have a wide range of 

bandwidths depending on the protocol, but the most common currently used protocol at present is 

802.11n which has a maximum transmission rate of 600 Mbps [40]. Other wireless protocols are 

also used, including Bluetooth which has a maximum data transmission rate of 720 kbps [41] and 

dedicated short-range communication (DSRC) which has a 500 kbps rate when operating within 

1500ft, and a 27 kbps rate when operating between 1500-3000ft [42]. 

Latency is as equally important as bandwidth for system performance. Interestingly, 

bandwidth and latency have an inverse relationship in quality for the Commercial Off-the-Shelf 

(COTS) systems investigated in this study. For example, comparing 802.11n to both Bluetooth 

and DSRC communication systems, 802.11n has the best bandwidth yet has the worst latency at 

about 40ms [43]. Bluetooth has slightly better latency at about 25ms for the first few packets sent, 

but it improves slightly after this initial transmission delay [44]. DSRC boasts the lowest latency 

times at only about 2ms, but it has the worst bandwidth [45]. Figure 2-11 shows a comparison of 

the latency and bandwidth for these three communication protocols. 
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Figure 2-11. Comparison of latency and bandwidth for three communication protocols 

2.2.2 Strategies for controlling system latency 

While Internet communication can greatly increase the effective distance of 

teleoperation, it can also greatly increase time delays in the system. One area of research focuses 

on the reduction of these time delays. Ploplys et al. [46] performed research to develop real-time 

control systems over wireless networks. In this work, a pendulum was controlled by a linear 

quadratic regulator (LQR) state feedback method for stabilization. The LQR controller was 

implemented without taking the effect of transmission delay into account. Data was transmitted 

over an 802.11b line and round-trip transmission time was calculated, finding that the round trip 

transmission time for 84 bytes of data was between 3.3 and 3.8 ms, as shown in Figure 2-12. 

Ultimately, this work found that the LQR controller stabilized the pendulum for various sampling 

rates as long as under 22% of packets were lost. Full results are shown in Figure 2-13. 
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Figure 2-12. Round trip response times for 84 byte data packets [46] 

 

Figure 2-13. RMS error of pendulum position for various sampling rates [46] 

Later research by the some of the same authors uses linear matrix inequality (LMI) for 

stability and performance analysis and a stochastic two-state Markov model for control in a 

packet-based environment [47] [48]. The Markov chain is a simple tool that is commonly used for 

analyzing the effectiveness of packet-based systems. As shown in Figure 2-14, the two states, 



 

27 
 

open loop and closed loop, have some probability (p) that a packet will be received and the 

system will move onto the other states and one minus that probability (1-p) that a packet will be 

dropped, in which case it remains on its own state. Packets are considered dropped if transmission 

is lost, the data is corrupted, or the delay exceeds sampling time. 

 

Figure 2-14. Two-state Markov chain between open and closed loop system [48] 

Three strategies are presented for controlling the system during drops predicted by the 

Markov model. First, the control effort is simply set to zero. This method is typically undesirable, 

as is better suited as an additional condition for the second strategy, Zero Order Hold (ZOH). 

ZOH utilizes the control law shown in Equation 2-1 to choose an input to the system. If the 

packet is delivered, then the controller proceeds as normal. If up to N packets are dropped, then 

the controller outputs the last command. If more than N packets are dropped, then controller 

outputs zero. 

ሺ݇ሻݑ ൌ ቐ
ሺ݇݁ܭ െ 1ሻ
ሺ݇ݑ െ 1ሻ

0

݂݅ ݏݏ݁ܿܿݑݏ ሺܮܥሻ
݂݅ ൑ ܰ ݁ݒ݅ݐݑܿ݁ݏ݊݋ܿ ݏ݁ݏݏ݋݈ ሺܱܮሻ
݂݅ ൐ ܰ ݁ݒ݅ݐݑܿ݁ݏ݊݋ܿ ݏ݁ݏݏ݋݈ ሺܱܮሻ

 Equation 2-1 

 

The third strategy is estimation, where the controller continues to estimate the states of 

the model in the event of dropped packets. The input is selected based on Equation 2-2, which is 

similar to Equation 2-1 only with a different second condition that calculates a controller based 

on the state of the system instead of simply outputting the past value. This condition is shown in 

Equation 2-3. 
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Instead of modeling the system to control it during a large time delays, some researchers 

examine how time can be replaced as a variable. Elhajj [49] discusses the idea of using an event-

based controller instead of a time-based one. With time-based controllers the dynamics of the 

system are modeled by differential equations using the time variable as a reference. With event-

based controllers, on the other hand, the dynamics of the system are modeled based on a “motion 

reference” or “action reference.” This controller, as shown in Figure 2-15, is meant to reduce 

instability, loss, and de-synchronization caused by time delays. In the figure the “planner” is the 

operator sending commands to the remote (“robot”) environment. The work by Elhajj [49] uses 

event-based control to send super-media, or a massed collection of data, over the Internet in a 

more stable and less delayed manner. Various teleoperation setups are used that show 

effectiveness in transmitting velocity commands from the operator and video, temperature, and 

force feedback from the robot arm. One set of results that demonstrate the difference in time-

based response (left) and event-based response (right) is shown in Figure 2-16. 
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Figure 2-15. Traditional time-based control (a) and event-based control (b) [49] 
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Figure 2-16. Comparison of time-based response (left) to event-based response (right) [49] 

2.2.3 Common testing procedures 

It is desirable to perform tests of telerobotic systems that produce results that are 

comparable to each other or to current standards. For this reason a review of other testing 

procedures in teleoperation research is presented here. The vast majority of works simply plot the 

time of the command from the operator vs. the response time of the remote robot [32] [50] [51]. 

One example of this is shown in Figure 2-17. It is important to note that in this type of testing a 

timestamp must be sent with every message to accurately represent the delays. 
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Figure 2-17. Example command vs. time plot for operator and robot [50] 

While there is not a consistent movement pattern that is imposed or repeated between any 

of the works listed above, they do discuss specific movements unique to each experiment. For 

example, the brief work by Wen [51] discusses the control of a hydraulic robot arm by sending 

either a displacement or force command. In this work, the motion recorded is the force and 

displacement of the robotic arm as it is making and releasing contact with various materials. 

On top of a comparison of master and slave response, some works include frequency-

domain responses in their analyses. In work by Tanner [22], the position of a master arm is 

controlled by a human user while a slave arm provides force feedback to the through a time-

delayed medium. The system is augmented with various feedback filters to improve arm response 

at higher frequencies. These data are presented in magnitude bode plots, as shown in Figure 2-18. 

This method of testing data is useful because frequency responses are universal to all dynamic 

systems. 

 

Figure 2-18. Bode plot showing improved high frequency response [22] 
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Some researchers base success in teleoperation by achieving high data transfer rates and 

low delays. In the work by King [38], six Universities across the world ran a 24 hour master-slave 

surgical tool trial to examine effectiveness of teleoperation via internet connection and presented 

the average data transfer rates. While the desired rate as mentioned in Section 2.1.2 is 1000Hz, 

these researchers found they averaged only around 10Hz. In the work by Harder [52] data on 

video streams and system control is collected including characterization of one-directional delays 

in the communication (in milliseconds), jitter (in milliseconds), data transfer rate (in MBPS), and 

bit error ratio. These data are shown in Table 2–2. Controlling the system through delays is a 

primary focus of this work over reduction of delays. For this reason, these testing procedures will 

not be utilized in this work. 

Table 2–2. System performance data [52] 

 

Some works simply list the total time to complete a task in order for comparison against 

other test subjects [18] [53]. Goldstain [33] uses this strategy to test the effectiveness of 

telerobotics as a teaching tool by measuring the number of steps each test subject commands and 

the number of errors each subject commits. Since it is very difficult to measure system 

performance against dynamically unrelated teleoperation systems using these methods, they will 

also not be implemented. 

In terms of vehicle teleoperation experiments, Halme [32] tests the teleoperation of an 

ATV using a set track in a corridor or slalom, performing obstacle avoidance in open terrain, 
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loading a vehicle, stopping precisely from high speeds, and a combination of this in off-road 

driving. Along with graphical actuator response times, further testing is done by having five 

subjects drive the vehicle and answer subjective questions involving various aspects from the 

ease of driving to ergonomic drawbacks. Similar testing is also performed by Nguyen [28] where 

ten subjects are instructed to drive a three wheel vehicle using a variety of joysticks with different 

haptic feedback mechanisms on the same figure-eight type course. Time of course completion for 

each feedback mechanism was plotted and the subjects were provided subjective analysis on the 

response for various haptic feedback methods. 

This work is unique in that, instead of detecting latency, the system is altered in various 

ways to detect how the driver responds to latency issues. More specifically, one set of 

experiments will require a human operator to teleoperate a vehicle at constant speeds with 

reducing preview time to determine the relationship of the driver’s phase margin and preview 

time. The other set of experiments requires the human operator to teleoperate a vehicle at constant 

speeds while increasing delays are added to the system. These tests will provide an understanding 

human sensitivity to both delay and risk when teleoperating a vehicle. 
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CHAPTER 3  
 

SOFTWARE ENVIRONMENT 

The piece of software used in this project is an open source platform called Robot 

Operating System (ROS). As this software is used to both control the test vehicle and manage the 

communication for teleoperation, a basic understanding is necessary. This chapter presents an 

overview of ROS and an explanation of why it was chosen for this project. 

