
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

DEVELOPMENT OF GROUND ROBOT VALIDATION METHODS AND STUDIES IN
OPERATOR AND TERRAIN VARIABILITY FOR NIST TEST METHODS

ADAM CRIMBOLI
SPRING 2014

A thesis
submitted in partial fulfillment

of the requirements
for baccalaureate degrees in

Mechanical Engineering and Nuclear Engineering
with honors in Mechanical Engineering

Reviewed and approved* by the following:

Sean N. Brennan
Associate Professor of Mechanical Engineering

Thesis Supervisor, Honors Advisor

Karl Reichard
Research Associate, Applied Research Laboratory

Assistant Professor of Acoustics
ARL Research Supervisor

Hosam Fathy

Assistant Professor of Mechanical Engineering
Faculty Reader

* Signatures are on file in the Schreyer Honors College

i

 ABSTRACT

 In critical emergency situations such as bomb disposal the operational characteristics of

emergency response robots must be well understood to optimally predict behavior. Standardized

testing allows the development of statistics to quantify robot performance. This thesis presents

improvements made to a National Institute of Standards and Technology (NIST) ground robot

testing method and a previous student effort in this area.

 During a test, overhead cameras capture images, and computer algorithms are employed

for further processing. Fiducial tracking algorithms calculate a robot’s position, speed, and lap

progress. Improvements developed in this work include improved camera calibration and

refinement of the fiducial tracking system, as well as the addition of a most common path

processing algorithm. In addition, this thesis presents the addition of robot power consumption

information to the test method. Lastly, robot testing explores applications for employment in

operator and terrain variability studies.

ii

TABLE OF CONTENTS

LIST OF FIGURES .. vi

LIST OF TABLES ... x

ACKNOWLEDGEMENTS .. xi

Chapter 1 Introduction ... 1

Chapter 2 Testing Equipment .. 6

2.1 Testing Arena ... 6

2.1.1 Testing Arena Modifications ... 7

2.1.2 Testing Arena Terrains .. 8

2.2 Robots .. 10

2.2.1 Talon ... 10

2.2.2 BomBot ... 12

2.3 Data Logger ... 15

2.4 Fiducial .. 16

2.5 Camera System .. 18

2.6 Ethernet .. 19

2.7 Computers .. 19

Chapter 3 Camera Capture System .. 21

3.1 Real-time Camera Collection Code ... 21

3.2 Processing Overview ... 21

3.3 Camera Calibration .. 23

3.3.1 Camera Distortion Correction ... 24

3.3.2 Lookup Table Generation ... 26

3.3.3 Real-World Distance Transformation ... 28

3.3.4 End Zone Determination ... 30

3.3.5 Overlap Correction .. 30

3.4 Fiducial Identification .. 32

3.4.1 Image Mask ... 32

3.4.2 Background Subtraction .. 35

3.4.3 Dark Testing .. 36

3.5 Determination of Robot Position ... 37

3.6 Plotting Images .. 38

iii

3.7 Resultant Image Data ... 38

3.8 Path Consistency .. 43

3.8.1 3D Histogram .. 43

3.8.2 Watershed transformation ... 46

3.8.3 Most Common vs. Average Path .. 53

3.9 Image Processing Summary ... 55

Chapter 4 Energy Consumption and Syncing .. 56

4.1 Addition of Raw Power Data ... 56

4.2 Grouping Velocity Data ... 56

4.3 Velocity Group Searching and Sorting .. 58

4.4 Grouping Power Data .. 59

4.5 Power Group Searching and Sorting .. 60

4.6 Power Drift Correction .. 60

4.7 Group Pairing and Division into Laps ... 62

4.8 Addition of Lap Specific Data ... 64

4.9 Velocity and Power Filtering ... 66

Chapter 5 Robot Testing .. 68

5.1 Goals of Robot Testing .. 68

5.2 Format of Results ... 68

5.3 Presentation of Robot Testing Results: 2D Plots ... 70

5.4 Presentation of Robot Testing Results: 3D Plots ... 74

5.5 Presentation of Robot Testing Results: Lap Trend Plots ... 78

5.6 Presentation of Robot Testing Results: Test Statistics ... 82

5.7 Analysis of Results .. 83

Chapter 6 Conclusion ... 87

6.1 Accomplishments for NIST ... 87

6.2 Recommendations for Future Work on the Testing System .. 88

6.3 Recommendations for Future Work in Robot Testing ... 91

6.4 Closing Remarks .. 92

Appendix A MATLAB Code ... 93

A.1 Script1_CollectTestImages.m ... 93

A.2 Script2_Calibrate.m .. 94

A.3 Script3_DataLog.m ... 94

iv

A.4 Script4_TrialLog.m ... 96

A.5 Script5_LapLog.m .. 97

A.6 Script6_Results.m ... 103

A.7 Script_Debug_CalibDistort.m ... 108

A.8 Script_Debug_RawPower.m ... 109

A.9 Script_Debug_Realspace.m .. 110

A.10 Script_Debug_Velocity.m ... 111

A.11 Script_Skew.m .. 111

A.12 FcnArcAvg.m .. 113

A.13 FcnCalcDist.m ... 113

A.14 FcnCalcLaps.m ... 114

A.15 FcnDataLogZeros.m ... 114

A.16 FcnGetCalibrations.m ... 115

A.17 FcnGetImage.m ... 115

A.18 FcnGetImage_All.m .. 116

A.19 FcnGetImage_Select.m ... 116

A.20 FcnGetPosition.m .. 118

A.21 FcnGetTimestamps.m ... 120

A.22 FcnInitBlackBars.m .. 121

A.23 FcnInitBlackBars_Calib.m .. 121

A.24 FcnInitCamParams.m .. 122

A.25 FcnInitDistortCorrection.m ... 122

A.26 FcnInitDistortCorrection_Calib_Part1.m .. 123

A.27 FcnInitDistortCorrection_Calib_Part2.m .. 124

A.28 FcnInitDistTrack.m ... 126

A.29 FcnInitDistTrack_Calib.m .. 126

A.30 FcnInitDistTrack_Get2Pts.m .. 129

A.31 FcnInitEndzones.m ... 129

A.32 FcnInitEndzones_Calib.m ... 130

A.33 FcnInitTestConditions.m ... 131

A.34 FcnInitVars.m ... 132

A.35 FcnLensDistort.m .. 132

A.36 FcnLogData.m ... 136

v

A.37 FcnMask.m .. 136

A.38 FcnMask_Color.m ... 137

A.39 FcnPathDev.m ... 138

A.40 FcnPlot.m .. 140

A.41 FcnPowerLog.m .. 141

A.42 FcnUndistort.m ... 142

A.43 FcnUndistort_Transform.m ... 142

A.44 FcnUndistort_Transform_Calib.m .. 143

A.45 FcnUndistort_Transform_Ind.m ... 144

A.46 FcnUndistort_Transform_Inputs.m ... 144

A.47 FcnVelocity.m ... 145

vi

LIST OF FIGURES

Figure 1-1: Robot testing demonstration ... 2

Figure 1-2: Talon robot in action ... 4

Figure 2-1: Graphic of NIST testing arena [2] ... 6

Figure 2-2: Photo of original NIST testing arena [2] ... 7

Figure 2-3: Half-ramp element [2] ... 8

Figure 2-4: Continuous pitch/roll ramp setup .. 9

Figure 2-5: Crossing pitch/roll ramps [2] .. 9

Figure 2-6: Talon robot [4] .. 10

Figure 2-7: Talon robot OCU .. 11

Figure 2-8: BB-2590 battery [5] .. 12

Figure 2-9: BomBot robot [7] .. 13

Figure 2-10: BomBot camera ... 14

Figure 2-11: BomBot controller and teleoperation equipment .. 14

Figure 2-12: BB-390 battery [8] .. 15

Figure 2-13: Onboard data logger .. 16

Figure 2-14: Talon with LED fiducial ... 17

Figure 2-15: BomBot with LED fiducial ... 17

Figure 2-16: Overhead camera ... 18

Figure 2-17: Robot test with wobbly camera, before (left) and after (right) 19

Figure 2-18: Robot testing hardware diagram ... 20

Figure 3-1: MATLAB code flow chart .. 22

Figure 3-2: Raw camera images .. 24

vii

Figure 3-3: Distortion correction image transformation sequence .. 26

Figure 3-4: Lookup table validation .. 27

Figure 3-5: Iterations of wall markers: tape, colored squares, paint .. 29

Figure 3-6: Real-world pixel transformation ... 29

Figure 3-7: Real-world image space .. 30

Figure 3-8: End zones and black boxes ... 31

Figure 3-9: LED fiducial example, original image .. 33

Figure 3-10: LED fiducial, image mask... 33

Figure 3-11: LED fiducial HSV layers: hue, saturation, and value layers (top to bottom) 34

Figure 3-12: Background subtraction .. 35

Figure 3-13: Background subtraction failure demonstration ... 36

Figure 3-14: Dark testing ... 37

Figure 3-15: Correct fiducial identification ... 38

Figure 3-16: Robot position, poor calibration .. 40

Figure 3-17: Robot position, improved calibration .. 40

Figure 3-18: Discontinuity analysis, two point comparison .. 41

Figure 3-19: Camera discontinuity, robot velocity vs. position, 5 lap test 43

Figure 3-20: Interpolation demo, original data (left) and interpolated data (right) 45

Figure 3-21: 3D histogram, 6 inch resolution .. 45

Figure 3-22: 3D histogram, 2 inch resolution .. 46

Figure 3-23: Watershed demo .. 47

Figure 3-24: Watershed example, resolution 1 ft2 ... 48

Figure 3-25: Watershed ridgeline over segmentation .. 49

viii

Figure 3-26: Watershed surface plot, normalization .. 50

Figure 3-27: Watershed surface plot, blurring ... 50

Figure 3-28: Watershed surface plot, opening ... 51

Figure 3-29: Watershed surface plot, closing .. 51

Figure 3-30: Watershed surface plot, contrasting .. 52

Figure 3-31: Watershed surface plot, final 1 in2 resolution, with common path ridgeline 52

Figure 3-32: Average path algorithm diagram ... 54

Figure 3-33: Most common vs. average paths ... 54

Figure 4-1: Filtering velocity data ... 58

Figure 4-2: Filtering power data .. 60

Figure 4-3: Drift correction results on power and energy trends, before (top) and after (bottom)61

Figure 4-4: Talon 4 hour drift test .. 62

Figure 4-5: Single lap time synchronization .. 63

Figure 5-1: Lap plots, Talon 50 lap OSB test .. 70

Figure 5-2: Lap plots, Talon 100 lap OSB test .. 71

Figure 5-3: Lap plots, Talon 50 lap concrete test .. 72

Figure 5-4: Lap plots, Talon 50 lap concrete test, reverse direction .. 73

Figure 5-5: 3D lap plots, Talon 50 lap OSB test .. 74

Figure 5-6: 3D lap plots, Talon 100 lap OSB test .. 75

Figure 5-7: 3D lap plots, Talon 50 lap concrete test .. 76

Figure 5-8: 3D lap plots, Talon 50 lap concrete test, reverse direction ... 77

Figure 5-9: Trend plots, Talon 50 lap OSB test ... 78

Figure 5-10: Trend plots, Talon 100 lap OSB test ... 79

ix

Figure 5-11: Trend plots, Talon 50 lap concrete test ... 80

Figure 5-12: Trend plots, Talon 50 lap concrete test, reverse direction... 81

Figure 5-13: Talon 50 lap concrete tests hysteresis ... 85

x

LIST OF TABLES

Table 3-1: DataLog column format ... 38

Table 4-1: LapLog key ... 65

Table 5-1: Resulting statistics key ... 69

Table 5-2: Final Test Statistics .. 83

Table 5-3: Energy Usage per Unit Distance .. 86

xi

ACKNOWLEDGEMENTS

 This thesis was made possible through the combined support of the Penn State Intelligent

Vehicles and Systems Group and the Penn State Applied Research Lab. I would like to thank Dr.

Sean Brennan for his invaluable help in producing this thesis specifically, as well as his continued

support and mentoring over the course of my entire undergraduate education. I would also like to

thank Dr. Karl Reichard for his enthusiasm in this project and willingness to deploy ARL

resources in pursuit of its completion, and for his availability and advice. I would like to thank

Jesse Pentzer, a graduate student of the IVSG and a fellow researcher at ARL. His direct support

and mentoring helped guide me through many aspects of academic research. Lastly I would like

to thank Herschel Pangborn, whose continued support made this work possible.

1

Chapter 1 Introduction

Mobile ground robots are an important tool for both civilian and government agencies

when operation within a hazardous environment is required. Due to the relatively new nature of

the industry and the fact that robots vary widely in design and capabilities, development of such

robots is accompanied by a lack of standardized performance testing. Standardized specifications

of performance would allow potential customers to compare robots and select a design most

suited to the required task. The National Institute of Standards and Technology (NIST) has

developed a series of testing procedures in an effort to quantify the performance of mobile ground

robots [1].

Current NIST tests require a robot to perform a specific task, usually with repetition, such

as driving laps around a track. The performance of a robot in a test can be timed or graded on a

pass/fail basis. The focus of this work seeks to improve the NIST testing method through

automation and the addition of additional metrics of performance. For this project, one NIST

testing procedure was analyzed. Robots are tasked to drive in a figure-8 pattern in a testing space

for multiple laps. The testing space is a rectangular 8 foot by 24 foot testing arena [2]. An

example of a robot in action can be seen in Figure 1-1.