3.1 Overview of ROS 

ROS is a Linux-based open-source software platform that provides libraries and tools to 

help designers create robot applications [54]. It was originally developed in 2007 by the Stanford 

Artificial Intelligence Laboratory as part of the Stanford AI Robot STAIR project, but since 2008 

it has been primarily developed by Willow Garage, a robotics research institute with more than 

twenty institutions collaborating on robotics development. ROS is designed to provide an 

“operating system-like functionality” for robot software development. It is compatible for 

programming with both Python and C++. 

At its most basic, ROS operates as a cluster of nodes operating individually to subscribe 

to, process, and publish data. Messages that are published and subscribed to are called topics. 

When one node publishes a topic it is typically available for all other nodes to subscribe to as 

needed. Figure 3-1 shows a basic example of how ROS nodes function. In this example a joystick 

is being used to teleoperate a robotic arm with some sensor feedback. The peripheral input 

processing node reads the data from the joystick, processes it, then publishes information. The 

sensor processing node does the same for the sensors on the robotic arm. The robot controller 
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node then subscribes to both the topic published by the peripheral input processing node and the 

sensor processing node, processes that data into a command for the robotic arm, and publishes 

that command. 

 

Figure 3-1. Basic ROS node diagram 

By using this basic subscribe and publish structure virtually any hardware can be 

communicated with and controlled through ROS. This “middleware” aspect of ROS provides a 

highly modular design, yet can also be challenging to learn. 

3.2 Justification of use 

The decision to use ROS above other simpler programs like MATLAB’s xPC was based 

on the goal of having a highly customizable system. ROS does have a much steeper initial 

learning curve than xPC, but once that initial curve is overcome, any subsequent system 

expansion is comparatively simple. The ROS Wiki page provides a number of predesigned 
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packages called stacks that can help implement functionalities like perception, object, 

identification, motion control, and path planning, among many others [54]. More importantly, 

however, since ROS is an open-source platform there are a number of user-designed stacks that 

are premade for a large assortment or hardware devices. In contrast, a commercial product only 

gives access to what has been released by the company. In situations where the commercial 

software does not work, one is left either trying to reverse-engineer the software capability, or 

work through a sometimes lengthy back-forth process with product support experts. 

One of the greatest benefits of the ROS platform is the ability to easily communicate 

across many devices via TCP/IP connection, allowing different CPUs to control different 

functions. Some specific benefits of this include the ability to: 

 display large numbers of camera views across multiple CPUs 

 separate CPUs for specific purposes, for example a dedicated DAQ CPU 

 read inputs from multiple drivers simultaneously, including algorithm representations of 

“virtual” drivers 

 interface with real vehicles 

The ability of ROS to communicate across multiple platforms easily makes it ideal for 

teleoperation. ROS is able to process and collect data in a remote environment and publish that 

data back to the human operator. By manipulating the data in the remote environment, it is 

possible to artificially control the feedback provided to the human driver. 
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3.3 ROS to ROS communication latency 

This thesis focuses on communication between ROS-enabled CPUs for teleoperation and 

thus latency anywhere in the system must be understood. To investigate sources of latency, it is 

important to know first what effect the ROS middleware itself has on that overall latency. To 

determine latency within the ROS software-to-hardware interface, two loopback tests were 

performed to determine the round-trip delay: one with a wired connection through an Ethernet 

switch, and one with a wireless connection through a wireless router. 

An intranet was set up between an ASUS U47A laptop with an Intel Core i5 3.3GHz 

processor, 6GB ram, and a 750GB hard drive, and an ASUS CM6850 desktop with an Intel Core 

i7 3.4GHz processor, 8GB ram, and a 1TB hard drive. An N600 Netgear dual band 

router/Ethernet switch with 600Mbps wireless transmission and 1Gbps wired transmission was 

used for computer to computer communication. These were the only computers on the network 

during the test. 

To perform the test, a simple ROS node was written that publishes a 1Hz square wave. A 

second ROS node was also written that subscribes to this topic and republishes the same data as a 

new topic. A universal time is kept between the two CPUs and also published. The data from 

these topics are then compared and the time between sending and receiving the square wave is 

calculated. The numerical results for these tests are shown in Table 3–1 while the plots are shown 

in Figure 3-2 and Figure 3-3. 

Table 3–1. Results of ROS to ROS latency tests 

 Wired Wireless 
Average Latency (ms) 1.0 1.0 

Max Latency (ms) 1.2 1.5 
Min Latency (ms) 0.83 0.010 

Standard Deviation (ms) 0.041 0.11 
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Figure 3-2. Latency for a wired ROS to ROS connection 

 

Figure 3-3. Latency for a wireless ROS to ROS connection 
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CHAPTER 4  
 

TESTING PROCEDURE AND PLATFORM 

As discussed in Section 2.2.3, a variety of tests have been designed to determine how 

various forms of feedback are used by human drivers during vehicle teleoperation. This section 

describes how tests were designed and implemented. Additionally, the vehicle used in testing and 

the model used to simulate this vehicle are both described. 

4.1 Test vehicle 

4.1.1 Physical vehicle description 

The vehicle used for testing is a 1989 GMC 2500 referred to by this research group as 

“Big Red.” This vehicle was used for testing because it was instrumented to collect a variety of 

data from steering angle to LiDAR scans. Additionally, the parameters of this vehicle have 

previously been thoroughly tested, as documented in Lapapong’s prior work [55]. These 

parameters are shown in Table 4–1. The test vehicle itself is shown in Figure 4-1. 

Table 4–1. Vehicle parameters for test vehicle 

Symbol Value Unit 
m 2579 kg 
b 1.964 m 
a 1.39 m 
Izz 5411 kg-m2

Caf -75700 N/rad 
Car -83700 N/rad 
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Figure 4-1. 1989 GMC 2500 “Big Red” 

4.1.2 Hardware layout 

While the truck is equipped to gather a large variety of data, the minimum amount of data 

is collected for each test to conserve bandwidth. The data required for this test is differential GPS 

(DGPS) data for vehicle motion, camera data, and both commanded and response steering data. 

The DGPS system used in this work is a Novatel SPAN RTK GPS, shown in Figure 4-2, 

with a 2cm accuracy that is considered precise enough to be used as ground truth. DGPS data was 

collected at 50Hz. The camera used to collected vision data is the PointGrey Research Firefly MV 

USB 2.0 monochrome camera with VGA resolution. This camera, shown in Figure 4-3, was used 

because it has low pixel-level noise and produces a good video quality at a low price of $35. The 

decision to use a monochrome camera was intentional: the goal was to limit the information 

passed to the driver for the test in a manner that emulates the information that would be available 
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to a low-cost automated driving system. While the effect is likely small, the colors provided by 

the ambient environment are assumed to not affect the driver’s response. 

 

Figure 4-2. Novatel SPAN RTK GPS 

 

Figure 4-3. PointGrey Research Firefly MV USB 2.0 camera 
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The steering command is generated by a Logitech G25 racing wheel, shown in Figure 

4-4. This device was chosen because it is capable of emulating the motion of the truck’s steering 

wheel, but can also be immediately integrated into ROS with ROS’s included joystick drivers. 

While the device includes foot pedals and transmission control, these were not used in this work 

for safety reasons. These steering commands are sent to an Aerotech rotary stage attached to the 

steering column that acts as a servomotor and controls the steering angle. The assembly of this 

steering motor on the steering column is shown in Figure 4-5. 

 

Figure 4-4. Logitech G25 racing wheel 
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Figure 4-5. Aerotech rotary stage mounted on the steering column 

External hardware can communicate with a ROS-enabled CPU in a number of ways. In 

this work, the Novatel GPS and Aerotech steering motor communicate via TCP/IP connection 

while the Logitech racing wheel and PointGrey camera communicate via USB. Since this project 

involves the teleoperation of a vehicle, two connected ROS-enabled CPUs are required. One 

computer displays the camera data and publishes steering commands from the human driver. The 

other records and publishes the camera data. The Novatel GPS and steering motor communicate 

directly with any of the CPUs via TCP/IP. The ROS-enables CPUs also communicate via TCP/IP 

connection. All TCP/IP connections are router through a Netgear N600 wireless dual band router 

capable of transferring up to 600Mbps wirelessly and 1Gbps wired. The hardware diagram for 

this system is shown in Figure 4-6. 
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Figure 4-6. Hardware diagram for the test vehicle 

4.1.3 Hardware latency and bandwidth analysis 

As discussed in Section 3.3, it is necessary to know the latency in the transmission of data 

between the hardware to have a full understanding of the latency in the overall system. As shown 

in Figure 4-6, all data transmission between the hardware and ROS, with the exception of the 

steering motor, is single direction so a loopback test cannot be performed. For the Novatel GPS 

and Logitech steering wheel, the only way to test the interface timing is to read the frequency in 

which data is processed using a function included in ROS. The resulting transmission rates are 

shown in Table 4–2. Since the PointGrey camera is passed from one ROS-enabled CPU to 

another, the difference in clock time between the two CPUs can be used to determine latency. The 

latency for the PointGrey camera is shown in Table 4–3. 
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Table 4–2. Data refresh rates for test vehicle hardware 

Hardware Rate (Hz) Latency (ms) 
Novatel GPS 78.42 12.75 

Logitech Steering 10.23 97.75 
PointGrey Camera 15.03 66.53 

 

Table 4–3. Wired and wireless latency for PointGrey camera 

Connection Mean Latency (ms) Min Latency (ms) Max Latency (ms) 
Wired 100 30 155 

Wireless 125 30 255 
 

It is also important to know the total bandwidth of the system. ROS has the capability to 

record the bandwidth of all topics being published. These bandwidths are shown in Table 4–4. 

Table 4–4. Bandwidth of vehicle hardware 

Data Bandwidth (KB/s) 
GPS/IMU 7.71 

Logitech Steering 6.23 
PointGrey Camera 15,690 

Steering Motor 0.0652 
 

Because the steering motor has full feedback, the delay in motor response is measured by 

comparing the commanded motor position to actual position. The response was measured with 

the truck parked on the ground, but with the engine running to provide the use of power steering. 

The plot in Figure 4-7 shows the response of both a 90° commanded angle and a 180° 

commanded angle to determine if the motor is rate limited. Because the slope of the feedback 

data is the same for twice the input, the motor is clearly rate limited. The slope of the feedback 

lines indicates that the rate limit is about 725deg/s. Additionally, the motor response itself is non-

linear partially due to what Brown [56] refers to as “bushing compliance.” The linkages between 

the steering rack and the wheels are not completely stiff, resulting in a slight lag when changing 

the steering direction and a non-linear relationship between steering command and steering angle.  
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Figure 4-7. Steering motor response for a commanded 90° and 180° wheel angle 

This plot aids in the generation of a dynamic model for the motor. Since the motor 

appears to be non-linear with the rate limit, a common 2nd order approximation will not fully 

capture the motion. However, it is useful as a baseline from which to create a more accurate 

model. To create the 2nd order model, Equation 4-1 and Equation 4-2, along with the damping 

ratio and rise time recorded from Figure 4-7 were used. The overshoot in the motor response is 

very minimal, indicating that the system is slightly less than critically damped. For this reason, a 

damping ratio of 0.75 was chosen. Since the system is rate limited the rise time will differ for the 

90° and 180° commands. The rise time of the 90° turn was used because it has a lesser effect 

from the rate limit. This rise time is about 0.15s, leading to a natural frequency of 12s-1. 

௥ݐ ൌ
1.8
߱௡

 Equation 4-1 

ܻሺݏሻ
ܷሺݏሻ

ൌ
߱௡ଶ

ଶݏ ൅ ݏ௡߱ߞ2 ൅ ߱௡ଶ
 Equation 4-2 
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Due to the non-linearity, this model did not match well with the experimental data. From 

trial and error, the natural frequency was increased slightly to 16.5s-1 and the damping ratio was 

decreased to 0.65. Additionally, a 1st order transfer function was added to create the overall 3rd 

order effect of the response, which is likely due to an integrator-type control loop within the 

Aerotech motor controller. A delay block and two rate limit blocks were added to replicate the 

non-linear and delayed timing effects. The Simulink diagram for the steering motor model is 

shown in Figure 4-8. 

 

Figure 4-8. Simulink diagram for the steering motor 

For analysis later in this work, it is necessary to form a transfer function for the overall 

steering motor model. The rate limiters are ignored in this estimated transfer function and the 

0.02s transport delay is converted to a transfer function through a 1st order Pade approximation, 

resulting in a 4th order system. The final transfer function for the steering motor is shown in 

Equation 4-3. The eigenvalues of this transfer function are shown in Table 4–5. 

ሻݏሺݐݑܱݎ݁݁ݐܵ
ሻݏሺ݊ܫݎ݁݁ݐܵ

ൌ
െ11000ݏ ൅ 1100000

ସݏ ൅ ଷݏ161 ൅ ଶݏ7215 ൅ ݏ122500 ൅ 1100000
 Equation 4-3 
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Table 4–5.Steering motor eigenvalues 

Eigenvalue (rad/s) Eigenvalue (Hz) Eigenvalue Source 
-100 -15.92 Pade Approximation of Delay 
-40 -6.37 Motor Controller 

-10.5+12.84i -1.67+2.04i Physical Motor Response 
-10.5-12.84i -1.67-2.04i Physical Motor Response 

 

Figure 4-9 and Figure 4-10 show the comparison of the simulated motor response to the 

real response. While there are visible differences at the beginning and end of the responses, the 

overall relationship is a close match. The overall delay in the response from the motor varies 

based on the commanded position as it is a combination of the non-linear region delays (about 

0.2s total) and the linear region delay of 0.00138s/deg. This delay is taken into account in later 

analyses. 

 

Figure 4-9. Comparison of simulated and real commanded 90° wheel angle 
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Figure 4-10. Comparison of simulated and real commanded 180° wheel angle 

4.2 Test vehicle modeling 

4.2.1 Bicycle model 

In order to simulate the vehicle motion, a model of the vehicle must be developed. The 

simplest method for modeling four wheeled vehicles is the with 2 DOF Planar Bicycle Model. 

This model represents the vehicle as two wheels (one rear, one front) connected with a point mass 

in-between, as shown in Figure 4-11. 
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Figure 4-11. Planar Bicycle Model 

A table describing the constants is shown in Table 4–6. This model was chosen because, 

while it neglects many dynamics of the system such as suspension deflection and body roll, it is 

simple to model, has only 2 degrees of freedom, and is easily linearized. The bicycle model relies 

on many assumptions including: 

 Small angle steering 

 Linear tire model 

 Constant forward velocity 

 No body roll 

 No pitch 

 No frame twist 

 No suspension 

 No vertical motion 

 Flat road surface 

 No aerodynamics 
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Table 4–6. List of bicycle model properties 

Constant Meaning 

b Distance from rear tire to center of mass 

a Distance from front tire to center of mass 

Fr Lateral force on rear tire 

Ff Lateral force on front tire 

αr Rear slip angle 

αf Front slip angle 

δf Front steering angle 

U Longitudinal velocity 

V Lateral velocity 

r Yaw rate 

Ψ Yaw angle 

β Sideslip angle 
 

The bicycle model is analyzed by calculating the sum of forces in the y-direction, and a 

sum of moments in the z-direction. 

෍ܨ௬ ൌ ݉൫ ሶܸ ൅ ൯ݎܷ ൌ െܨ௥ െ  ௙ Equation 4-4ܨ

෍ܯ௭ ൌ ሶݎ௭ܫ ൌ െܨ௙ܽ ൅  ௥ܾ Equation 4-5ܨ

The linear tire assumption and small angle approximation are implemented. 

െܨ௙ ൌ  ௙ Equation 4-6ߙఈ௙ܥ

െܨ௥ ൌ  ௥ Equation 4-7ߙఈ௥ܥ

௙ߙ ൌ
ܸ ൅ ݎܽ
ܷ

െ  ௙ Equation 4-8ߜ

௥ߙ ൌ
ܸ െ ݎܾ
ܷ

 Equation 4-9 

Finally, all equations are combined and written in their state space representation with V 

and r as states. 
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4.2.2 Simulation development 

Knowing the real-world specifications of the truck, the vehicle’s dynamic response was 

modeled in MATLAB and Simulink. The vehicle specifications, state matrices, and plotting were 

completed in MATLAB while the remainder of the modeling was completed in Simulink. The 

Simulink diagram for a lane change maneuver is shown in Figure 4-12. 

 

Figure 4-12. Simulink diagram of the bicycle model with steering motor response 

The steering input for a lane change maneuver is a sine wave that is turned on and off 

after one full period using a step input. The output of the state space model is V and r, but since 

they are in coordinates local to the vehicle it is necessary to convert the vehicle motion to global 

coordinates. The relationship between the local vehicle coordinates is shown graphically in 

Figure 4-13 and the transformation equations are shown in Equation 4-11 and Equation 4-12. 
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Figure 4-13. Local vehicle to global coordinate conversion 

ܷா஺ோ்ு ൌ ௅ܷை஼஺௅ cosߖ െ ௅ܸை஼஺௅ sinߖ Equation 4-11 

ாܸ஺ோ்ு ൌ ௅ܷை஼஺௅ sinߖ ൅ ௅ܸை஼஺௅ cosߖ Equation 4-12 

Using these transformations, the global response of the vehicle position was plotted for a 

normal lane change maneuver during manual driving without the use of the steering motor. The 

maneuver was simulated at 20m/s with a 0.1Hz sine wave steer command.  This response is 

shown in Figure 4-14. The actual vehicle response of the test truck compared to the bicycle model 

was shown by a member of this research group to demonstrate the accuracy of the bicycle model. 

Figure 4-15 shows Brown’s [56] comparison of yaw rate and lateral velocity for simulated and 

collected data during a double lane change maneuver at 16m/s. 
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Figure 4-14. Simulated lane change maneuver for the truck at 20m/s 

 

Figure 4-15. Simulated vs. real response for a double lane change at 16m/s [56] 
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While Figure 4-15 shows that the bicycle model provides a good representation of the 

real test vehicle, it does not demonstrate the effects of driving the truck with the steering motor. 