In addition to the standard NIST test method, two automated systems are used to record

data during a test. First, ceiling mounted cameras and image processing software are used to track

the position of a robot at any given time. Second, a data logger attached to the robot records the

battery current and voltage during testing to characterize power and energy use.

2

Figure 1-1: Robot testing demonstration

From these data acquisition systems, multiple performance metrics can be derived. For

example, instead of manually recording lap time with a stopwatch, the time to complete each lap

is recorded automatically from timestamps on collected images. From position information, total

distance travelled can be easily calculated. Finite differencing of position information over time

produces robot velocity. A less trivial performance metric that was developed is that of

consistency, or deviation from the most common path. Using data collected over an entire test,

the most common path traveled by the robot is found using watershed transformation processing.

Deviation from this path at any given point in the test can then be found. From the onboard data

logger, multiplying current and voltage calculates electrical power, which can be integrated to

yield the energy used by the robot during a lap or entire test.

3

Three large issues were encountered in the development of this system. The first involves

the distortion correction, calibration, and stitching together of multiple camera images. Due to the

size of the apparatus, it would have been difficult for one camera to capture the entire arena. As

such, three cameras each capture a section of the arena and these sections must be overlaid to

produce a continuous image. Next, another issue was presented in the reliability of the fiducial

image tracking system. Over the course of a long test the ability of the image processing software

to reliably track the fiducial was questionable. Fiducial tracking often failed for a small

percentage of points. Adding a background subtraction technique to the image processing

generally improves results, but presented its own problems. Lastly, a challenge presented by the

use of two independent systems of data collection was the ability to synchronize produced data.

The data loggers chosen do not wirelessly communicate with the camera system. Instead, the data

are synchronized later in processing by matching pauses in robot operation.

The testing system developed has the potential for a wide variety of applications. Work

that is enabled by this project includes the study of robot operator learning curves as well as

fatigue. How new operators improve over time and how fatigued operators decrease in

performance is something that can be easily observed and quantified using the testing system.

For this study, robot and terrain variability and its effect on performance is studied. The

floor of the testing arena is changeable to accommodate different terrains such as concrete,

particle board, and ramps. Testing the same operator and robot on different terrains allows terrain

effects to be studied in isolation. Two robots were available for the tests associated with this

work, the Talon robot and the BomBot. The Talon robot used for testing is shown in Figure 1-2.

4

Figure 1-2: Talon robot in action

This project builds off the work in NIST testing and fiducial identification and tracking

developed by Herschel Pangborn, who constructed a replica of the testing arena and developed

the overhead camera fiducial tracking system [3]. Processing of data was primarily achieved in

MATLAB. Chapter 2 of this document focuses on the physical specifications of the testing

system and equipment. Chapter 3 details the improvements made to the camera acquisition

system and robot-tracking image processing software from the version developed by Pangborn.

Chapter 4 deals with the addition of power information and how the two data sets were

synchronized. Chapter 5 presents the final product of processing and displays sample results.

Chapter 6 details the results of multiple tests, and Chapter 7 comments on the testing system and

5

suggests future work. The MATLAB code used to process the data has been provided in

appendices.

6

Chapter 2 Testing Equipment

 Robot testing for this work took place indoors in a NIST testing arena built to follow

mobility test specifications [2]. This chapter will discuss the testing arena, the robots utilized for

this research, the power logging devices, and the overhead cameras used to track robot position.

2.1Testing Arena

 Two documents of reference were used to motivate this work [1] [2]. Both documents

serve as manuals explaining the purpose of standardized robot testing and guides to carrying out

tests. Various robot tests require the construction of arenas, steps, or other obstacles. This project

utilizes the standard testing arena constructed by Herschel Pangborn [3]. A graphic of the testing

arena can be seen in Figure 2-1.

Figure 2-1: Graphic of NIST testing arena [2]

This testing arena was chosen for its versatility for mobile ground robot lap testing. In its

8 foot by 24 foot testing space, ground robots can be operated in a specified driving pattern for

multiple laps. The walls of the arena are made of plywood and serve to confine the robot in the

testing space and a swinging door on the end of the arena allows for robot entry and exit.

7

Additionally, the entire arena is reinforced by a wooden frame. A more detailed explanation of

the physical description and construction of the testing arena can be found in Pangborn’s thesis

[3].

2.1.1 Testing Arena Modifications

Several modifications were made to the testing arena that depart from the standard NIST

assembly guide, either for convenience or to aid in image processing. The standard NIST testing

protocol specifies that robots be driven in a figure-8 pattern around the testing arena, avoiding

pylons anchored along the center at 1/3 and 2/3 of the way along the length of the testing arena.

In addition, robots must drive through the end zones, which are designated with black and white

stripes, at the last 4 feet of each end of the arena. A photo of the original testing arena developed

by NIST, located at their testing facility in Gaithersburg, Maryland, can be seen in Figure 2-2.

Figure 2-2: Photo of original NIST testing arena [2]

For the testing arena built for this work, the end zone walls were not painted with black

and white stripes. Instead, strips of black duct tape were used on the walls and floor to indicate

each end zone. Traffic cones were used in place of pylons at the 1/3 and 2/3 points of the arena

and mounted to either the floor or wooden boards with duct tape or screws.

8

For the purpose of calibrating the testing space for image processing, colored paper

squares were placed along the walls of the testing arena. The colored squares were placed along

the walls of the testing arena at 2 foot increments, and placed 14 inches off the ground. The

calibration process will be explained further in Chapter 3.

2.1.2 Testing Arena Terrains

The original terrain specified by NIST for this testing arena is dubbed “continuous

pitch/roll ramps.” This terrain consists of 24 wooden half-ramp elements, with each element

having a footprint with length and width of 24 and 48 inches, respectively. The ramps have a 15

degree incline and rise to approximately 7 inches in height. Figure 2-3 shows a half-ramp

element.

Figure 2-3: Half-ramp element [2]

For the configuration of the continuous pitch/roll ramp terrain, these ramp elements were

laid out in rows side-by-side down the length of the arena, with each subsequent element

alternating the angle of inclination. The end result can be seen in Figure 2-4.

9

.

Figure 2-4: Continuous pitch/roll ramp setup

The same terrain half-ramp elements can be rotated to form another standard NIST

configuration, known as crossing pitch/roll ramps. This configuration can be seen in the graphic

in Figure 2-5.

Figure 2-5: Crossing pitch/roll ramps [2]

10

The ramps themselves are entirely removable from the testing arena. For this work, more

terrains were used for the testing arena which are not standard NIST tests but are nevertheless

useful standards for comparative robot testing. Removing the ramps from the testing arena allows

testing on the smooth concrete floor of the room in which the testing arena is located. In addition,

panels of flat oriented strand board (OSB) were placed on the floor of the arena as another terrain.

2.2 Robots

2.2.1 Talon

Two robots were primarily used for this project. The first is the Talon robot. Originally

developed by Foster-Miller and currently produced by QinetiQ, the Talon is a popular bomb-

disposal robot that has been in use by the United States military for many years [4]. A photo of

the Talon in action can be seen in Figure 2-6.

Figure 2-6: Talon robot [4]

The Talon is a tracked robot with a zero degree turning radius. It weighs approximately

130 pounds and measures approximately 2 feet wide by 3 feet long. Four onboard cameras can be

used to operate the robot. While various models of Talon exist, the model used in this work is as

11

shown in Figure 2-6. The primary method of bomb disposal is through the manipulation of a claw

arm on the front of the robot, which can extend over 4 feet outwards or upwards. A mast towards

the rear of the robot with an attached camera is used to attain a wider field of view for navigation.

The mobility tests in this work do not make use of the manipulator arm so the arm is

stored in a compact resting position for the duration of testing. The Operator Control Unit (OCU)

for the Talon is shown in Figure 2-7.

Figure 2-7: Talon robot OCU

The Talon is powered by BB-2590 military batteries, an example of which can be seen in

Figure 2-8. The Talon can be loaded with anywhere from 1 to 6 of these batteries, connected in

parallel, each of which weights 1.4 kg. The battery can be used in two voltage modes, 14.4 V and

28.8 V. For use with the Talon these batteries provide approximately 28.8 V to the Talon.

12

Figure 2-8: BB-2590 battery [5]

2.2.2 BomBot

The BomBot robot is a wheeled mobile robot meant to serve as a smaller and cheaper

alternative to bomb disposal robots such as the Talon. It weights approximately 30 pounds and

measures approximately 1.5 feet in length, 1 foot in width, and 1 foot in height. Whereas the

Talon has treads, the BomBot is a wheeled robot, and therefore does not have a zero-degree

turning radius. The BomBot is notable for its four-wheel drive and very soft suspension. The

BomBot’s design is based on that of a radio controlled monster truck. The top of the chassis has

been modified with a flipper and release mechanism for the purposes of ejecting a payload, such

as a pack of explosive material, to detonate a bomb in a controlled fashion [6]. An example of a

BomBot can be seen in Figure 2-9.

13

Figure 2-9: BomBot robot [7]

Like the Talon, the mobility tests focused on in this work do not make use of the

BomBot’s bomb-disposal mechanism. In addition, the BomBot used for this work has been

modified. The camera and antenna columns on the back of the robot have been removed to lower

the robot’s center of gravity and prevent tipping. For navigation, a small hobby camera was

instead attached to the front of the robot. The camera is a generic hobby camera and transmits to a

radio receiver. The camera is powered by a 9V battery, which lasts approximately 30 minutes for

typical maneuvers. A photo of the camera used has been provided in Figure 2-10. The camera

was taped to the front of the BomBot. The controller and screen used to operate the BomBot are

shown in Figure 2-11.

14

Figure 2-10: BomBot camera

Figure 2-11: BomBot controller and teleoperation equipment

The BomBot was originally designed to operate using two 7 V RC car battery packs

connected in series. However, these batteries did not allow the BomBot to operate under heavy

use for more than approximately 30 minutes. To extend the operational life of the robot, the

BomBot was modified. Originally a BB-2590 operating in 14.4 V mode was attached to the

BomBot, but the maximum voltage of the battery proved too great for the design of the BomBot,

causing the BomBot motor controller to go into thermal shutdown and cease robot operation.

Instead the BB-390 military battery was used instead, an example of which is shown in Figure

15

2-12. This battery operates at approximately 12 V, and proved highly successful in operating the

BomBot for extended periods of time.

Figure 2-12: BB-390 battery [8]

2.3 Data Logger

To record power information during a test, a data logger was attached to each robot. The

data logger, developed by the Penn State ARL, records the current and voltage between the robot

and its batteries at a sampling rate of 1000 Hz. From this information power consumption at any

given time and energy consumed over the course of a test can be calculated. The data collected is

automatically stored to a flash drive on the data logger as a comma-separated values (CSV) file

and can be transferred to a computer later for processing. After approximately 2 hours of testing a

maximum file size is reached and another file is created immediately. An example of a data

logger is shown in Figure 2-13. The data logger is about the size of a deck of playing cards.

16

Figure 2-13: Onboard data logger

It is important to note that the data loggers do not have wireless communication

capability and therefore do not communicate with the visual data acquisition system. How these

two systems of data collection are synchronized is discussed thoroughly in Chapter 4.

2.4 Fiducial

In image processing, a fiducial is an object used as a marker to be identified by machine

vision processing algorithms. Originally, the fiducial used was a disk of bright green construction

paper approximately 8 inches in diameter. In later testing, an LED fiducial was used instead of

the green disk. The LED fiducial was originally designed as a LED floodlight tool and consists of

a bank of white LEDs. The LED fiducial is less susceptible to changes in lighting conditions in

the testing arena. However, the LED fiducial produces a smaller cross section than the green disk.

In addition, the LEDs emit the most light directly upwards. When the fiducial is seen at an angle

it appears dimmer. Additionally, when the fiducial moves directly under the cameras the

brightness can sometimes cause lens flare. To avoid lens flare a piece of paper was sometimes

placed over the LED fiducial. Image processing results experienced with the fiducial will be

17

explored further in Chapter 3. Photographs of each robot with the LED fiducial are shown in

Figure 2-14 and Figure 2-15, respectively. The fiducials are circled.

Figure 2-14: Talon with LED fiducial

Figure 2-15: BomBot with LED fiducial

18

2.5 Camera System

Three overhead cameras are used to capture the extent of the testing space in the testing

arena. The cameras are AXIS 216MFD network cameras, an example of which is shown in

Figure 2-16. The cameras take 1.3 megapixel color images.

Figure 2-16: Overhead camera

Originally, these cameras were mounted to center beams running the length of the testing

arena; the beams were attached to the lateral support arches. However, this posed a problem for

testing. Robots hitting the sides of the arena during testing shook the arena’s support structure.

This caused the cameras to wobble and sometimes drift out of calibration. To rectify the problem,

the cameras were attached to the ceiling above the arena.

Camera images from the test that prompted the decision to move the cameras can be seen

in Figure 2-17. During this test repeated impacts from the Talon robot on the walls of the arena

shook one of the cameras loose in its mounting, causing it to move and rotate by as much as 10

degrees, leading to errors in the image processing algorithms and robot position tracking.

19

Figure 2-17: Robot test with wobbly camera, before (left) and after (right)

2.6 Ethernet

An Ethernet switch is used to connect the three cameras in the system to the computer.