To properly simulate this motor response, the transfer function and rate limit for the motor 

developed in Section 4.1.3 were placed in the Simulink diagram between the steering command 

and the state space equation. These blocks were included in the Simulink diagram in Figure 4-12. 

Figure 4-16 shows the response of the steering motor to the steering command for a lane change 

maneuver 

. Figure 4-17 shows the global vehicle position for the vehicle with and without the 

steering motor response. While the steering motor does not cause a significant delay in the system 

there is a finite difference of about 0.15s in vehicle response between the model with and without 

the motor. For this reason, the remainder of the simulations will use the steering motor model. 

 

Figure 4-16. Steering command vs. steering motor response 
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Figure 4-17. X position vs. Y position during a double lane change with motor response at 20m/s 

4.2.3 Simulating a human driver 

While the vehicle bicycle model is a good estimate of a vehicle’s motion for a give 

steering input, it does not model how a human driver chooses the input based on a given path. 

While a number of driver models exist, this work focuses on a single point preview controller 

based on the optimal preview controller developed by MacAdam in 1981 [57] which is presently 

the most commonly used model to emulate human driver behavior in closed-loop vehicle control. 

The MacAdam controller uses the vehicle bicycle model and the assumption that steering angle 

remains constant over some preview time to find the error between a previewed input and the 

previewed output of the vehicle. This is shown graphically in Figure 4-18. A cost function is then 

applied to minimize this error. 
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Figure 4-18. Graphical representation of the MacAdam model for lateral error 

Past work by Stankiewicz [58] showed that the open loop prediction of vehicle states is 

calculated with Equation 4-13 where T is the preview time, Φ(t+T) is the state transition matrix 

approximation, u is the steering input, and Ψ is described by Equation 4-14. Stankiewicz analyzed 

the accuracy of various state transition matrix approximations and found that the MATLAB 

numerical approximation is the best, so that method was chosen for this work. 

ݐሺݔ ൅ ܶሻ ൌ ݐሺߔ ൅ ܶ, ሻݐሺݔሻݐ ൅  Equation 4-13 ݑܤܶߖ

ߖ ൌ ܫ ൅෍
ሺܶܣሻ௞

ሺ݇ ൅ 1ሻ!

ஶ

௞ୀଵ

 Equation 4-14 

As described by MacAdam, the closed loop controller is determined by minimizing the 

local performance index shown in Equation 4-15, where f is the previewed input, y is the 

previewed output, and W is an arbitrary weighting function [57]. The resulting optimal controller 

is shown in Equation 4-16 where K is defined by Equation 4-17. 

ܬ ≜
1
ܶ
න ሼሾ݂ሺߟሻ െ ߟሻሿܹሺߟሺݕ െ ߟሻሽଶ݀ݐ
௧ା்

௧
 Equation 4-15 
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At its most basic, the MacAdam controller is simply a proportional controller on the error 

between a previewed road trajectory at time t+T and the previewed vehicle trajectory at time t+T. 

In order for this system to be modeled in MATLAB and Simulink, the bicycle model described in 

Equation 4-10 must be expanded to include lateral position and yaw angle as an output. The state 

equation for lateral velocity is presented in Equation 4-18, resulting in the state space equation 

shown in Equation 4-19. 
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Figure 4-19 shows the vehicle response for the closed loop MacAdam controller during a 

lane change at 20m/s. For this run there is no delay and 1 second of preview is used. The motor 

model is used in this simulation. This plot shows that the MacAdam controller effectively enables 

tracking of a reference road input. This model is used later to run experiments to simulate the 

vehicle response based on the delay or preview time provided to a driver. 
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Figure 4-19. Lateral position vs. time for a lane change at 20m/s with MacAdam controller 

4.3 Testing parameters 

4.3.1 Test descriptions 

A total of four tests were conducted in this work. Tests 1 and 2 examine the simulated 

response of the vehicle while varying either the preview time or system delay. Test 1 is a 

simulation of the vehicle response with the MacAdam controller to a lane change maneuver at a 

constant speed with varying preview time. The method used in this test is simple; since preview 

time is a direct input to the vehicle model, the phase margins are found by simply varying this 

input and analyzing the resulting Bode plots of the system dynamics. This test provides an 

expected driver phase margin for various preview times, which is then used to find the phase 

margin associated with various delays. 
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Test 2 is a simulation of the vehicle response with the MacAdam controller to a lane 

change maneuver at a constant speed with varying delay. The method used in this test is to add a 

transport delay block to the vehicle feedback and steering input in the Simulink diagram with 

each block representing half of the total delay in the system. The effect of the delay was slightly 

different if applying it to only the feedback or only the input; the full delay on the feedback 

slightly increased oscillations while the full delay on the input slightly decreased oscillations. The 

simulation was run with half of the delay on each because this is the method used in physical 

testing, and is believed to be the one that most accurately represents a real round-trip delay. This 

test identifies the delays at which the vehicle becomes oscillatory and unstable. Using this 

information in combination with the results form Test 1, the phase margin for the human driver 

with no delays is found. Subsequently, the phase margin and stability of a time-delayed 

teleoperated vehicle can be estimated by subtracting the phase margin associated with the delay 

(found in Test 1) from the human driver’s phase margin (found in Test 2). 

Tests 3 and 4 are the same as 1 and 2, respectively, but with the real test vehicle. Test 3 is 

a physical test with the human driver in the test vehicle, but teleoperating the vehicle from a 

visually isolated driving simulator within the cab of the vehicle with varying preview time. The 

visually isolated driving simulator is shown in Figure 4-20 and Figure 4-21. This test provides 

physical data with which Test 1 is compared, along with subjective feedback from the test subject 

on the effect of limited preview time on driving ability. Similarly, Test 4 is a physical test with 

the driver inside the vehicle in the same manner as Test 2, but with varying delay. This test 

provides physical data with which Test 2 is compared, along with subjective feedback from the 

test subject on the effect of increasing delays on driving ability. The exact methods used in each 

of these tests are more complicated than Tests 1 and 2 and will therefore be discussed in detail in 

Chapter 6. 
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The decision to teleoperate the vehicle from a driving simulator within the vehicle cab 

was deliberate. By riding in the vehicle, the test subject is still influenced by the inertial 

movement of the vehicle. As the MacAdam controller uses the vehicle states to determine the 

control gain, this method creates a more accurate representation of that controller. Additionally, 

inertial feedback is eliminated as a variable to provide a more accurate analysis. It is important to 

note, however, that haptic feedback was not provided on the steering wheel. While this does 

slightly affect test results, it was unavoidable as providing haptic feedback to the steering wheel 

through ROS has not yet been implemented. 

 

Figure 4-20. In-vehicle driving simulator 
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Figure 4-21. View from driving simulator with limited preview time 

4.3.2 Physical testing conditions 

The test subject in this study is the human driver who controls the steering while a 

separate test operator onboard controls the throttle and brakes to provide both consistent speeds 

during testing and increased safety. For all physical tests, a human driver was present to intervene 

immediately since some the tests involve pushing a vehicle to the brink of stability. Additional 

safety protocols include an emergency stop button within reach of the test operator and test 

subject when he/she is in the vehicle, along with an emergency stop button on the outside of the 

vehicle. An additional operator is present outside of the vehicle with both a wireless engine kill 

switch and a wireless emergency brake that is powered independently from the rest of the vehicle. 

And of course, the testing area of the test track was shut down from all external vehicle traffic for 

these experiments. 
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In the physical tests, the subject was instructed to follow a 30.5m radius circular path 

marked on the skid pad of the Larsen Transportation Institute (LTI) test track at Penn State 

University. The exact GPS coordinates of this path was determined using the Novatel DGPS and 

LiDAR scans from past experiments. This testing area is shown in Figure 4-22. 

 

Figure 4-22. Circular path in the testing area at LTI 
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CHAPTER 5  
 

VEHICLE SIMULATION WITH VARYING PREVIEW TIME AND 
SYSTEM DELAYS 

As discussed in the previous section, simulations were run to find the normal phase 

margin of a human driver and the phase margins associated with various time delays. These were 

used to predict the stability of the vehicle given various time delays. In this section, simulated 

experiments are run with MATLAB and Simulink with either no time delay and varying preview 

time, or constant preview time and varying time delays. By varying preview time, the phase 

margin of various system conditions is found and used to compute the phase margin associated 

with various time delays. By varying time delays, the delay at which the vehicle become 

oscillatory, unstable, etc. is found. The data from these two tests are then used in combination to 

determine a human’s non-delayed phase margin and subsequently predict the stability of the 

vehicle based on a phase margin analysis. 

5.1 Test 1 – MacAdam simulations with varying preview time 

5.1.1 Test setup and results 

The purpose of this simulated test is to determine the phase margin of the vehicle at 

various preview times. For each of these preview times, the phase margin of the system was 

calculated using the MATLAB function “margin” on the closed loop system to provide a 

numerical analysis of stability. In order to find the phase margin including the steering motor 

dynamics, the state space bicycle model is augmented with the transfer function for the steering 

motor. The A, B, C, and D matrices for the full augmented state space equation for the vehicle 
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including motor dynamics are shown in Equation 5-1 through Equation 5-4. The derivation of 

these state space matrices is shown in “Appendix A – Derivation of the Bicycle Model with the 

Motor Model”. 
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ܦ ൌ 0 Equation 5-4 

In order to run a closed loop analysis, the feedback equations for the MacAdam controller 

must be derived. The closed loop equations for the MacAdam controller with the motor model 

and without the motor model are show in Equation 5-5 and Equation 5-6, respectively. The full 

derivation of these equations is performed in “Appendix B – Derivation of the Feedback 

Equations for the MacAdam Controller” 

ሶݔ ൌ ሺܣ௠ െ ௠ܥ∗ܭ௠ܤ െ ݔ௦ሻܥ௠ܦ∗ܭ௠ܤ ൅ ሺܤ௠ܭ∗ሻݕ௜௡

ݕ ൌ ሾ1 0 0 0 0 0 0 0ሿݔ 
Equation 5-5 
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Equation 5-6 

To verify the accuracy of the state-space representations of the vehicle and controller, the 

vehicle model with the nonlinear block-diagram representation of the steering and vehicle 

dynamic were compared to the above linear state-space representation of the same dynamics. The 

comparison of these two simulations in Figure 5-1 shows a very close fit between the two model 

representations. 

 

Figure 5-1. Comparison of block diagram based motor model to state space based motor model 

Since systems become unstable at 0° phase margin (and for practical purposes are quite 

difficult to control below 30° of phase) these data provide the precise point where the vehicle 

should become unstable. In a swept-sine analysis, there is a fixed relationship between the phase 

angle, frequency, and system delay given in Equation 5-7.  
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 Equation 5-7 

 

From the phase margin and crossover frequency, the amount of delay associated with 

each preview time is calculated. This represents, according to a frequency response, the amount 

of delay that the system should be able to tolerate prior to becoming unstable. This is an 

idealization that assumes a sine wave input. However, the MacAdam controller assumes a 

constant input over the preview horizon, and thus the data must be interpreted with suspicion – 

especially for long preview horizons where even the Pade approximation may be invalid.  

An example Bode plot of the closed-loop system with 0.3 seconds of driver preview is 

shown in Figure 5-2 for a system without actuator dynamics and Figure 5-3 with actuator 

dynamics. The phase margins are shown in Table 5–1 for the simulation without the motor model 

and in Table 5–2 for the simulation with the motor model. The highlighted boxes show unstable 

responses. For all preview times in Table 5–1, the allowable delay is larger than the preview time, 

e.g. the controller is able to give more phase benefit by using preview than phase is taken away if 

the same delay were added. However, with the actuator dynamics in Table 5–2, this benefit is 

only occurring for preview times greater than 0.5 seconds. 
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Figure 5-2. Bode plot of the closed-loop system with 0.3 seconds of driver preview without 

actuator 

 

Figure 5-3. Bode plot of the closed-loop system with 0.3 seconds of driver preview with actuator 
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This information is useful for finding a human’s normal phase margin with the data from 

the varying system delay analysis in Section 5.2. For example, if an experiment shows that a 

human-driven vehicle becomes unstable with 0.3 seconds of delay added to the human’s response 

(as later experiments show) then Table 5–2 shows that the human controller must be “designed” 

to give roughly 61 degrees of phase margin. 

Table 5–1. Phase margin for simulated preview time test without steering motor model 

Preview Time (s) Phase Margin (deg) Frequency (rad/s) Calculated Delay (s) 
4.00 89.4 0.25 6.19 
3.00 89.2 0.34 4.62 
2.00 88.8 0.50 3.04 
1.00 87.7 1.03 1.49 
0.50 85.7 2.06 0.73 
0.40 85.1 2.56 0.58 
0.35 84.8 2.87 0.52 
0.30 84.8 3.35 0.44 
0.25 85.5 3.95 0.38 
0.22 86.5 4.40 0.34 
0.20 87.7 4.77 0.32 
0.17 90.3 5.44 0.29 
0.15 92.9 6.01 0.27 
0.12 98.4 7.16 0.24 
0.10 82.8 7.84 0.18 
0.07 43.6 6.67 0.11 
0.05 57.7 9.14 0.11 
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Table 5–2. Phase margin for simulated preview time test with steering motor model 

Preview Time (s) Phase Margin (deg) Frequency (rad/s) Calculated Delay (s) 
4.00 87.6 0.26 5.97 
3.00 86.8 0.35 4.39 
2.00 85.2 0.53 2.83 
1.00 80.0 1.10 1.27 
0.50 69.1 2.34 0.56 
0.40 63.9 3.00 0.37 
0.35 61.0 3.42 0.31 
0.30 56.8 4.11 0.24 
0.25 52.5 5.03 0.18 
0.22 49.6 5.82 0.15 
0.20 47.1 6.54 0.13 
0.17 39.0 8.39 0.08 
0.15 -104.0 16.7 -0.11 
0.12 -155.0 17.7 -0.15 
0.10 -102.0 13.8 -0.13 
0.07 -56.8 7.40 -0.13 
0.05 -89.4 9.99 -0.16 

 

To confirm that the phase margins give results that make physical sense, simulations 

were performed in MATLAB and Simulink by running the MacAdam controller and vehicle 

models developed in Section 4.2.3 with various preview times from 0.05s to 4s. The speed of the 

vehicle is independent of preview time so vehicle speed was held to a constant 10m/s, (22 mph) 

which is considered a safe speed with which to run the physical tests at the test track. As system 

stability is independent of vehicle trajectory, a simple lane change maneuver was used for this 

analysis. The response to this lane change maneuver at some of the tested preview times is shown 

in Figure 5-4 to show how tracking error varies. The data shows that instabilities emerge with 

around 0.15s or less preview, which is in complete agreement with the phase analysis presented 

in Table 5–2. 
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Figure 5-4. Example results for a lane-change maneuver for MacAdam controller for various 

preview times 

5.1.2 Discussion 

The data shows that a vehicle enters an unstable condition (less than 0° phase margin) 

with around 0.15s or less preview time. In terms of the effect of limited preview time on a human 

driver’s performance, this data shows that humans are theoretically able to operate a vehicle with 

very limited preview time. For example, at 10m/s this is only 1.5m in front of the driver, which is 

not even within the visible range of the driver: the hood of the vehicle usually prevents the view 

of anything within about 5m on the ground. This implies that drivers are mostly using the visible 
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road geometry to infer the vehicle’s position just in front of the bumper (but not visible), and then 

controlling the vehicle around this position.  

To drive fast enough that the look-ahead point is actually visible to the driver, a typical 

vehicle must be driven at over 50m/s to achieve an unstable condition. This is both extremely 

unsafe and impractical in this test vehicle (and most vehicles in general). Interestingly, it is 

known that most drivers require special training for high-speed driving, which is generally 

understood to occur at speeds above 50 m/s (e.g. race-car driving schools). 

It is unsurprising that phase decreases much more rapidly for the system with the steering 

motor model than in the system without it due to the delays inherent in the motor. It is interesting, 

however, that in the system without the motor model phase margin does not decrease much, and 

increases in some cases. By inspecting the Bode plots, it is clear that the model without the 

steering motor is limited within 180° phase margin while the model with the steering motor has 

much greater boundaries, allowing much more significant changes in phase margin. 

A separate, but interesting, result of this simulation is that the driver will track the road 

trajectory with less error in cases with less preview distance. This is a counterintuitive result: that 

drivers perform better at tracking with more limited view. This effect is due to several factors: for 

example the driver will “cut the turn” more with larger and larger preview. Further, the simplistic 

driver model used here, while analytically tractable, is not completely representative of how 

human drivers extrapolate lane information. It is likely that drivers use an array of preview points 

instead of a single preview point as simulated by the single point MacAdam model. Additionally, 

human drivers likely use preview for different purposes. For example, lane tracking appears to 

occur at shorter distances, but collision avoidance maneuvers are likely planned at longer 

distances. Long distance preview may also be more important during high performance driving 

such as racing. 
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5.2 Test 2 – MacAdam simulations with varying time delays 

5.2.1 Test setup and results 

The purpose of this simulated test is to determine the stability of the vehicle at various 

delays, for a constant preview time. Simulations were run in MATLAB and Simulink by running 

the MacAdam controller and vehicle models developed in Section 4.2.3 with various delays from 

0.1s to 0.4s. As discussed in Section 4.3.1, this was done simply adding a transport delay block to 

both the feedback and steering input, each representing half of the total delay. The vehicle speed 

was held to a constant 10m/s, (22 mph) which is considered a safe speed with which to run the 

physical tests at the test track. As noted by Ungoren, 0.5s to 2s of preview is used by most human 

drivers [59]. In order to represent the human driver accurately and provide low tracking error, a 

0.5s preview time was used for the simulation. As with Test 1, a simple lane change maneuver 

was used for this analysis. 

The expected result of this test is a specific delay time that corresponds to the onset of 

vehicle instability. This delay time is then used in conjunction with the data presented in Section 

5.1 to determine the normal phase margin of a human driver which in turn provides the ability to 

predict instability in vehicles based solely on phase margin. The response to this lane change 

maneuver at some of the tested delays is shown in Figure 5-5 to show how tracking error varies. 