The Ethernet switch used is a TRENDnet TPE-S44. The cameras are powered through this

Ethernet switch.

2.7 Computers

Two computer systems are used as part of the testing system. A computer running

Ubuntu is dedicated to the testing arena to capture images. Ubuntu version 12.04 LTS running

Python 2.7.6 was used. For the processing of images and data, a Windows 7 Enterprise PC

running MATLAB version R2013a 64-bit was used. Any Windows or Mac computer can be used

to process the data, but computers with more processing ability will process camera images faster.

The details of the software developed for each computer system to acquire and process data will

be discussed in detail in Chapter 3.

A diagram of the hardware setup can be seen in Figure 2-18.

20

Camera 1 Camera 2 Camera 3 Ethernet Switch

Ubuntu
Computer

Testing Arena

Robot

Robot
Teleoperation
Equipment

Figure 2-18: Robot testing hardware diagram

21

Chapter 3 Camera Capture System

3.1 Real-time Camera Collection Code

During a test, images are captured from each of the three cameras above the testing arena.

Scripts written in Python are used to collect and save images in real-time. Images from the three

cameras are captured synchronously at a rate of approximately 15 Hz and are stored in the jpeg

image format locally. Images are color photos 480 pixels by 360 pixels in resolution. The real-

time collection system was completed by Pangborn before the current work began and no

significant changes were made. The complete code can be found in Pangborn’s thesis [3].

3.2 Processing Overview

All data processing takes place in MATLAB after data collection is complete. The code

consists of a set of scripts and functions. The main set of scripts is numbered and meant to be

executed in a linear order calling various functions as needed. Each script produces an array of

data passed to the next script. Non-numbered scripts were created for purposes of debugging and

are executed as needed. A flowchart detailing the high level process is shown in Figure 3-1.

Scripts 1-3 were created primarily by Pangborn, while Scripts 4-6, as well as the

debugging scripts, were created for this thesis. For a more detailed overview of the development

of scripts 1-3, see Pangborn’s thesis [3].

22

Figure 3-1: MATLAB code flow chart

Script 1 serves as a testing script if one wishes to collect images directly through

MATLAB instead of using Python as described previously. Originally created in the hopes of

both collecting and processing images in MATLAB, the MATLAB method of collecting images

proved approximately 5 times slower than that of the Python method. However, the script is

useful for purposes of debugging and the possibility of optimizing in the future. This script was

developed before the start of this work and has not been modified.

Script 2 of the sequence calibrates the raw camera images. A challenge of this step is the

stitching together of the three separate camera images into one image. The camera images are

undistorted from their raw state and aligned using markers placed within the testing arena. In

addition, a conversion is established between camera pixels and real-world distance

measurements. The locations of the testing arena end zones are also established in digital space.

23

Script 3 is where the actual visual processing of camera images takes place. In this step a

calibrated composite image of all three cameras is loaded and the script uses machine vision

algorithms to search for a fiducial, or marker, within the testing space. Once identified, the

centroid of the fiducial is pinpointed and its location in real space is recorded. This process

continues with the next set of camera images in the sequence until all camera images have been

processed. At the conclusion of this process, Script 3 produces information on fiducial position at

any given time. Additionally, it calculates the total distance traveled by the fiducial as well as the

lap count. Though some modifications have been made, this script is the chief processing

accomplishment of the previous work done on this project by Pangborn [3].

Script 4 adds robot power information by loading the CSV files taken from the data

logger onboard the robot, as well as calculating robot velocity. In addition, a metric of

consistency was created by determining deviation from the most common fiducial path.

The primary function of Script 5 is to match in time the data gathered on robot position

from the cameras and the power data gathered by the data logger. The task uses a data fitting

technique where pauses taken by the robot between sets of laps are utilized to match the power

data to the velocity data. In addition, each lap is separated individually for further processing, and

Script 6 displays the results of the data in a variety of forms.

3.3 Camera Calibration

The calibration of camera images to a high degree of accuracy proved to be an

unexpected challenge of the project. The goal of camera calibration was to achieve continuity of

robot path between multiple camera images within 1-2 inches of accuracy. The calibration and

preparation of images can be divided into four categories: distortion correction, real-world

distance transformation, end zone determination, and overlap correction.

24

3.3.1 Camera Distortion Correction

Distortion correction from the raw images is the first step in processing. An example of

an original distorted camera image for each camera has been provided in Figure 3-2 .

Figure 3-2: Raw camera images

In previous work on this project, certain parameters, such as skew coefficients, focal

lengths, and distortion matrices, were generated through ROS and the OpenCV camera

calibration toolbox. In an effort to keep all processing internal to MATLAB, a different method

was used wherein image transformations were applied to each image in MATLAB. The method

internal to MATLAB is more user friendly and more easily adjustable.

For first time use, it is necessary to generate appropriate parameters input into each image

transformation. This was done by manual calibration of sample images until desired results were

achieved. More automated methods of calibration parameter generation are conceivably possible,

but were not deemed worthwhile here. As the cameras and testing arena remained in place for the

rest of testing after calibration, the distortion parameters remained the same throughout. If the

cameras or testing arena are moved, redetermination of distortion parameters would be necessary.

The undistortion process proceeds as follows. First, images are shifted vertically and

horizontally to center the testing arena in the image using the function imtransform. This is

necessary for the next step, to rotate the image about its center using the function imrotate, for the

purpose of aligning the testing arena image segments when they are eventually joined. Next, a

simple barrel distortion correction function LensDistort was found online, developed by Jaap de

25

Vries [9]. This function corrects for radially symmetric barrel distortion about the center of an

image, and the magnitude of the correction is governed by constant k. The function is based on a

simple quadratic model of radial distortion, as shown in Equations 3-1 and 3-2.

ቂ
ௗݑ

ௗݒ
ቃ ൌ ሺ1 ݇ ଶሻݎ ቂ

ݑ െ ݑ

ݒ െ ݒ
ቃ ቂ

ݑ

ݒ
ቃ [3-1]

where

ଶݎ ൌ ሺݑ െ ሻଶݑ ሺݒ െ ሻଶ [3-2]ݒ

In these equations, ݑ and ݒ represent orthogonal axes of an image. ݑ and ݒ are the

coordinates of the camera optical center, ݎ is the radial distance from the optical center, and ݇ is

the distortion constant previously mentioned. ݑ and ݒ represent the raw distorted coordinates in

an image, and ݑௗ and ݒௗ represent the desired undistorted real-world coordinates [10].

In addition, the functions cp2tform and imtransform are used in conjunction to generate a

skew correction. Four points are selected by the user in the image as vertices of a quadrilateral,

and four points new point are selected as vertices of a desired quadrilateral. The entire image is

then transformed based on this correction. For the testing arena, the wall markers were selected as

easy points of reference for this correction. Lastly, the image is trimmed and rotated if necessary

to return to the desired 360 by 480 pixel resolution. The progression of image transformations on

a sample image can be seen in Figure 3-3, progressing from left to right along the top row of

images, then left to right along the bottom row

The distortion parameters necessary to input for each camera include the number of

pixels to shift the image vertically and horizontally to center it, the degree of rotation of the

image, the constant associated with barrel distortion correction, and 4 input and 4 output points

for the skew transformation.

26

Figure 3-3: Distortion correction image transformation sequence

3.3.2 Lookup Table Generation

After appropriate distortion corrections were determined for each camera, a lookup table

method was utilized to correct for camera distortion during subsequent testing. The lookup table

method performs sample image transformations on each pixel in a test image and saves the

mapped pixel location after the transformations take place, generating a pixel mapping table that

can be called instead of performing future sequential image transformations. This technique was

utilized to speed processing by approximately a factor of five as compared to performing the

previously described sequence of image transformations on each camera image at every iteration.

However, the creation of the lookup table itself took approximately 30 hours and distortion

corrections cannot be quickly modified. A comparison of a sample image created using sequential

image transformations and an equivalent image generated using the lookup table method can be

seen in Figure 3-4. The third image is a subtraction of the first two images together, therefore the

27

dark image that result indicates the first two images are very similar and the comparison is a

success.

Figure 3-4: Lookup table validation: original image transformation (top), lookup table (middle),
and comparison by subtraction (bottom)

28

3.3.3 Real-World Distance Transformation

Following the completion of distortion correction calibrations for each camera, it is

necessary to map the pixel space in each image to a real-world coordinate frame. This processing,

performed on each image, will have the dual purpose of mapping each image to a coordinate

frame with real-world lengths and mapping all three images to a shared space. This process was

originally developed by Pangborn. More details on the accuracy of this system can be found in

Pangborn’s thesis in Section 3.3.2 [3].

The code for this process remains unchanged from the original code. However, the

physical markers used for the calibration were updated. Originally, crosses of black duct-tape

were placed at semi-random points along the walls of the testing arena. Their locations were then

measured and used for calibration. In this work, the method was updated by placing colored paper

squares along the walls of the testing arena every two feet at a constant height above the arena

floor. This height is related to the height of the fiducial relative to the ground when it is mounted

to a robot. For both the Talon and the BomBot this height was approximately 14 inches. This

method presented two problems. First, the colored squares were sometimes mistaken for

fiducials. Second, robots scraping the sides of the testing arena would often knock off the

markers. To correct this, circles of black spray paint approximately 2 inches in diameter replaced

the squares as markers, with their centers located at 14 inches above the floor. Examples of the

various iterations of markers can be seen in Figure 3-5.

29

Figure 3-5: Iterations of wall markers: tape, colored squares, paint

The calibration process can be explained as follows. An image from each camera is

loaded from file and the user is prompted to enter two sets of coordinates at markers, one

horizontally and one vertically aligned. The real-world coordinates in ݔ and ݕ are then entered by

the user and provide the transformation parameters necessary both horizontally and vertically to

map the pixels of the image to a real-world space. An example of each image after coordinate

transformation can be seen in Figure 3-6. The center and four corners of each image are labeled

with real-world coordinates. The coordinates are in feet, with the origin located at the bottom left

corner of the testing arena.

Figure 3-6: Real-world pixel transformation

30

The real-world coordinate transformation process allows all images to be mapped to a

shared space. Though not necessary to visually display for processing, a script was created for

debugging purposes to view this real-world space with images fused together –

Script_Debug_Realspace. An example of this real-world spatial transformation can be seen in

Figure 3-7. Note that the overlapping images. How to reconcile image overlap is discussed in

Section 3.3.5.

Figure 3-7: Real-world image space

3.3.4 End Zone Determination

A fairly simple calibration is utilized to determine the locations of the end zones in digital

space. Two points are selected at each end zone and a line is created representing the boundary

which the fiducial must cross in the image to be counted as having traveled a half of a lap. The

end zone calibration code remains unchanged from the version developed by Pangborn [3].

3.3.5 Overlap Correction

The last calibration necessary before the composite image is ready for fiducial

identification processing is the addition of black boxes at choice locations. As can be seen in

Figure 3-7, overlap occurs when the images are displayed in a shared space. The fiducial

31

identification code that follows is designed to only recognize one instance of a fiducial at a time

in the composite image. When the fiducial transitions between camera views, the fiducial is seen

for a time by multiple cameras. The result is the appearance of multiple fiducials in the composite

image, an undesirable result for fiducial identification processing. This issue was resolved by

placing black bars over regions of overlap in the camera images, thus ensuring the fiducial will

only be seen in one camera image at a time.

In addition, black boxes were sometimes placed over the orange traffic cones present in

the testing arena. Eliminating the bright orange color from the composite image allows the

machine vision algorithm to search for the robot fiducial with less error. For some tests, the cones

were recognized by the fiducial in approximately 1 out of 100 iterations. An example of the

digital end zones and black bars and boxes is shown in Figure 3-8.

Figure 3-8: End zones and black boxes

32

3.4 Fiducial Identification

The machine vision algorithms for fiducial identification in MATLAB were largely

developed prior to the start of this work. A summary of the method for fiducial identification is

explained in the following Subsections. For a more detailed explanation of the image processing

code developed to identify the fiducial in the composite image, see Pangborn’s thesis [3].

3.4.1 Image Mask

Fiducial identification processing occurs in a single composite image at a time. First, a set

of three images is loaded from recorded files and subject to all the calibrations outlined in Section

3.3, producing a calibrated composite image.

The next step is the creation of an image mask. The first step in the process is to convert

the image to an HSV image. HSV stands for Hue, Saturation, and Value, and is an image format

commonly used for image processing. The most useful image layers depend on the type of

fiducial being used. The previously discussed LED fiducial is the brightest object in the testing

arena and consequently extracting the Value layer from the image produces the best results.

Applying a threshold to the extracted layer produces the image mask. The best layer was

determined manually by comparing sample image masks extracted from each layer of the HSV

image. An example of the LED fiducial and a comparison to the HSV layers can be seen in

Figures Figure 3-9 and Figure 3-11. To eliminate lens flare from the bare LED a thin paper was

placed over the fiducial to diffuse its light. In the value layer the fiducial is the only bright spot in

the image, whereas the rest of the image is comparatively dark. This translates to the most reliable

creation of a good fiducial mask. An example image mask can be seen in Figure 3-10.

33

Figure 3-9: LED fiducial example, original image

Figure 3-10: LED fiducial, image mask

34

Figure 3-11: LED fiducial HSV layers: hue, saturation, and value layers (top to bottom)

35

Next, the fiducial mask is cleaned up if necessary. Minimum and maximum possible

pixel areas of the fiducial are set; this eliminates small artifacts and ensures an entire wall of the

testing arena is not mistaken for the fiducial. A morphological closing operation smoothes the

border and fills in holes in the object.