These plots show that instabilities emerge just over 0.3s delay. 
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Figure 5-5. Example results for a lane-change maneuver for MacAdam controller for various 

delays 

Through simple visual inspection of the vehicle response plots, the stability condition 

(stable, oscillatory, or unstable) for various time delays was found. Table 5–3 provides a 

summary of these stability conditions. 
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Table 5–3. Vehicle stability condition for various time delays 

Delay (s) Stability Condition 
0.1 Stable 
0.2 Stable 

0.23 Stable 
0.24 Stable 
0.25 Oscillatory 
0.26 Oscillatory 
0.27 Oscillatory 
0.28 Oscillatory 
0.29 Oscillatory 
0.3 Oscillatory

0.31 Unstable 
0.32 Unstable 
0.33 Unstable 
0.34 Unstable 
0.35 Unstable 
0.4 Unstable 

 

Knowing that the vehicle enters an unstable condition at 0.31 seconds, the phase margin 

of a human driver can be found in this by working backwards through Table 5–2, looking for the 

calculated delay closest to 0.31s, and then finding the corresponding phase margin which is 61°. 

Since instability occurs at about a 0° phase margin and the destabilizing delay removes about 60° 

of phase, this suggests that human drivers naturally operate around a 60° phase margin if they are 

using 0.5 seconds of preview in a MacAdam type controller. 

Similarly, the point of oscillation begins at 0.25s, which corresponds to a 57° phase 

margin. This makes sense, as removing 57° of phase from the normal 60° of the human driver 

will place the vehicle just before the instability point at about 3°. 

5.2.2 Discussion 

The maximum phase margin of the MacAdam controller was found to be around 90° as 

preview is increased substantially, which is an unsurprising outcome as this is a common phase 
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margin of stable human systems – e.g. a critically damped response. However, this required 

significant preview, so much so that the trajectories were cutting corners during curves and lane 

changes. As a human driver would not do this, it is expected that the driver would be controlling 

the vehicle using a previewed position closer to the vehicle than implied by a 90° phase margin.  

It was also seen that the system model without steering dynamics gives much higher 

phase margins than system models with steering dynamics. However, the model without an 

actuator dynamic (but with human in the loop) should actually include neuromuscular dynamics. 

Models for these dynamics are very likely to be similar to the dynamics of the electric steering 

actuator. 

More importantly, in terms of vehicle stability this data provides a clear indication of the 

phase margin associated with various delays. An initial estimate based on the 0.31s instability 

point and Table 5–2 would suggest that human drivers typically operate at around 60° phase 

margin. Knowing that a system goes unstable at around 0° phase margin, this means that any 

delay with over 60° phase margin will cause instabilities in the system. 

With steering actuator dynamics included, oscillation in the tracking response begins to 

occur at around only 0.25s of delay when traveling at 10m/s. The results of Test 1 suggest that the 

preview time needed to cause instability is difficult to experimentally validate, since the driver’s 

preview point may be below the visible area of the driver. However, given the latencies observed 

in some of the hardware already, it appears plausible for a remotely-operated by-wire system to 

reach 0.25s of delay at these speeds. For higher speed operations, the destabilizing delay is 

significantly less. As shown in Figure 5-6, when traveling at highway speeds (25m/s) the point of 

destabilization occurs at only 0.15s and reaching instability at these speeds can be highly 

dangerous, if not deadly. These test results indicate that, in teleoperated vehicles, transmission 

delays of data is a primary concern for both system performance and, even more importantly, 

safety.  



 

77 
 

 

Figure 5-6. Lane change maneuver at 25m/s with 0.15s delay 
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CHAPTER 6  
 

PHYSICAL TESTING WITH VARYING PREVIEW TIME AND SYSTEM 
DELAYS 

This chapter presents an analysis of Tests 3 and 4 which examine the effect of varying 

preview time with a constant delay, and varying delay with a constant preview time, respectively. 

Using the test vehicle and setup described in Chapter 4, the human driver teleoperated the vehicle 

while either camera data provided to the driver was artificially limited, or delays were artificially 

added to the system. The methodology for each test is discussed more specifically below. These 

tests provide a real world comparison and application of the results found in Chapter 5 by which 

further understanding of the effects of delays on the system are analyzed. 

6.1 Test 3 – Physical tests with varying preview time 

6.1.1 Test setup 

The goal of this experiment is to examine the physical results from varying preview time 

with a constant delay on the vehicle’s stability. In each test, the driver’s preview distance is 

artificially limited and, by driving at a constant speed, this distance is converted to a preview 

time. As described in Section 4.3, the human driver was seated inside the cab within the blacked 

out passenger seat and controlled the steering with the Logitech racing wheel based on the feed 

from the camera. In order to artificially modify the driver’s preview distance, the image from the 

camera feed provided to the driver was altered via Python script to block the top of the screen, as 
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shown in Figure 6-1. This distance was manually calibrated by physically measuring the distance 

in front of the driver on the ground and generating a fit equation that translates number of pixels 

to view distance. The camera was securely fixed in place for all tests to ensure uniform preview 

distance measurements. 

 

Figure 6-1. Comparison of full camera view to limited camera view 

For each run, the speed was incrementally increased between 2.5m/s to 10m/s to obtain 

multiple preview time data points. As the speed was increased the test subject was in direct 

communication with the vehicle operator and was able to stop the test if he/she felt that the 

vehicle was reaching instability. Any requested stop was considered to be the point at which the 

vehicle reached instability. 

To understand normal driver performance, the human driver was first required to follow 

the path in a counter-clockwise direction via teleoperation without restricted preview distance, 

and then with 30m, 25m, 20m, 15m, and 10m of preview distance. During each of these runs the 

vehicle’s global position was recorded with the Novatel GPS while steering commands and 

feedback were recorded through the steering motor controller and the string potentiometer 

feedback at the steering rack. 
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The expected result from this experiment is that, as preview time is decreased, the 

driver’s path tracking improves, to a point very close to the vehicle, after which further reduction 

of preview will reach a point of instability. The driver’s path tracking is examined by calculating 

the driver’s RMS error from the path. However, based on the results of the simulated study in 

Test 1, it is unlikely that the vehicle reaches instability, or even oscillations at the safe testing 

speeds. 

6.1.2 Results 

First, the overall tracking of the path for each of these tests was recorded to determine if 

an unstable or oscillatory condition was ever reached. Ultimately, none of the tests resulted in an 

oscillatory or unstable condition. An example of this overall path tracking is shown in Figure 6-2. 

All preview distances tested resulted in very similar tracking paths. The only variations that 

occurred were brief deviations from the path similar to the one seen in Figure 6-2. This variation 

occurred during acceleration from one speed interval to another and therefore does not appear in 

the RMS error calculations. While it does not appear in the RMS calculations, it is interesting in 

that, while this study examines driver performance at constant speeds, accelerations may cause 

destabilization more quickly than simply driving at constant speeds. 
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Figure 6-2. Real vehicle path vs. guide path for a 25m preview distance 

For each preview distance, the individual speed intervals were analyzed to determine 

preview time and RMS error. Preview time was determined by dividing the preview distance by 

the average velocity across a nearly constant speed. 

RMS error was calculated by using the built-in MATLAB function “knnsearch” that finds 

the nearest neighbors between two sets of data, and then returns the index of those points and the 

error distance between them. Using this error distance, the RMS is calculated with Equation 6-1. 

The RMS error is plotted in Figure 6-3 and the full results from the varying preview time tests are 

shown in Table 6–1. 

ݎ݋ݎݎ݁ܵܯܴ ൌ ඥ݉݁ܽ݊ሺ݁ݎ݋ݎݎଶሻ Equation 6-1 
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.  

Figure 6-3. Root mean square error vs. preview time 
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Table 6–1. Results from varying preview time experiment 

Test Preview Time (s) RMS Error (m) 

Full View 

8.81 0.0644 

7.99 0.061 

6.34 0.0633 

5.67 0.0634 

30m 

7.41 0.0577 

5.66 0.0637 

4.22 0.0623 

3.46 0.0622 

25m 

6 0.0618 

5.31 0.063 

4.35 0.0633 

3.49 0.0678 

20m 

5.62 0.0593 

2.95 0.0643 

2.54 0.0641 

5.19 0.0633 

15m 
2.32 0.0642 

1.99 0.063 

1.66 0.0624 

10m 

1.83 0.0632 

1.43 0.0638 

1.25 0.0629 

1.14 0.0613 
 

6.1.3 Discussion 

The results from this experiment agree with the simulated results. The smooth path 

tracking plots such as Figure 6-2 suggest that the vehicle never entered, or even when near an 

unstable condition, even when driving with only 1s preview time. The driver did noticeably leave 

the path at points, but recovered quickly. The uniformity of the RMS error suggests that these 

deviations from the path are simply due to driver error. Additionally, these deviations from the 



 

84 
 

path primarily occur during accelerations from one speed interval to another, indicating that 

stability is easier to maintain during constant velocity maneuvers. 