3.4.2 Background Subtraction

Background subtraction was developed for this thesis as a means to enhance fiducial

identification, in the hopes of making fiducial identification more reliable, as previous tests often

had a fiducial identification error rate of anywhere from 1-10%. A set of reference images is

taken without a fiducial present, similarly turned into a composite image, and subtracted from the

test image in question. In the resulting image, the background of the testing arena is eliminated,

and the robot and fiducial to stand out in the image. The reference images were typically recorded

at the beginning of each test. An example of a background subtracted image is shown in Figure

3-12.

Figure 3-12: Background subtraction

Background subtraction was found useful in certain instances to more reliably track the

fiducial. However, background subtraction fails when the testing arena is subject to slight shifts.

36

For more difficult terrains to traverse, such as the continuous pitch roll ramps, robots are more

likely to crash into the sides of the testing arena. This causes the testing arena to shift and errors

are introduced because the background images are no longer correct. For this reason this simple

background subtraction was not used. An example of the progression of a failing background

subtraction method can be seen in Figure 3-13. In this sequence, captured every 20 laps, the

testing arena, particularly in view of cameras 2 and 3, began to shift, and one can see the success

of fiducial tracking decrease significantly over time in these areas.

Figure 3-13: Background subtraction failure demonstration

3.4.3 Dark Testing

Both the AXIS 216MFD cameras and the Talon onboard cameras can operate in low

level lighting conditions. Turning off the lights in the room of the testing arena allows the LED

fiducial to be easily seen by the cameras. In addition, the chance of other artifacts in the image

being mistaken for the fiducial, such as the cones, is greatly reduced. This test method was

ultimately found to be the most reliable for use with the Talon robot and used for the majority of

its subsequent testing. Unfortunately, the hobby camera purchased for the BomBot was found to

37

not operate in low lighting conditions, and so BomBot testing was conducted with the lights on.

An example of dark testing is provided in Figure 3-14.

Figure 3-14: Dark testing

3.5 Determination of Robot Position

After the fiducial has been clearly identified, the centroid of the object can be easily

identified using the MATLAB function regionprops in the MATLAB Image Processing Toolbox.

This point is now treated as the effective position of the robot. The position on the image is first

determined in pixels, and then, through the real-world distance calibration previously discussed,

the pixel position is transformed to a real-world position. For visualization and debugging

purposes, a crosshairs is placed over the centroid of the fiducial in the composite image and the

coordinate position in feet is displayed. In addition, the fiducial being recognized is outlined in

yellow. An example of the resulting composite image with the fiducial correctly identified is

shown in Figure 3-15.

38

Figure 3-15: Correct fiducial identification

3.6 Plotting Images

After processing a single composite image, the relevant information is saved and the next

set of images in the sequence is loaded from file. In this way the entirety of a test is processed. In

processing there is the choice of whether to plot every composite image at every iteration. Not

plotting at every iteration speeds processing but is worse for debugging purposes. Choosing not to

plot the images speeds up the processing by a factor of approximately 2.

3.7 Resultant Image Data

After the completion of the image processing, information is saved to the output file

DataLog.mat in the version developed by Pangborn [3]. Each iteration saves information to

DataLog as a row. Eight parameters are stored as columns and are identified in Table 3-1.

 Table 3-1: DataLog column format

Iteration
X‐position
(pixels)

Y‐position
(pixels)

X‐position
(ft)

Y‐position
(ft)

Time (s)
Laps
Count

Total
Distance

(ft)

39

Column 1 records the iteration number, and columns 2-5 store the centroid position in

pixels and feet as previously discussed. Column 6 lists the time since the test began, taken from

the timestamp filename of each set of images. Column 7 keeps track of the half lap count, based

on when the centroid crosses the end zone boundaries at either end of the arena. Using the

distance formula shown in Equation 3-3 and the position between the current iteration and the

previous iteration, the distance between each iteration can be calculated. Summing the distance at

each iteration provides the total distance the robot has traveled, shown in column 8.

ܦ ൌ ඥሺݔ െ ሻଶݔ ሺݕ െ ሻଶ [3-3]ݕ

In Script 4, the parameter of velocity is added to the image data. A discrete derivative is

performed on the position data to obtain velocity, which is further processed with a 2nd order

low-pass Butterworth filter. Both the unfiltered and filtered velocity data are stored as columns 9

and 10 of a new DataLog matrix, now the first cell in the cell array TrialLog.mat.

The script Script_Debug_Velocity was created to assess the resulting position and

velocity data. In a 2D plot, position at every iteration is plotted as a blue square and iterations are

connected by a dashed blue line. Velocity data is plotted similarly, but in 3D. This step is

important to verify the fiducial is tracking properly over an entire test and that the three camera

images are being stitched together properly. In early testing, poor camera calibrations lead to

discontinuity between camera views and inaccurate fiducial positioning. An example of a poorly

calibrated 40 lap can be seen in Figure 3-16. Note the right camera image is offset both

horizontally and vertically, leaving a gap between the cameras which can be seen in the position

data.

The fiducial should smoothly transition from one camera view to another without large

horizontal or vertical displacement. Much time was spent ensuring camera images merged

properly and careful calibration is required. Using the calibration techniques developed in Section

40

3.3 better camera calibrations were achieved later in testing, which lead to smoother fiducial

transitions between camera images. A better calibration for another 40 lap test is shown in Figure

3-16.

Figure 3-16: Robot position, poor calibration

Figure 3-17: Robot position, improved calibration

41

As mentioned previously, a goal of this calibration effort was to achieve continuity of

robot path between multiple camera images with 1-2 inches of accuracy. After data was generated

using the calibration techniques previously discussed, sample position data was examined for

continuity. An example of one of the worst discontinuities can be seen in Figure 3-18, which is a

zoomed in view of one lap in the upper right break between camera images observable in Figure

3-17. The discontinuity leads to a shift in position both backwards and down.

Figure 3-18: Discontinuity analysis, two point comparison

Calculating the distance between the points in Figure 3-18 using the distance formula, the

distance is found to be 2.42 inches. Other discontinuities were examined and deemed less severe.

This discontinuity fails the initial goal set to achieve continuity between camera images within 1-

2 inches of accuracy, however it remains a reasonable calibration to work with, especially when

considering distances calculated over a single lap are on the order of 50 feet. For a single test

assuming 50 feet travelled, this discontinuity, multiplied by 4 for each camera transition, yields

approximately 10 extra inches of distance, or 1.6% of the total distance travelled per lap.

42

Determination of velocity is sensitive to calibration errors resulting in poor position

estimates. Any discontinuity between images leads to a jump in position data, which is interpreted

as an increase in velocity by the finite differencing process. Velocity results for a 5 lap test are

shown in Figure 3-19. Small increases in velocity can be seen at the transition between camera

images, more so between the center and right images in this case. Overall however, the velocity

for this test remains fairly consistent, between 1 and 2 ft/s. For calculation of average velocity

over a lap, the brief increases in velocity should cause the average to increase only slightly, no

more than 1%, considering the large dataset. Furthermore, the bias affects all laps in the same

way, making trend comparisons between laps unaffected.

Also note that the effective delay in the calculated velocity due to the use of finite

differencing was considering, but determined a negligible source of error when considering the

large sample size.

43

Figure 3-19: Camera discontinuity, robot velocity vs. position, 5 lap test

3.8 Path Consistency

A new metric created for this thesis is that of path consistency, in other words, the

deviation from the most common path. The process undertaken to arrive at this metric is

described below.

3.8.1 3D Histogram

To find the most common robot path, the first step is the creation of a 3D histogram from

position data. Each bin in the histogram represents a small square area in which the robot can be

located. The more times a robot enters a bin, the higher the value of that bin becomes. The most

common path is based on distance and not time, therefore, the robot must exit and reenter a bin to

44

be counted a second time. This prevents bins from accumulating counts when the robot is paused

between sets of laps.

Before position data is entered into the histogram it is first preprocessed with additional

interpolated data points. In this case, 9 additional points of equal spacing were added between

actual data points, to increase the effective sampling rate by a factor of 10. This helps prevent

bins from being skipped over if the robot is traveling too fast for the data collection rate of the

cameras. With a camera sampling rate of approximately 15 Hz and an average robot velocity

between 1 and 2 feet per second, the spatial sampling of position data can be calculated,

according to Equation 3-4.

݈݃݊݅݉ܽܵ ݈ܽ݅ݐܽܵ ൌ
ݕݐ݈݅ܿ݁ݒ

݁ݐܽݎ݁݉ܽݎ݂

[3-4]

For a robot velocity of 2 ft/s and a frame rate of 15 Hz (frames/s), the spatial sampling of

position is calculated to be 1.6 inches/frame. While histogram bin size was ultimately never

chosen to be less than 2 inches square, the interpolated spatial sampling of position, with a value

of 0.16 inches/frame, more safely ensures that no bin is skipped due to exceptionally high robot

velocities.

An example of the interpolation “filling out” technique can be seen in Figure 3-20 for a

sample of random data, and an example of an early histogram can be seen in Figure 3-21. This

histogram has square bins 6 inches on each side. It was decided a desirable resolution of

histogram would be a 2 inch bin size. The code is easily adjusted for bin size, and a histogram

with this smaller bin size is shown in Figure 3-22.

45

Figure 3-20: Interpolation demo, original data (left) and interpolated data (right)

Figure 3-21: 3D histogram, 6 inch resolution

46

Figure 3-22: 3D histogram, 2 inch resolution

3.8.2 Watershed transformation

The next step in the process is to transform the 3D histogram to a surface plot and

perform a watershed transformation on it to determine appropriate ridgelines [11].

A watershed or continental divide transformation is so named due to the fact that when

water falls on a mountain range the water flows downhill from points of highest elevation. The

points where the water parts and flows in different directions is known as a ridgeline [12]. The

watershed transformation in MATLAB finds this ridgeline. An example watershed transformation

using MATLAB’s built-in function watershed is demonstrated on a randomly generated mountain

range in Figure 3-23.

47

Figure 3-23: Watershed demo

For the figure-8 robot lap testing of this work, converting the3D histograms to surface

plots effectively creates a topology of “mountain ranges.” During development, surface plots

were first generated from histograms with low resolutions before being increased for reasons

explained shortly. An early watershed transformation attempt is shown in Figure 3-24 with a low

resolution bin size of one square foot. For visualization purposes, the ridgeline from the

watershed transformation is extracted and displayed as a wireframe above the surface plot. As can

be seen, the figure-8 pattern is clearly visible, though blocky. The next step is to increase the

resolution.

48

Figure 3-24: Watershed example, resolution 1 ft2

As can be seen from a top down view in Figure 3-25, increasing the resolution poses a

problem. The ridgelines no longer form a clear figure-8. This is a result of over-segmentation of

the image, meaning that many unwanted ridgelines are detected. To explain further, in accordance

with the mountain range analogy, water falling on the mountain range would pool into many

small pools, as opposed to two large pools inside the ideal figure-8. To combat this problem,

image processing techniques are applied to smooth the surface plot. First the surface plot is

converted to a grayscale image. An example grayscale image can be seen in Figure 3-26. Next, a

rotationally symmetric Gaussian lowpass filter is applied using the MATLAB function to blur the

image, as seen in Figure 3-27. A morphological opening operation is then performed on the

blurred image following by a morphological closing operation, seen in Figure 3-28 and Figure

3-29, respectively. Lastly a contrast filter is applied to the image, shown in Figure 3-30. All the

steps mentioned above use built-in MATLAB functions found in the image processing toolbox.

This procedure can be examined in more detail in the function FcnPathDev, provided in the

appendix.

49

Figure 3-25: Watershed ridgeline over segmentation

Performing a similar watershed transformation as outlined previously on this filtered

image produces a desirable figure-8 ridgeline. Figure 3-31 shows the ridgeline in red overlaid on

the surface plot of a trial from a top down view. The ridgeline represents the most common path

traveled by a robot over the course of a test. After determination of the most common path, the

position of the robot at any given time during a test can be compared to this path. Using the built-

in function dsearchn, the shortest distance to the most common path is calculated. This deviation

from the most common path is used as a metric of operator consistency.

50

Figure 3-26: Watershed surface plot, normalization

Figure 3-27: Watershed surface plot, blurring

51

Figure 3-28: Watershed surface plot, opening

Figure 3-29: Watershed surface plot, closing

52

Figure 3-30: Watershed surface plot, contrasting

Figure 3-31: Watershed surface plot, final 1 in2 resolution, with common path ridgeline

53

3.8.3 Most Common vs. Average Path

An important distinction must be made in what is meant by most common path and how

this differs from the idea of the average path. To explain, the most common path determined from

smoothing the surface plot follows a track of the most densely packed paths around the arena,

with no concern for the influence of outlying paths. The average path on the other hand could be

said to be generated with the influence of outliers. An approximate analogy between the most

common and average paths would be between the mode and average of a set of numbers.

To provide a comparison between the most common and average paths, the script

Script_Skew was created. Position data is loaded, and a similar interpolation algorithm is applied

as described for the most common path algorithm to fill out the sampled data. The average path

algorithm can be explained as follows. The average path is defined about two points for each side

of the figure-8. An arc size, in this case 5 degrees, is defined to create a series of angular bins

about each origin. The average radial distance to the origin of all position data in a given bin is

calculated, and then assigned a single point at the center of the bin. A visualization of this

algorithm can be seen in Figure 3-32. In addition one standard deviation above and below the

average is calculated. Connecting the points yields the average path.

54

Figure 3-32: Average path algorithm diagram

Figure 3-33: Most common vs. average paths

A comparison of the most common and average paths for a sample can be observed in

Figure 3-33. The most common path is labeled in circular points, the center line is the average

path, and one standard deviation on each side of the average path is also indicated. A qualitative

55

comparison shows the most common and average paths are very similar. Note that the average

path algorithm is created for each loop of the figure-8 individually and does not model the center

of the figure-8. Away from the center region, the algorithm is more accurate. This test allows

validation of the most common path algorithm.

3.9 Image Processing Summary

The processing of camera images to develop metrics of robot position, velocity,

deviation, and lap number formed a large portion of the development time of this project. The

core of the camera calibration and fiducial identification processing algorithms were developed

by Pangborn [3]. This project refined the camera calibration, and added the robot performance

metrics of velocity and path deviation. The metrics developed in this chapter will be used in robot

testing to quantify and assess robot performance. Two more important metrics added to the

testing system, power consumption and total energy drain, will be explained in the next chapter.

56

Chapter 4 Energy Consumption and Syncing

One of the more challenging aspects of this project was how to best handle the collection

and comparison of two independent streams of data. The camera system developed prior to the

start of this work captures images of robot testing and stores the files to the local computer. An

important goal of this project was the addition of power information to the set of data collected.

To achieve this, an onboard data logger is affixed to the robots during testing. Difficulty arises

when one considers how these two sets of data are to be synchronized in time because the data is

effectively collected across two computer systems which do not communicate (starting data

collection on each system at exactly the same time would be both cumbersome and inaccurate). A

method was developed where appropriate synchronization of data was achieved after testing by

processing both sets of data and identifying pauses in both robot motion and power consumption

when the robot took a designated rest break between completing sets of 10 laps.

4.1 Addition of Raw Power Data

This data logger records current and voltage from the batteries of a robot at a sampling

rate of 1000 Hz. Data is stored onboard the robot’s data logger and retrieved after the successful

completion of a test. Script 4 adds the raw data collected by the logger and stores both camera

data and this logger data in one matrix designated TrialLog.mat, for further processing. Further

processing takes places in Script 5, which is dedicated to the synchronizing of the two datasets

and the division of data into individual laps, the end result of which is a new cell array designated

LapLog.mat.

4.2 Grouping Velocity Data

The NIST Endurance testing protocol dictates that a 1-minute break is taken after every

10 laps in a robot mobility test (as well as a 10 minute break every 100 laps). When the robot is at

57

rest, the velocity of the robot is zero and the power consumption is reduced to a constant baseline

value. When the robot resumes operation, both its velocity and power consumption increase

dramatically. By matching the periods of rest in both the velocity and power data,

synchronization is achieved.

As can be seen in Figure 4-1, robot pauses can be easily identified as breaks in the

velocity data. Algorithmically these pauses must now be identified. To do this the standard

deviation of velocity is calculated in 5 frame increments. When the robot is at rest, the standard

deviation of velocity decreases to zero and is easily distinguished from higher standard deviations

of velocity when the robot is in motion. Using standard deviation as an intermediate step achieves

more reliable results than applying a threshold based on magnitude of velocity alone. A threshold

is then applied to the standard deviation data, creating a binary dataset of paused or not paused

robot velocity. For most tests using the Talon robot, the standard deviation threshold for velocity

was set at .01 ft/s.

58

Figure 4-1: Filtering velocity data

4.3 Velocity Group Searching and Sorting

Using the robot pause information outlined in Section 4.2, camera image data can be

processed with the goal of separating the data into 10 lap groups (or perhaps more or less if an

error occurred during testing). Some consideration is required to achieve this algorithmically,

both during a test and in processing. When the robot is at rest before the start of a test or during a

break, false starts or other blips in velocity data must not be interpreted as starting a new lap

group. In the algorithm, new movement from rest is discounted if robot motion lasts less than 100

seconds. Likewise, when the robot is in motion, small operator pauses must not be interpreted as

rest breaks. In the algorithm, pauses in motion of less than 10 seconds are discounted as breaks.

An initialization point is created to eliminate velocity data generated before the test has officially

59

begun, if necessary. If sections of data pass the previous tests, appropriate timestamps are

recorded and used to break all image data into the resultant groups based on lap set.

4.4 Grouping Power Data

Next, a similar process as described in Section 4.2 is employed to filter the power data

due to the fact that power consumption decreases to a near constant and close-to-zero value when

the robot is at rest. First, the onboard robot data logger records voltage and current. A simple

multiplication of these quantities yields power, as shown in Equation 4-1.

ݎ݁ݓܲ ൌ ݁݃ܽݐ݈ܸ ∗ [1-4] ݐ݊݁ݎݎݑܥ

Knowing the data logger samples at a constant rate of 1000 Hz, a time vector can be

initialized. Raw power data can be seen in Figure 4-2. Standard deviation of power data is

calculated in quarter second segments and a threshold is applied to the standard deviation data to

best determine in binary form whether or not the robot is in motion or at rest. Again, it was

observed that using standard deviation and applying a threshold to its magnitude could effectively

separate lap pauses from robot activity due to the fact that when the robot is at rest the power

nears a constant value and standard deviation over a quarter second dramatically decreases. For

most tests using the Talon robot, the standard deviation threshold for power was set at 4 J/s.

60

Figure 4-2: Filtering power data

4.5 Power Group Searching and Sorting

A process similar to that used to group velocity data is employed to divide the power data

into groups. Note there are four parameters associated with logger data at this point: voltage,

current, power, and time.

4.6 Power Drift Correction

Over the course of a test, output from the data logger was found to drift upwards. This

drift can be easily seen in Figure 4-2 at periods of rest between lap groups. To correct for this

drift, a mean power was calculated over a 2 second window 4 seconds before and after each lap

group. These mean powers were used to generate a linear correction baseline, which was then

61

subtracted from each group’s power data. The results of the drift correction algorithm can be

easily seen in trend plots of power and energy consumption for each lap over the course of a test.

Figure 4-3: Drift correction results on power and energy trends, before (top) and after (bottom)

As voltage on a battery decreases over use, efficiency decreases, leading to an overall

power increase over time as the battery is discharged. To verify that the power increase over the

course of a test was caused by drift and not this affect, a 4 hour test was conducted where the

Talon robot sat idle. The power results, in watts, of this test can be seen in Figure 4-4. Note the

spikes in power were from deliberate small adjustments. Based on this data, due to the fact that

drift still occurs under very light use, decrease in battery efficiency can be ruled out, and the drift

correction is validated.

62

Figure 4-4: Talon 4 hour drift test

4.7 Group Pairing and Division into Laps

After dividing both camera image data and data logger data into groups, these groups can

be paired. Note the assumption in this pairing that an increase in power and an increase in

velocity occur simultaneously. In actuality, an increase in power causes an increase in velocity.

Therefore, the increase in power would occur slightly earlier in time. Also, in the event that a

wheel or tread slips, or the robot becomes stuck, power would increase without a necessary

increase in velocity.

Instead of syncing the data at the beginning of each group, an experiment was conducted

where the robot paused between each lap as opposed to every 10 laps. This allows

synchronization to be more effectively tested by comparing the time to complete each lap

according to both the camera and logger data. The times to complete each lap are presented in

Figure 4-5. Error is present, ranging 0.2 seconds to 7 seconds. However, the largest discrepancies

appear to be outliers – the average difference in time is on the order of 1-2 seconds.

63

Figure 4-5: Single lap time synchronization

An option for syncing the data was to pause the robot after every lap, but this idea was

rejected due to its deviation from standard NIST protocol. In terms of processing, another syncing

technique considered is the matching of velocity and power data only at the onset of a test at the

initial transition from rest to motion. This idea was rejected due to concerns over time drift in

both data collection systems, though this error would most likely be an order of magnitude less

than the 1-2 second error established above. Ultimately, it was decided that re-synchronization

between continuous sets of 10 laps would yield the best results.

After both camera image data and data logger data groups are synchronized and paired as

originally discussed, lap sets are broken further into individual laps. Individual laps are divided

based on the camera image data lap count, increased when the robot crosses the correct end zone.

To clarify, for intermediate laps in a lap set, the time markers at which a new lap begins and ends

are determined by the lap count and applied to both image and power data to extract all

information about a lap. For the first lap in a set, the start point is determined by standard

64

deviation thresholding from a stationary robot position and the end point is determined when the

robot crosses the end zone. For the last lap in a set, the end point is whenever the robot crosses

the end zone. Note there are usually 1-2 seconds of data between when the robot crosses the end

zone and when the robot comes to rest for a break which is technically in the next lap. However,

the robot must take a break before continuing on to this new lap set, so this data is discarded.

4.8 Addition of Lap Specific Data

After individual laps have been extracted, they are stored in a cell array. At this point the

addition of several lap specific parameters is useful. From the beginning of a lap, integrating

power data using trapezoidal quadrature, as seen in Equation 4-2, yields robot energy drain at any

given time, as well as total energy consumed at the end of the lap.

න ݂ሺݔሻ ݀ݔ

ൌ ሺܾ െ ܽሻ ቈ
݂ሺܽሻ ݂ሺܾሻ

2

[4-2]

It is also useful to “zero” several parameters to the specific lap, including time and

distance traveled, yielding time and distance since the beginning of the lap as opposed to since

the beginning of the entire test. Every column in the LapLog is assigned to a lap, and each row

contains a parameter. The list of parameters is provided in Table 4-1. Measurements from the

data logger in SI units have been converted to Imperial units to remain consistent with the camera

data.

65

Table 4-1: LapLog key

Row Parameter

1 Iteration

2 X‐position (pixels)

3 Y‐position (pixels)

4 X‐position (ft)

5 Y‐position (ft)

6 Lap time, camera images (s)

7 Lap number

8 Total distance (ft)

9 Velocity (ft/s)

10 Velocity filtered (ft/s)

11 Common path deviation (ft)

12 Voltage (V)

13 Current (A)

14 Power (ft‐lbf/s)

15 Iteration, data logger

16 Lap time, data logger (s)

17 Lap energy (ft-lbf)

18 X‐pos, interpolated (ft)

19 Y‐pos, interpolated (ft)

20 Lap distance (ft)

21 Velocity filtered (ft/s)

22 Power filtered (ft‐lbf/s)

Rows 1-8 are translated from columns 1-8 of the original DataLog matrix generated by

the image processing and fiducial identification algorithms. Rows 9 and 11 are the quantities

further derived from image data (Row 10 was originally used to filter velocity data but was

abandoned.) Rows 12-16 are raw and derived information determined from logger data. Row 19

is the previously discussed zeroing of row 8 to achieve lap specific distance traveled. Rows 20-21

were created to filter and compare velocity and power information. Due to vastly different

sampling rates, it is important to filter each data set appropriately before comparison.

Rows 17-18 were created to further facilitate the merging of position and logger data.

The data logger records data at a constant sampling rate of 1000 Hz. Importantly, unlike the

logger the cameras do not capture images at a constant sampling rate. Instead, the python code

66

written to capture images in Ubuntu is designed to capture images as fast as possible. An

approximate sampling rate can be determined by comparing the time stamps between images at

every iteration. The sample rate is not constant, but is consistent within 5%, and calculating the

average yields approximately 15 Hz. This frequency is much slower than the data logger

sampling rate.

To synchronize the data, each camera image was assigned to its closest data logger

sample point in time. For data logger points without assigned camera data, position data was then

interpolated. This interpolation follows a similar process as the interpolation for 3D histograms

described in Section 3.8.1. However the interpolation is denser in this case, to ensure a sample

point of position is provided to each point of power information collected. This avoids decimation

of the power data. This allows data logger data to be plotted as a function of position, useful for

creating 3D plots to visualize data collected from the logger.

4.9 Velocity and Power Filtering

As mentioned in the previous section, velocity and power data are filtered to facilitate

comparison and observation. Filtering was performed using a second order low-pass Butterworth

filter. A cutoff frequency was first chosen. Discrete-time cutoff frequency was then calculated for

each set of data, which is the cutoff frequency normalized to sampling rate, as seen in

Equation 4-3.

݂,ௗ ൌ 2 ∗ ߨ ∗
݂

ܴܵ
 [4-3]

A cutoff of 0.1 Hz was chosen to produce smooth velocity and power data which are

useful to observe on the scale of the test. Keeping in mind that the cameras typically collect

images at a rate of approximately 15 Hz, this produces a discrete-time cutoff frequency for the

camera data of 0.013 ߨ Hz. Performing a similar operation using the same cutoff frequency, but

67

with a sampling rate of 1000 Hz for power data, a discrete-time cutoff frequency of 0.0002 ߨ Hz

was then calculated.

Note the Butterworth filtering was performed in MATLAB using the function filtfilt, which

filters data in both the forward and backward directions, leaving the data with zero phase

distortion.