RMS error trends upwards slightly as preview time decreases, but only by a few 

centimeters. Overall the RMS error remains mostly constant throughout the experiment. This 

result shows some agreement with the simulated results. The results match in that the vehicle 

does not go unstable for the preview time tests, but they do not match in that simulation would 

suggest that RMS error actually trends downwards as preview time decreases. The discrepancy 

between the simulated and actual results support the conjecture that human drivers, even when 

provided full view, control the small perturbations in vehicle path tracking off of very short 

preview distances while using long distance features for advanced path planning and collision 

avoidance. 

It is also notable that the RMS error remains around 6cm, which is about the width of a 

lane line. This result is important because it provides a standard by which automated vehicles 

should be expected to adhere during self-guidance. Essentially, if a human driver is satisfied 

operating the vehicle within about 6cm of lateral error, then a robot should also be expected to 

follow the same standards. 

From a subjective standpoint, the test subject found that, while driving with limited 

preview times was feasible, it was much more physically straining to do so than to drive will full 

view. A few possible conclusions can be drawn from this. First, it is possible that the additional 

strain is caused by innate fear of possible impending collisions that are blocked from view. Even 

though the test operator is able to prevent collisions and the testing environment is safe, a 

subconscious fear of the unknown may still exist. Second, this result supports a theory that 

humans actively scan the full range of view at all times for input and, when view is limited, 

attempt to gather more information from a limited environment which causes increased strain on 

the driver. 
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In the future it would be informative to perform this experiment in a similar manner, but 

by blocking out the top and the bottom of the screen and providing only a small sliver of preview 

to the test subject. It would be expected that the path tracking results would more closely follow 

those of the single point preview MacAdam controller. 

Overall, this experiment indicates that drivers are able to adapt to, or even normally 

operate a vehicle with exceptionally limited preview time. This indicates that human drivers will 

not likely enter an unstable condition for typical road behaviors based on limited preview time. 

6.2  Test 4 – Physical tests with varying delay 

6.2.1 Test setup  

The goal of this experiment is to examine the physical results from varying delays with a 

constant preview time on the vehicle’s stability. To accomplish this, the same test setup as in Test 

3 is used with the human driver in the blacked out passenger seat of the test vehicle. In this test, 

however, there are no changes made to the image presented to the driver. Instead, a delay is added 

to the image coming into the test subject while the same delay is added to the steering commands 

output from the test subject. Together, these two delays form the total round-trip delay for the 

system. 

In order to create the delay in the system, a buffer was implemented on both the incoming 

and outgoing messages equal to half the delay. As either the camera image or steering commands 

were received by ROS, the data was stored in the buffer along with the timestamp of when it was 

received. In each iteration cycle of the code, the current time is compared to the timestamp of the 

oldest message in the buffer. If this oldest message is older than the delay then it is output to the 
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test subject (camera image) or the steering motor (steering command). A comparison of the 

steering command to the delayed steering command is shown in Figure 6-4. 

 

Figure 6-4. Actual command vs. delayed command in a 0.2s one-way delay 

 As with Test 3 the speed was incrementally increased between 3.5m/s to 10m/s to obtain 

multiple preview time data points during each run. Again, as the speed was increased the test 

subject was in direct communication with the vehicle operator and was able to stop the test if 

he/she felt that the vehicle was reaching instability. Any requested stop was considered to be the 

point at which the vehicle reached instability. 

The human driver was also required to follow the same circular path in a counter-

clockwise direction via teleoperation without a delay, and then with a 0.05s, 0.1s, 0.15s, and 

0.02s one-way delay. During each of these runs the vehicle’s global position was recorded with 

the Novatel GPS while steering commands and feedback were recorded through the steering 

motor controller and the string potentiometer feedback at the steering rack. 
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The expected result from this experiment is that, as delay is increased, the driver’s path 

tracking decreases until instability is reached. The driver’s path tracking is examined by 

calculating the driver’s RMS error from the path. From the results in Section 5.2 it is expected 

that instability will occur around 0.3s of round-trip delay, or 0.15s of one-way delay, for a speed 

of 10m/s. 

It is important to note that a 0.15s delay must be added to all of the artificial round-trip 

delays added to the system to account for the delay in the steering motor. 

6.2.2 Results 

As with Test 3, the overall tracking of the path for each of these tests was recorded to 

determine if an unstable or oscillatory condition was ever reached. As predicted, the system did 

reach instability, but did so at delays slightly higher than predicted by the simulation. Instability 

was reached with both a 0.45s (0.3s without steering motor) round-trip delay and a 0.55s (0.4s 

without steering motor) round-trip delay, and occurred at speeds below 10m/s. The overall path 

tracking for these tests are shown in Figure 6-5 and Figure 6-6. In some cases, the vehicle is able 

to return to the path after wild excursions; however, this is considered unstable because the 

vehicle would leave the road in real driving scenarios. All other tests showed results more similar 

to Figure 6-2 with very small RMS error. 
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Figure 6-5. Real vehicle path vs. guide path for a 0.3s round-trip delay 

 

Figure 6-6. Real vehicle path vs. guide path for a 0.4s round-trip delay 
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In these figures, it appears that a 0.45s delay is actually more unstable than a 0.55s delay. 

This statement, however, is not completely proven since in the 0.55s test the speed of the vehicle 

was immediately dropped upon reaching instability, as requested by the test subject (and safety 

driver). This is shown in Figure 6-7 where the red circle identifies the point where the vehicle 

went unstable. On the other hand, in the 0.45s test, the test subject requested that the speed be 

maintained in order to regain stability, but ultimately asked to drop the speed slightly in order to 

get back on the track. This is shown in Figure 6-8 where the red circle again marks the point of 

instability. The ability of the driver to continuously cross the track at higher speeds and regain 

stability when returned to a lowed speed indicates that this could be considered oscillatory over 

fully unstable.  

 

Figure 6-7. Vehicle velocity during 0.55s delay 
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Figure 6-8. Vehicle velocity during 0.45s delay 

For each delay, the individual speed intervals were analyzed to determine preview time 

and RMS error. RMS error was calculated in the same manner as in Test 3, only these data are 

grouped by delay to show how speed increased instability at each delay time. The full results are 

shown in Figure 6-9, with a zoomed plot of the stable points shown in Figure 6-10. The severe 

deviations from the path in the 0.45s and 0.55s delay tests again reinforce the instabilities in these 

two conditions. 
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Figure 6-9. Root mean square error vs. velocity for various time delays 

 

Figure 6-10. Zoomed plot of root mean square error vs. velocity for various time delays 
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Finally, the overall results for this test are shown in Table 6–2, including the full round-

trip delay with the steering motor delay built in. 

Table 6–2. Results from varying delay experiment 

Test (One-way 
Delay) 

Round-trip Delay w/ 
Motor Delay (s) 

Speed (m/s) RMS Error (m) 

0s Delay 

0.15 5.68 0.0644 

0.15 6.26 0.061 

0.15 7.89 0.0633 

0.15 8.82 0.0634 

0.05s Delay 

0.25 4.29 0.0615 

0.25 5.82 0.0619 

0.25 7.85 0.0634 

0.25 9.05 0.0629 

0.1s Delay 

0.35 4.09 0.0575 

0.35 6.31 0.0626 

0.35 8.35 0.0615 

0.35 9.39 0.0721 

0.15s Delay 

0.45 5.19 0.0628 

0.45 5.57 0.2740 

0.45 6.83 2.5193 

0.45 7.40 7.3842 

0.2s Delay 

0.55 3.59 0.0631 

0.55 4.96 0.0611 

0.55 6.15 0.0620 

0.55 7.53 0.4315 
 

6.2.3 Discussion 

The results from this experiment mostly agree with the simulated results. The simulation 

showed that the vehicle should enter instability between 0.35s and 0.4s of delay at 10m/s. In real 

tests the vehicle began to enter instability between 0.45s and 0.55s of delay by 7m/s. While these 

delays are slightly higher than predicted by the simulation, the speed at which they were reached 
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is slightly lower. To view the validity of these results, the simulation was run under the 

parameters of the physical test. As predicted by the physical results, the vehicle is unstable at 

7.5m/s with 0.55s delay and 7.4m/s with 0.45s delay in the simulation, as shown in Figure 6-11 

and Figure 6-12. However, as shown in Figure 6-13, at 6.8m/s with 0.45s delays the vehicle is not 

predicted to go unstable, but experience heavy oscillations before settling. This suggests that 

humans may use a preview time shorter than 0.5s. However, by decreasing the preview time by 

only 0.07s to 0.43s, the vehicle will go unstable at 6/8ms and 0.45s delay. This is shown in Figure 

6-14. Overall, this result shows that the MacAdam model at 0.5s preview time provides an 

accurate model of the vehicle stability given certain system delays. 

 

Figure 6-11. Lane change maneuver at 7.53m/s with 0.55s delay 
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Figure 6-12. Lane change maneuver at 7.4m/s with 0.45s delay 

 

Figure 6-13. Lane change maneuver at 6.8m/s with 0.45s delay 
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Figure 6-14. Lane change maneuver at 6.8m/s with 0.45s delay, but at 0.43s preview 

The results also point to the possibility that humans can handle larger delays than the 

simulation. The reason that a human driver can withstand more delay is likely due to the fact that 

the human driver is able to use a variable level of preview time while the simulation is set to one 

specific preview time. For example, if the system experiences an abnormally large delay then the 

human can just look further away to adapt to the situation. However, with the simulation, if the 

delay is large, the preview time cannot be adapted to the situation and regain control. This 

supports the view that humans naturally drive with very short preview time (under 0.5s) for basic 

lane keeping, but use longer distances for more advanced planning. 

The result that instability was reached earlier in the 0.45s test than in the 0.55s test is 

interesting. While it suggests that the vehicle is more unstable with a 0.45s delay it is not 

conclusive. The test subject requesting that speed be maintained during the instabilities of a 0.45s 

delay shows that, while the vehicle was departing from the path, it was not fully unstable and 

perhaps simply oscillatory. This is held in contrast to the 0.55s delay test where the human driver 
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immediately requested that the speed be decreased upon losing control of the vehicle. The reason 

that the vehicle went unstable in the 0.45s delay test before the 0.55s delay test is likely that the 

vehicle was on the border of stable and oscillatory state and either a human factor or abnormally 

long delay occurred to push the system across that border. 

Overall, this experiment indicates that drivers can very easily enter an unstable state at 

delays comparable to the ones found in the simulation, but a human may actually be able to 

withstand slightly higher delays by using the capacity for variable preview times over the 

simulation’s set single-point preview. 
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CHAPTER 7  
 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

This thesis presented the goal of determining the specific feedback cues used by humans 

when driving a vehicle. It is desirable to determine which feedback cues are most important for 

the implementation of teleoperated systems because, while full immersion into a remote 

environment is both highly challenging and expensive, a significant level of immersion can be 

achieved by focusing on the primary feedback cues. Specifically in this work, the primary 

questions were where is the human driver looking when operating a vehicle, and how much 

preview time does a human driver need to safely control a vehicle? By knowing the answer to 

these questions, the effect of delays on the teleoperated system can be managed more safely and 

efficiently. 

Testing conditions were set for both simulated and real tests. In order to provide an 

accurate simulation, both the test vehicle and human test subject were modeled. The test vehicle 

was modeled using the linear bicycle model, augmented with a linear fit to the non-linear 

response of the teleoperated steering motor. The human driver was modeled using the MacAdam 

controller the estimates the displacement of the vehicle from a single point on a path trajectory at 

some time in the future (preview time) based on a constant speed and steering angle, and uses that 

displacement to maintain close path tracking. 

In Test 1, the simulated response of the vehicle given no delays and variable preview 

times was measured. This simulation showed that a driver can maintain stability with small 

preview times (< 0.2s). This proved difficult to test in practice at safe testing speeds, and thus 

could not be validated in the testing environment provided. More importantly, however, the 
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simulation provided an estimated relationship between phase margin, preview distance, and the 

respective delay time that can be tolerated with each phase margin. 

In Test 2, the simulated response of the vehicle given a set preview and varying delays in 

the feedback and steering command was measured. The preview was chosen to be 0.5s, which 

was the most realistic preview time based on Test 3’s results. The simulation showed that drivers 

can easily reach instability in vehicles when given only a 0.31s delay at 10m/s. This result was 

then compared to those from Test 1 to find that the phase margin of a human driver is about 60°, 

which also fits with the lane change response plots that show the driver is a slightly under-

damped system.  

Test 3 measured the real-world response of the vehicle during teleoperation given no 

delays and variable preview time. The results from this test support those from Test 1 because the 

vehicle never reached a point of instability. It is, however, very interesting to note that while Test 

1 predicted closer path tracking with less preview time, this test showed fairly constant tracking 

across all preview times. This result leads to the belief that, while humans are normally presented 

a large amount of preview, they actually only use what is very close for basic path tracking. In 

fact, Test 2 suggests that humans only need about 0.35s of preview to drive a vehicle in a stable 

condition. For most vehicles at safe speeds, this preview time equates to a distance that is actually 

under the vehicle, suggesting that humans may drive by extrapolating visual data into invisible 

areas and using that to guide the vehicle. 

Finally, Test 4 measured the real-world response of the vehicle during teleoperation 

given unrestricted preview time and variable delays. The results support those from Test 2, 

showing a similar range in which instabilities will occur. Test 2 predicted that instabilities occur 

around 0.35s to 0.4s of delay at 10m/s, for 0.5 second preview, while Test 4 shows that the 

instabilities arose at longer delays of 0.45s to 0.55s, but at a lower speed of only about 7m/s. By 

running additional simulations the use of 0.5s preview time was confirmed as accurate, and the 



 

99 
 

MacAdam controller was shown to be an accurate representation of vehicle stability with 

transmission delays. 

These numbers have large uncertainty, but still are extremely important when 

determining the safety and performance factors in teleoperated vehicles. It is also important to 

note how small the delays are that result in instability, even at low speeds. The results suggest 

that values on the order of 0.3 seconds are sufficient to destabilize a remotely-operated vehicle. It 

is clear that, in order to make a safe, high-performance teleoperated vehicle there must be both a 

rugged system in place and an architecture by which delays in the system are detected and the 

vehicle is controlled. 

Most importantly, this work gives a base of evidence that shows where a driver is looking 

when operating a vehicle. From the evidence presented, it is likely that a human is visually 

inspecting the environment at the closest point of reference, and it is also likely that he/she is 

inferring the location of that point of reference to only about 0.35s in front of the vehicle’s center 

of gravity. This is important because it provides defense for the use of various driver models 

when running simulations. For example, the MacAdam model can be run at any preview time 

and, if a large preview time is chosen, the simulation will show very poor path tracking ability. 

This work can be used as evidence as to how preview should be used when modeling human 

drivers. 

7.2 Future Work 

Like with most scientific works, this thesis creates more questions than it answers, which 

provides the opportunity for many follow-up experiments. These could include any goals from 

testing the instability point of limited preview driving to finding other non-visual feedback cues 

used by the driver. 
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In order to test the instability point of limited preview driving, tests must be run at very 

high speeds. In order to perform these tests safely, path tracking should be performed on a 

straight line while small perturbations are added to the steering input. The test subject would then 

be required to compensate for those perturbations through their own steering commands. A very 

open testing area like an airport runway would be required for this test. Or, one could perform 

these experiments using only a simulated environment. 

This thesis infers that humans use close preview points to guide the vehicle even when 

presented with longer distance points of reference. This can be tested by providing the human 

driver view of only that specific preview point instead of limiting the view to a specific preview 

point and below. In an expansion to this test, this would be accomplished by placing a black bar 

at the top and bottom of the screen. To truly exclude all other visual cues, a blank screen showing 

only the point of reference could be presented to the driver while he/she is instructed to simply 

follow the line. Further, the line being tracked could be varied (or a disturbance added) so that the 

geometry of the curve is not predictable. 

The accuracy of the simulations themselves could be verified by testing the real vehicle, 

but having the steering controlled by the MacAdam controller as performed by Brown [56]. This 

test would provide a nice comparison between a simulated test versus real-world test. 

Non-visual cues and risk homeostasis effects can be tested by completely removing the 

human driver from the vehicle and repeating Test 3 and Test 4. In the MacAdam model and the 

physical tests run in this work, inertial feedback (the movement of the vehicle itself) is used to aid 

in the path planning. While the inertial feedback cannot be decoupled from the MacAdam model, 

the removal of the human driver from the vehicle does decouple the inertial feedback from the 

physical test. It is beneficial to determine the effect of inertial feedback when considering the use 

of driving simulators as an instrument for teleoperation. If inertial feedback is used heavily by the 
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human driver, the use of a motion base enabled driving simulator should greatly increase the 

performance of the teleoperated vehicle. 

This method could be used for modeling systems with different dynamics. Through both 

simulation and physical testing, anything from skid steer ground robots to boats could be 

analyzed. It would be interesting to determine if similar phase or preview time is used when 

guiding these systems. 

Finally, it would be beneficial to repeat these tests numerous times using multiple test 

subjects. While the time required and difficulty of running a single test did not allow the repeated 

testing of multiple subjects in the time allotted for this work, having more points of data would 

further solidify the data presented here. 
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APPENDIX A – DERIVATION OF THE BICYCLE MODEL WITH THE MOTOR 
MODEL 

 

The standard bicycle model is given by Equation A-1 and the state space form of the 

steering motor transfer function is given by Equation A-2. 
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Since the inputs to the two state space models are different it is challenging to make a 

single augmented matrix. However, the input for Equation A-1 is the output of Equation A-2, so 

the relationship shown in Equation A-3 is calculated. 
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Using this matrix, the full state space model from steering command ߜ௖௢௠௠ to vehicle 

states is calculated in Equation A-4 through Equation A-8. 
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APPENDIX B – DERIVATION OF THE FEEDBACK EQUATIONS FOR THE 
MACADAM CONTROLLER 

The feedback equation with the motor model is calculated first. The error between the 

output y and input δcomm is shown in Equation B-1, which is then plugged into the state space 

equation to get Equation B-3. 
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Finally, knowing Equation B-4 and using the above derivation, the final feedback 

equation for the system with the motor model is calculated in Equation B-6. 
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Next, the feedback equation without the motor model is calculated. Equation B-2 and 

Equation B-3 still hold true, but there is a different equation for ߜ shown in Equation B-7. Using 

this equation, the final equation for feedback without a motor model is found in Equation B-9 
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