68

Chapter 5 Robot Testing

5.1 Goals of Robot Testing

The goals of robot testing were to demonstrate the viability of the improved testing

system for general use in ground robot mobility testing, as well as to research the performance of

one robot more specifically, the Talon robot. As previously described, the testing arena can

accommodate multiple terrains. Tests were first attempted using both the Talon and the BomBot

on ramps in the continuous pitch/roll configuration. Both robots were damaged during initial

testing with the pitch/roll terrain configuration so additional tests were completed on smooth

concrete or flat OSB board surfaces. Problems collecting data using the BomBot, discussed

further in Section 0, made the Talon the robot subject to the majority of testing. Testing

conducted to research the Talon robot, with a single operator under a variety of conditions, is

outlined as follows.

Four tests were carried out using the Talon robot: a 50 lap test on OSB, a 100 lap test on

OSB, a 50 lap test on concrete, and another 50 lap test on concrete but driving in the reverse

direction than typically tested. All tests were carried out by the same robot operator between

March 26 and 27, 2014. The Talon was loaded with four BB-2590 batteries for each test.

5.2 Format of Results

From the LapLog output file, many useful plots and statistics from a test can be extracted.

Plots produced can be divided into three general categories: as functions of time, as functions of

position, and as functions of laps. First, plots tracking various parameters as functions of time for

each lap can be generated. Laps are colored differently to allow easy differentiation visually.

These plots can be found in Section 5.3. Other plots possible are 3D plots showing various

69

parameters as functions of position, as seen in Section 5.4. Individual laps are again colored for

convenience.

While the proceeding plots can be very useful for visualization purposes and debugging,

the most quantitatively useful information can be presented as bar graphs. When lap information

for various parameters are graphed as bars, trends over the course of a test can be easily observed.

Adding a line of best fit to these graphs allows the trends to be quantified. These plots can be

found in Section 5.5. Final statistics for a test are presented in the matrix ResultStats.mat.

Parameters included in this matrix are provided in Table 5-1. Final statistics produced from robot

testing in this thesis are presented in Section 5.6.

Table 5-1: Resulting statistics key

Row Parameter

1 Total laps completed

2 Total time (s)

3 Total distance (ft)

4 Total energy (ft‐lbf)

5 Lap time avg (s)

6 Lap time std (s)

7 Lap distance avg (ft)

8 Lap distance std (ft)

9 Lap velocity avg (ft/s)

10 Lap velocity std (ft/s)

11 Lap deviation avg (ft)

12 Lap deviation std (ft)

13 Lap power avg (ft‐lbf/s)

14 Lap power std (ft‐lbf/s)

15 Lap energy avg (ft‐lbf)

16 Lap energy std (ft‐lbf)

70

5.3 Presentation of Robot Testing Results: 2D Plots

Figure 5-1: Lap plots, Talon 50 lap OSB test

71

Figure 5-2: Lap plots, Talon 100 lap OSB test

72

Figure 5-3: Lap plots, Talon 50 lap concrete test

73

Figure 5-4: Lap plots, Talon 50 lap concrete test, reverse direction

74

5.4 Presentation of Robot Testing Results: 3D Plots

Figure 5-5: 3D lap plots, Talon 50 lap OSB test

75

Figure 5-6: 3D lap plots, Talon 100 lap OSB test

76

Figure 5-7: 3D lap plots, Talon 50 lap concrete test

77

Figure 5-8: 3D lap plots, Talon 50 lap concrete test, reverse direction

78

5.5 Presentation of Robot Testing Results: Lap Trend Plots

Figure 5-9: Trend plots, Talon 50 lap OSB test

79

Figure 5-10: Trend plots, Talon 100 lap OSB test

80

Figure 5-11: Trend plots, Talon 50 lap concrete test

81

Figure 5-12: Trend plots, Talon 50 lap concrete test, reverse direction

82

5.6 Presentation of Robot Testing Results: Test Statistics

Lap trends are flat for the majority of the tests. The consistency in lap values is evidence

of an experienced operator. With an operator learning how to use the system, one would expect

trends showing faster lap times as the tests progressed. Also, after 50 laps, or approximately 30

minutes for an experienced operator, decrease in performance over time, due to fatigue, is

generally not observed, due to the short duration of the test. Of most interesting note is the

comparison between the 50 lap concrete tests in the forward and reverse direction. Because the

reverse direction was not practiced beforehand, with all other tests being performed in the other

direction, one might expect the results to display a difference. Indeed in the forward direction, the

average time, power, and energy for each lap decreased over the course of the test while average

velocity increased, indicating the driver was becoming more confident. The opposite case is true

for the reverse direction test: lap time, power, and energy increased while average velocity

decreased, indicating a less confident driver. This indicates fatigue since the robot operator was

less familiar with the driving direction and was forced to pay closer attention to robot operation.

In general, trend data may prove useful in future testing, but for tests performed for this thesis,

trends over the course of a test are only slight and their statistical significance is debatable. Of

more interest now are comparisons between net data for entire tests. These statistics were

generated and presented in Table 5-2.

83

Table 5-2: Final Test Statistics

Row Parameter Talon OSB
50 laps

Talon OSB 100
laps

Talon concrete
50 laps

Talon concrete
 50 laps
backwards

1 Total laps completed 48 99 47 53

2 Total time (s) 934.81 2033.16 887.45 1027.94

3 Total distance (ft) 2303.70 4783.44 2181.36 2517.82

4 Total energy (ft-lb) 70684.39 147829.52 66839.22 77719.92

5 Lap time avg (s) 19.48 20.54 18.88 19.40

6 Lap time std (s) 0.92 1.43 0.63 1.48

7 Lap distance avg (ft) 47.99 48.32 46.41 47.51

8 Lap distance std (ft) 1.65 2.34 1.39 2.43

9 Lap velocity avg (ft/s) 2.47 2.36 2.46 2.45

10 Lap velocity std (ft/s) 0.29 0.38 0.27 0.26

11 Lap deviation avg (ft) 0.28 0.30 0.25 0.28

12 Lap deviation std (ft) 0.26 0.26 0.21 0.25

13 Lap power avg (ft-lb/s) 75.59 72.69 75.28 75.56

14 Lap power std (ft-lb/s) 15.31 15.77 10.33 15.40

15 Lap energy avg (ft-lb) 1472.59 1493.23 1422.11 1466.41

16 Lap energy std (ft-lb) 104.70 107.78 54.86 126.87

5.7 Analysis of Results

Studying the information in Table 5-2, conclusions can be reached about robot

performance and how it changes under various circumstances. A comparison of the tests where

the Talon operated for 50 laps and 100 laps on the OSB surface shows that the average lap time

was 1 second longer during the 100 lap test. Figure 6-2 rules out the possibility of fatigue

accounting for the increased lap time during the 100 lap test because the average time to complete

each lap actually decreased over the duration of the test. Average lap distance and velocity are

comparable between the two tests. Interestingly, for the 100 lap test, the average lap power

decreased but the total lap energy increased. This would make sense if the robot was traveling

faster and using less time but ultimately expending more energy. However, the average velocity is

actually less for the 100 lap test. While puzzling, these differences are small (the percent decrease

84

in power is 3.8%) and therefore their statistical significance is questionable. Also note that the

standard deviations of all lap data are greater for the 100 lap test than the 50 lap test, indicating a

greater variation in lap performance over 100 laps versus 50 laps.

Comparing the 50 lap Talon OSB test to the 50 lap Talon concrete test, it can be observed

that the tests are quite similar. Average lap time is 0.6 seconds greater for OSB, average lap

distance is 1.58 ft greater for OSB, and average velocity and power consumption are comparable.

Average lap energy is 21 ft-lbf greater for the OSB test. The reason for the increase in average lap

length for OSB is an interesting one. However, the increase in lap energy can be attributed to the

increase in distance travelled. Standard deviations for all metrics are lower for the concrete test

than the OSB test.

Next, the two tests can be analyzed for driving the Talon on concrete for 50 laps but in

opposite directions around the figure-8 track. An initial hypothesis was that the direction which

the operator was accustomed to driving around would yield more efficient driving when

compared to the identical test in the less familiar reverse direction. This hypothesis is proven true

by the results: the average time, distance, and energy for each lap were greater than their

counterparts in the typical direction. Also note that the standard deviations of lap data for time,

distance, power, and energy are all greater for the backwards test. Greater variance in the data

indicates a less methodical approach to robot operation and a less experienced operator.

Figure 5-13, showing the most common path for both cases, confirms that a hysteresis

effect is present in the robot path figure-8 when driven in the opposite direction, meaning that the

robot’s position at any point in time is affected by its past position. Note that in the top image the

path is shifted up, while in the bottom image the path is shifted down. Several causes for this

effect can be speculated. The robot operator may have a natural bias to drive the robot more

aggressively through right turns versus left turns, for example. In addition, the robot could be

85

introducing a bias. For example, if the motors and gears are not delivering torque to the treads

equally, this would cause the robot to turns differently when faced with a right or left turn.

Figure 5-13: Talon 50 lap concrete tests hysteresis, typical direction (top) and opposite (bottom)

Using all 4 tests, average distance travelled per lap can be calculated as 47.56 feet. The

NIST standard, which does not employ position tracking, assumes a lap of robot travel equates to

approximately 15 meters. Converting to feet, NIST assumes a distance of 49.21 feet traveled per

86

lap, a value comparable (3.48% greater) than the average lap distance calculated in this thesis.

This comparison can be used to both validate NIST’s estimation of lap distance and demonstrate

the viability of the distance tracking algorithm employed in this thesis.

Of final interest in the analysis of the data produced through robot testing is a calculation

of the average energy used per unit of distance travelled over each test. These values calculated

for each test can be seen in Table 5-3.

Table 5-3: Energy Usage per Unit Distance

Parameter Talon OSB
50 laps

Talon OSB 100
laps

Talon concrete
50 laps

Talon concrete
 50 laps
backwards

Avg. energy/distance
(lbf)

30.68 30.90 30.64 30.87

These values generated are highly significant, as energy as a function of distance is more

useful than energy as a function of time, for purposes of calculating coefficients which can

characterize the behavior of robot operation on a given terrain. Analysis of this data shows that

the operation of the Talon robot on either concrete or OSB yields comparable energy

consumption per unit distance, a significant finding.

87

Chapter 6 Conclusion

This thesis presents improvements made to a NIST mobile ground robot testing arena and

preliminary testing to demonstrate system viability. Goals achieved include improvements made

to a previously developed machine vision robot tracking system, development of a most common

path processing algorithm, addition of robot power consumption information, and preliminary

research into the Talon robot’s performance under a variety of conditions. Future work is

necessary to more fully explore areas of research and tests possible using the test method,

including the effects of robot design, operator experience/fatigue, and terrain type on the

performance metrics outlined in this thesis.

6.1 Accomplishments for NIST

The standard NIST testing protocol developed for robot mobility and endurance testing

records lap times for a robot to complete a figure-8 over the course of a test. The improved testing

system presented in this thesis also generates lap times, but generates a multitude of additional

metrics and statistics with the potential for deep analysis. The original NIST protocol requires the

manual recording of lap time, as well as the assumption that the robot operator is faithfully

entering each end zone to complete a lap. Since development of the original protocol, NIST has

developed a simple lap counter using a beam break sensor that counts every time the robot enters

an end zone. However, this method may prove inaccurate as it does not guarantee the robot enters

the end zone fully, but rather only breaks the beam with any portion of its body. The camera

tracking method ensures the robot enters each end zone fully to complete each lap, as the fiducial,

located on the center of the robot’s body, must be the object which crosses into the end zone for

the cameras to count a lap complete.

For testing NIST assumes the participation of an “expert” robot operator, or one who has

reached a steady state of robot operation. The statistics of deviation generated in this work make

88

studies in robot operator variability possible. Operators deemed expert should display low

standard deviations across all metrics of activity as compared to less experienced operators, as

robot operation should be consistent at an expert level. Comparison across multiple expert

operators could be used to determine whether a point of convergence is reached in consistent

robot operation across all metrics, or whether each expert operator has his or her own

idiosyncrasies in robot operation. In addition, operators deemed expert at operating one robot can

be tested immediately on a different robot, to determine how much expert experience transfers

between differing robot technologies. In addition, new robot operators can be tested and lap

trends observed to analyze learning curve behavior, to determine if certain robots are more user-

friendly than others. Also, operators deemed expert can be tested for long periods of time to

observe how long it takes before performance is compromise below an acceptable level for any of

the metrics developed.

Of all the metrics developed for this improved testing method, the addition of robot

power consumption information is where the system truly displays significant potential. By

calculating the total energy used per lap for a test with a given robot on a given terrain,

coefficients of power consumption can be generated to assist robot operators in planning

emergency response scenarios. These coefficients, combined with the knowledge of a robot’s

battery energy available and the terrain a specific scenario requires the robot to traverse, can help

determine the operational range of the robot and predict mission success.

6.2 Recommendations for Future Work on the Testing System

While the robot testing system presents many benefits over the standard NIST testing

protocol, one of which being automated lap counting and timing, there are many opportunities to

improve the system in terms of accuracy, accessibility, and practicality.

89

A large challenge of this project was the effective stitching together of multiple camera

images covering the entirety of the testing arena. In theory, if the testing arena was located in a

room with a high ceiling only one camera could be necessary to cover the entirety of the arena.

However, this camera would have to be of a high resolution, and the height clearance required for

this idea makes this approach impractical. As a result, currently three cameras are used and

calibrated using markers located on the walls of the testing arena. This method proved effective in

stitching together images; however, transitions of the fiducial between images still proves

noticeable. The fiducial tracking code is designed to recognize only one fiducial at a time;

modifying the machine vision algorithm to recognize the fiducial in multiple camera views and

transition more smoothly between them could improve results.

Another issue encountered in machine vision processing was the consistent detection of

the fiducial. An LED fiducial was substituted for the original green disk fiducial because it is less

subject to changes in lighting conditions. A downside of the LED fiducial was the possibility of

lens flare in the camera images caused by the bright light. Placing a piece of paper over the LED

fiducial negated lens flare, but a more well designed solution such as an LED in a table tennis ball

might be an excellent solution for a fiducial. For testing presented in this work, consistent testing

and processing was achieved in large part through dark room testing, which allowed the LED

fiducial to show up extremely clearly.

One difficulty in finding dependable fiducial detection methodologies is the processing

time of the fiducial identification and tracking algorithms. Performing image transformations in

MATLAB for every camera image at each iteration is the slowest method. Generating a lookup

table based on an image transformation or sequence of transformations speeds processing, but the

lookup table itself takes considerable time to generate. Furthermore, cameras cannot be moved or

the camera calibration modified without regenerating the lookup table. To speed processing, the

best approach may be to write the processing code in another language entirely.

90

A problem encountered frequently in testing was the consistent operation of the onboard

data logger. The data logger itself draws a small amount of power from the robot to run. During

testing, particularly on the ramped surfaces, robots would often be shaken violently and

momentarily lose power. This caused the data logger to crash. Additionally, large current draws

on the logger during particularly intense robot maneuvers could cause the logger to drop below

the required operational voltage, also causing a reset. Originally, the software of the data logger

stored the data in such a way that in the event of a power loss, the current storage file would

become corrupted and all data would be lost. Later, a data logger with updated software was used

in testing. In the event of a momentary power loss this logger did not corrupt an entire data set,

but rather safely saved all data which had been recorded up to that point. This allowed some data

to be saved that would otherwise have been lost. However, the data logger still did not record

further data after the power loss. To combat this problem the power logger and connecting power

cords were firmly secured with tape.

Possible future work could include the construction of an entirely new power logger.

Ultimately, a set of non-wireless data loggers were already on hand for this project, and it was

decided to use these because of convenience, proven technology, and a high data collection rate.

However, a data logger with wireless communication ability could conceivably communicate

with the camera system and greatly reduce efforts to synchronize data in processing. This would

require the addition of a wireless router and software to synchronize data collection with respect

to time. The selection of a new data logger would be required as well as addressing issues of data

collection rates and latency.

The last main challenge of developing the testing system was the incorporation and

synchronization of power data from the robot with the already developed camera-based position

tracking system. In this work the power data gathered by a data logger onboard the robot was not

synchronized through wireless communication with the camera image acquisition system but

91

rather through synchronized in processing. Considerable time was spent on developing a robust

algorithm for this purpose, however, developing a wireless power logger may be the best long-

term solution. A wireless power logger with the ability to directly synchronize timestamps with

the camera collection system would be even more robust in terms of successful synchronization,

generate higher accuracy synchronization, and require less user involvement in processing.

6.3 Recommendations for Future Work in Robot Testing

The small sample of tests performed for this work mainly serve to demonstrate the

viability of the testing system. The potential for future testing is vast.

The Talon robot was the primary robot used to demonstrate testing in this work.

Problems associated with modifying the BomBot led to unreliable testing. The hobby camera

attached to the BomBot was powered off a 9V battery, which was necessary to change

approximately every 20 minutes. Future testing should make use of a longer lasting camera. In

addition, the BomBot battery modification proved incompatible with the logger to collect power

data. During heavy use the BomBot’s BB-390 battery was not able to supply the minimum

required voltage for the attached data logger to run (approximately 8V), which would cause it to

reset. Also, different robots have different power profiles, which could interfere with the

synchronization algorithm developed previously with the Talon. This problem was encountered

when attempting to process BomBot data. This issue favors the previously suggested idea to

employ a wireless data logger for direct synchronization as opposed to lap grouping in order for

the system to be truly robust for any robot.

Unfortunately, the ramps designed for the testing arena proved too damaging to the Talon

robot for extensive use. The remaining surfaces of flat concrete and OSB proved adequate for

demonstrating the test method, however, in the future more interesting and varied terrains should

be tested to study their effects on robot performance. Such surfaces could include sand, mulch,

92

gravel, or Astroturf. The goal of such terrain studies would be the generation of coefficients to

better assist in the prediction of mobile ground robot performance and endurance during

operation. While this testing proved concrete and OSB comparable in terms of energy consumed

per unit distance, other terrains may yields different coefficients.

In addition to the tests already described, path following tests could be conducted where

tape or paint is used to mark a path on the floor of the testing arena. Similar to the most common

path deviation algorithm already developed, this path could be constructed in computer code and

the deviation of robot position from the designated path could be calculated over the course of a

test. Another series of tests could be conducted in performance versus payload studies. In these

tests, a robot would be run through a series of otherwise identical tests changing amounts of

weight. Performance could then be evaluated as a function of payload weight.

6.4 Closing Remarks

The goal of this thesis – to demonstrate viable improvements possible to a NIST ground

robot mobility testing procedure and conduct preliminary research on the Talon robot – has been

accomplished. While the project leaves much room for future development and testing, the work

shows the usefulness of capturing multiple metrics of robot performance in a controlled

environment and the potential for future use in the validation of mobile ground robots.

93

Appendix A MATLAB Code

The Python code used to collect camera images in Ubuntu and general instructions to

collect and process images can be found in Pangborn’s thesis [3]. Collected camera images were

loaded into a folder named images_PY with subfolders cam_1, cam_2, and cam_3. Data logger

CSV files were loaded into the folder power_logger. Saved information such as DataLog.mat,

TrialLog.mat, Laplog.mat, ResultsStats.mat, and any plots are saved to the current MATLAB

directory.

A.1 Script1_CollectTestImages.m

This script collects in real-time and saves to file images that can be post-processed
% to conduct lap counting and distance tracking

% The basenames of files generated are: im_[camera #]_[iteration #]
% ex. im_1_1, im_2_1, etc.

clear
clc

% Initialize parameters for the cameras
FlagLive = 1;
[IP,CamRes,CamParam] = FcnInitCamParams(FlagLive);

% Define a name for the folder in which to store images
% NOTE: The lap and distance tracking scripts looks in the folder "images" by default
% imagefolder = 'images'; % DEFAULT
imagefolder = 'images_MATLAB';

mkdir(imagefolder);
mkdir('images_MATLAB','cam_1')
mkdir('images_MATLAB','cam_2')
mkdir('images_MATLAB','cam_3')

choice = questdlg('START?', ...
 'START', ...
 'START','START');

% Handle response
switch choice
 case 'START'

 % Create a timer for iteration times
 ElapsedTimer = tic;

 % Set up the loop to run forever
 ImNum = 0;
 while ImNum > -1

 % Get the elapsed time
 ElapsedTime = toc(ElapsedTimer);

 % Generate a filename for the image
 filename=strcat(sprintf('%5.7f',ElapsedTime),'.jpg');

94

 for CamNum=1:length(IP)

 % Get IP address for the camera
 name = IP{CamNum};

 % Load image from the camera
 im = imread(name);

 % Save the file as the fiename
 imwrite(im,filename,'jpg');

movefile(filename,strcat('./',imagefolder,'/','cam_',num2str(CamNum),'/',filename))

 end

 % Update the iteration counter
 ImNum = ImNum+1;

 % Print the time in the command window
 disp(num2str(ElapsedTime))
 end
end

A.2 Script2_Calibrate.m

% This script allows users to generate the calibration data files needed for lap and
distance tracking

clear
clc

% Initialize variables for the code that users may want to modify
[FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File] = FcnInitTestConditions;

% Initialize parameters for the cameras
[IP,CamRes,CamParam] = FcnInitCamParams(FlagLive);

% Initialize variables for the code
[
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps] = FcnInitVars(Data2File,FlagLive);

%% Initialization Procedure

% Conduct and save camera distortion calibrations
FcnInitDistortCorrection(CamParam,NumCams,CamRes);

% Conduct and save distance tracking calibrations
FcnInitDistTrack(IP,FlagLive,TimeStamps,Iter,NumCams,CamRes);

% Conduct and save endzone location calibrations
FcnInitEndzones(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams);

% Conduct and save black bar calibrations
FcnInitBlackBars(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams);

A.3 Script3_DataLog.m

% This script conducts lap counting and distance tracking for NIST robot testing methods
on a fiducial using IP cameras.
% A lap is considered to be one full trip about the course, from the starting endzone to
the other and then back.

95

% Note that lap counting only begins when the fiducial enters an endzone for the first
time.
% The Matlab Image Processing Toolbox is required to run this code.

% Developed by Herschel Pangborn, Penn State University, 2012, using MATLAB R2011a for
Mac OSX.
% Please direct any quesitons to theherschmeister@gmail.com
% Some algorithms are modified from those written by Professor Sean Brennan and Kevin
Swanson, Penn State University,
% and from the Matlab Camera Calibration Toolbox

clear
clc

%% Initialize Parameters and Variables

% Initialize variables for the code that users may want to modify
[FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File] = FcnInitTestConditions;

% Initialize parameters for the cameras
[IP,CamRes,CamParam] = FcnInitCamParams(FlagLive);

% Initialize variables for the code that users don't need to change
[
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps] = FcnInitVars(Data2File,FlagLive);

%% Load Data Files From Calibration Scripts

[CalibDistTrack,CalibEndzones,newlocation,DistortionMapping,CalibBlackBars] =
FcnGetCalibrations;
clc

%% Obtain and Plot the Starting Position and Begin the Loop on Command

% Get the fiducial position in both pixels and real-world coordinates
[CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagObjFound] = FcnGetPosition(
IP,CamRes,FlagLive,TimeStamps,FlagObjFound,Iter,NumCams,CalibDistTrack,CalibEndzones,Cent
roidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagPlot,newlocation,DistortionMapping,Ca
libBlackBars);
% Set the iteration counter = 1
Iter = Iter+1;

%% Loop Time!

% Use a dialogue to start
choice = questdlg('START?', ...
 'START', ...
 'START','START');
% Handle response
switch choice
 case 'START'
 %close(1)

 % Start a timer for finding lap times
 ElapsedTimer = tic;

 % Loop indefinitely if running in real-time, or until end of data if loading
images from file.
 Itstop = 1;
 while Itstop

 % Start a timer for fps timing
 FpsTimer = tic;

 % Get the fiducial position in both pixels and real-world coordinates
 [CentroidFT_Current,CentroidPX_Current,CentroidPX_Current_Raw,FlagObjFound]
= FcnGetPosition(
IP,CamRes,FlagLive,TimeStamps,FlagObjFound,Iter,NumCams,CalibDistTrack,CalibEndzones,Cent

96

roidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagPlot,newlocation,DistortionMapping,Ca
libBlackBars);
 % Get the total time of the test thus far
 if FlagLive == 1
 TotalTime = toc(ElapsedTimer);
 else
 TotalTime = TimeStamps(Iter);
 end

 % Conduct lap counting
 [TotalLaps,LastZone] = FcnCalcLaps(
CalibEndzones,TotalLaps,LastZone,CentroidPX_Current);

 % Conduct distance tracking
 [TotalDist] = FcnCalcDist(TotalDist,CentroidFT_Last,CentroidFT_Current);

 % Calculate the fps
 Frame = toc(FpsTimer);
 FPS = 1/Frame;

 % Print some data to the screen if the object was found this iteration
 if FlagObjFound == 1
 fprintf(1,'Iter: %5d Total Laps: %4.1f, Total Distance (ft): %10.2f, X
Location (ft): %6.2f, Y Location (ft): %6.2f, X Location (px): %6.2f, Y Location (px):
%6.2f, FPS: %6.2f\n',...
 Iter,TotalLaps, TotalDist, CentroidFT_Current(1),
CentroidFT_Current(2), CentroidPX_Current(1), CentroidPX_Current(2), FPS)
 else
 fprintf('OBJECT NOT FOUND\n')
 end

 % Update data log
 [DataLog] = FcnLogData(Iter, FlagLive ,TotalLaps, TotalDist, TotalTime,
CentroidPX_Current, CentroidFT_Current, DataLog, Data2File,length(TimeStamps));

 % Save plot window to file
 if FlagPlot == 1 && FlagSavePlot == 1
 h = figure(1);
 title(strcat('Iter: ',num2str(Iter),', TotalLaps: ',num2str(TotalLaps),'
TotalDist: ',num2str(TotalDist)))
 print(h,strcat('Iter_',num2str(Iter)),'-djpeg')
 end

 % If loading images from file, stop the loop
 if FlagLive == 0
 if Iter == length(TimeStamps)
 Itstop = 0;
 end
 end

 % Update centroid locations
 CentroidFT_Last = CentroidFT_Current;
 CentroidPX_Last = CentroidPX_Current;
 CentroidPX_Last_Raw = CentroidPX_Current_Raw;
 Iter = Iter+1;

 end
end

A.4 Script4_TrialLog.m

% This script takes DataLog.mat and adds velocity, pathdev, and power
% information, to create TrialLog.mat

clear
clc

97

close all

% Load camera data (from original DataLog.mat file in main folder)
DataLog = FcnDataLogZeros;
% Load power logger data (from CSV files in appropriate folder)
PowerLog = FcnPowerLog;

% Create velocity data from position data
[Velocity,Velocity_Filt] = FcnVelocity(DataLog);
DataLog(:,9) = Velocity;
DataLog(:,10) = Velocity_Filt;

% % Create histogram and path deviation data from position data
[C,Ridge,PathDev,DataLogInterp] = FcnPathDev(DataLog);
DataLog(:,11) = PathDev;

% Creates TrialLog - This log contains all data relevant from a test in a
% 1x2 cell array. (For camera and power collection rates). This log will
% now be used in all post-processing. (Eg. Synchronization, Results,
% Histogram, etc.)

TrialLog{1,1} = {'1:Iteration, 2:X-position(pix), 3:Y-position(pix), 4:X-position(ft),
5:Y-position(ft), 6:Time(s), 7:Laps, 8:Total Distance (ft), 9:Velocity(ft/s),
10:Velocity_Filt(ft/s), 11:Common Path Deviation (ft)'};
TrialLog{1,2} = {'1:Voltage(V), 2:Current(A), 3:Power(J), 4:Iteration'};

TrialLog{2,1} = DataLog;
TrialLog{2,2} = PowerLog;

save('TrialLog.mat','TrialLog','C','Ridge','PathDev','DataLogInterp')

A.5 Script5_LapLog.m

% This script pulls data from TrialLog.mat to sync camera and power data
% in time, based on velocity and power standard deviations over test.

% This script handles camera data produced from TrialLog.mat, using
% scripts originally for power processing, filters velocity data.
% Breaks into 4 groups, based on std.
clear
clc
close all
load TrialLog.mat

%% Filtering velocity (ft/s)

Velocity = TrialLog{2,1}(:,9);
Time = TrialLog{2,1}(:,6);

% plot raw velocity
figure
plot(Time,Velocity,'b')
xlabel('Time (s)')
ylabel('Velocity (ft/s)')
title('velocity data')

% filter data by standard deviation
frames = 5; % number of frames to use for calculating std
NumBlocs = floor(length(Velocity)/frames); % rounding off
BlocArray = [0:NumBlocs]*frames; % array for appropriate frame segments

% Calculate std for frames
for i = 1:NumBlocs
 StdVel(i) = std(Velocity(BlocArray(i)+1:BlocArray(i+1)));
 % Treat std as occuring at time value of last frame of set

98

 StdTime(i) = Time(i*frames);
end

% Apply binary threshold to std
for i = 1:length(StdVel)
 if StdVel(i) < .3
 OnOff(i) = 1;
 else
 OnOff(i) = 0;
 end
end

% plotting on raw velocity
hold on
plot(StdTime,StdVel,'g')
plot(StdTime,OnOff,'r')
legend('raw velocity','std','onoff')

%% Some initializations (User Interface might be helpful)
% Set startpoint (in a period of rest before official start)
Startpoint = 94; % seconds
Endpoint = 1767; % seconds

[A,B] = min(abs(StdTime-Startpoint)); % B is the entry in time
Startpointk = B; % starting point in terms of time index
[A,B] = min(abs(StdTime-Endpoint)); % B is the entry in time
Endpointk = B; % ending point in terms of time index

% Finding exact start of first lap
exit = 0; %initialize for while loop
k = Startpointk; % initialize counter
while exit < 1
 if OnOff(k-1)==1 & OnOff(k)==0 % right shoulder search
 alpha = k; % exact startpoint at first lap
 exit = 1; % exits loop
 end
 k = k + 1; % iterates counter
end

%% Group searching and sorting

group = 0; % initialize group counter
leftshoulder = alpha; % initialize left shoulder marker
rightshoulder = alpha; % initialize right shoulder marker
for k = Startpointk:Endpointk
 if OnOff(k-1)==0 & OnOff(k)==1 % left shoulder search
 leftshoulder = k;
 end
 if OnOff(k-1)==1 & OnOff(k)==0 % right shoulder search
 rightshoulder = k;
 end

 if (rightshoulder - leftshoulder) > 10*(15)/frames % ~10 second pause test
 group = group + 1;
 % places each grouping into a cell
 SyncLog_Cam{1,group} = TrialLog{2,1}(alpha*frames-(frames-1):leftshoulder*frames-
(frames-1),:);

 if (leftshoulder - alpha) < 100*(15)/frames % deletes grouping if less than ~100
sec. (movement blip in pause)
 SyncLog_Cam(:,group) = [];
 group = group - 1;
 end
 alpha = rightshoulder; % moves up alpha
 leftshoulder = rightshoulder; % moves up leftshoulder
 end
 if k == Endpointk % closes last lap
 rightshoulder = Endpointk;
 group = group + 1;

99

 SyncLog_Cam{1,group} = TrialLog{2,1}(alpha*frames-(frames-1):leftshoulder*frames-
(frames-1),:);
 end
end

%% This is the power section of the code, it does a similar thing as
% velocity, but with a different sampling rate algorithm. (The power data
% is known to have a 1000 Hz sampling rate, std was calculating every
% quarter second.) For velocity, std was calculated over a (setable)
% number of frames, leading to whatever data collection rate that is.

% Generate power & plot

Voltage = TrialLog{2,2}(:,1);
Current = TrialLog{2,2}(:,2);
Power = TrialLog{2,2}(:,3);
Iteration = TrialLog{2,2}(:,4);

% Initialize the samping rate (Hz)
SamplingRate = 1000;

% Initialize a time vector
time = (1:length(Power))/SamplingRate;

% Plot the raw power data
figure
plot(time,Power,'b')
xlabel('Time (s)')
ylabel('Power (J/s)')
title('power data')

% % Low pass butterworth filter (negligible difference)
% [b,a] = butter(3,0.2,'low');
% Powerfilt_low = filtfilt(b,a,Power);
%% Filter power data by standard deviation

% Calculate std for quarter second segments
NumSeg = floor(length(Power)/250);
Array250 = [0:NumSeg]*250;
StdArray = [];
for i = 1:NumSeg
 StdArray(i) = std(Power(Array250(i)+1:Array250(i+1)));
end

% Apply threshold to std to distinguish when robot is idle
% (When robot is idle, power consumption has low std.)
OnOff = [];
for j = 1:length(StdArray)
 if StdArray(j) < 8
 OnOff(j) = 1;
 else
 OnOff(j) = 0;
 end
end

% Plotting above for debugging purposes (helps find start point)
hold on
timeStd = [1:length(StdArray)].*.25 - .25/2;
plot(timeStd,StdArray,'g')
% Plotting OnOff
plot(timeStd,OnOff,'r')
legend('raw power','std','onoff')

%% Some initializations - (User Interface?)

% Set startpoint (shortly before robot starts first lap)
Startpoint = 220; % seconds
Startpointk = Startpoint*4 + 1; % in terms of counter k

100

% Set endpoint (shortly after robot finishes last lap)
Endpoint = 1970; % seconds
Endpoint = Endpoint + 4; % 4 second buffer for safety
Endpointk = Endpoint*4 + 1; % in terms of counter k

% Finding exact start of first lap
exit = 0; %initialize for while loop
k = Startpointk; % initialize counter
while exit < 1
 if OnOff(k-1)==1 & OnOff(k)==0 % right shoulder search
 alpha = k; % exact startpoint at first lap
 exit = 1; % exits loop
 end
 k = k + 1; % iterates counter
end

%% Group searching and sorting

group = 0; % initialize lap counter
leftshoulder = alpha; % initialize left shoulder marker
rightshoulder = alpha; % initialize right shoulder marker
for k = Startpointk:Endpointk
 if OnOff(k-1)==0 & OnOff(k)==1 % left shoulder search
 leftshoulder = k;
 end
 if OnOff(k-1)==1 & OnOff(k)==0 % right shoulder search
 rightshoulder = k;
 end
 if k == Endpointk % closes last lap
 rightshoulder = Endpointk;
 end
 if (rightshoulder - leftshoulder) > 12 % 3 second pause test
 group = group + 1;
 % places each lap current, voltage, power data in cells
 SyncLog_Pow{1,group} = TrialLog{2,2}((alpha-1)/4*SamplingRate:(leftshoulder-
1)/4*SamplingRate,:);
 if (leftshoulder - alpha) < 20 % deletes lap if not long enough (movement blip in
pause)
 SyncLog_Pow(1,group) = [];
 group = group - 1;
 end
 alpha = rightshoulder; % moves up alpha
 leftshoulder = rightshoulder; % moves up leftshoulder
 end

end

% Adding time to groups
% Columns: 1.) Voltage 2.) Current 3.) Power 4.) Iteration 5.) Time

for group = 1:length(SyncLog_Pow)
 SyncLog_Pow{1,group}(:,5) = [0:length(SyncLog_Pow{1,group})-1]'/SamplingRate; % time
domain
 % SyncLog_Pow{1,group}(:,6) = cumtrapz(SyncLog_Pow{1,group}(:,3))/SamplingRate; %
energy drain over lap (can plot)
end

% Check to have matching number of groups
if length(SyncLog_Cam) ~= length(SyncLog_Pow)
 disp('ERROR: Camera and power logger data not matching properly. Debug.')
 disp('Tips: Adjust both camera and power logger processing startpoints, adjust both
std thresholds.')
 break
end
% save('SyncLog.mat','SyncLog_Cam','SyncLog_Pow')

%% This part takes sync files (camera data and power data divided into

101

% groups of laps), and separates them into individual laps, based on
% endzone crossing. All data saved to LapLog.mat

% clear
% clc
% close all
% load('SyncLog.mat')

for group = 1:length(SyncLog_Cam)
 SyncLog_Cam{group}(:,6) = SyncLog_Cam{group}(:,6) - min(SyncLog_Cam{group}(:,6));
end

% Creating GroupLog
[entries,datatypes_cam] = size(SyncLog_Cam{1});
[entries,datatypes_pow] = size(SyncLog_Pow{1});
for group = 1:length(SyncLog_Cam)
 for class = 1:datatypes_cam
 GroupLog{class,group} = SyncLog_Cam{group}(:,class);
 end
 for class = 1:datatypes_pow
 GroupLog{datatypes_cam + class,group} = SyncLog_Pow{group}(:,class);
 end
 % rounding camera time to .001 place
 num_dig = 3;
 GroupLog{6,group} = round(GroupLog{6,group}*(10^num_dig))/(10^num_dig);
end

%% This part corrects power drift in grouplogs
[classes,groups] = size(GroupLog);

% figure
% hold on
% for i = 1:groups
% plot(GroupLog{15,i},GroupLog{14,i},'b')
% end
% xlabel('Iteration (s)')
% ylabel('Power (J/s)')
% title('power data')

for i = 1:groups
 IterStart = GroupLog{15,i}(1);
 IterEnd = GroupLog{15,i}(end);
 Iter1Range = [IterStart-5000,IterStart-3000]; %range to take average power before
group
 Iter2Range = [IterEnd+3000,IterEnd+5000]; %range to take average power after group
 Index1Start = find(Iteration == Iter1Range(1));
 Index1End = find(Iteration == Iter1Range(2));
 Index2Start = find(Iteration == Iter2Range(1));
 Index2End = find(Iteration == Iter2Range(2));
 Power1Mean = mean(Power(Index1Start:Index1End));
 Power2Mean = mean(Power(Index2Start:Index2End));
 NumbEntries = length(GroupLog{15,i});
 GroupLog{14,i} = GroupLog{14,i} - linspace(Power1Mean, Power2Mean, NumbEntries)';

end

% % Plot the raw (corrected) power data
% for i = 1:groups
% plot(GroupLog{15,i},GroupLog{14,i},'g')
% plot(GroupLog{15,i},zeros(1,length(GroupLog{15,i})),'r')
% end
% hold off

%% Dividing GroupLog into individual laps (cam time and pow time tricky)
lap = 1;
for group = 1:length(SyncLog_Cam)
 iprev = 1; % initialize low shoulder (cam)
 jprev = 1; % initialize low shoulder (pow)

102

 for i = 2:length(GroupLog{1,group})
 if GroupLog{7,group}(i-1) ~= GroupLog{7,group}(i) && rem(GroupLog{7,group}(i),1)
== 0
 % transforming camera time to power time
 timehigh = GroupLog{6,group}(i-1);
 j = min(find(GroupLog{datatypes_cam + 5,group} >= timehigh)); % this will
ERROR if you change number of camera data rows
 timelow = GroupLog{6,group}(iprev);
 jprev = max(find(GroupLog{datatypes_cam + 5,group} <= timelow));
 % splitting power data
 for class = 1 + datatypes_cam: datatypes_pow + datatypes_cam
 LapLog{class,lap} = GroupLog{class,group}(jprev:j);
 end
 % splitting camera data
 for class = 1:datatypes_cam
 LapLog{class,lap} = GroupLog{class,group}(iprev:i-1);
 end
 iprev = i; % reset low shoulder to present (cam)
 lap = lap + 1; % add counter
 end
 end
end

% Adding some useful lap-specific data, zeroed to beginning of each lap
% 17.) Lap energy used
% 18.) Lap distance traveled

for lap = 1:length(LapLog)
 LapLog{6,lap} = LapLog{6,lap} - min(LapLog{6,lap}); % time for individual laps (cam)
 LapLog{16,lap} = LapLog{16,lap} - min(LapLog{16,lap}); % time for individual laps
(pow)
 LapLog{17,lap} = cumtrapz(LapLog{14,lap})/1000; % Energy (1000 Hz sampling rate)
 LapLog{20,lap} = LapLog{8,lap} - min(LapLog{8,lap}); % lap distance (total distance
is still 8.)
end

% filtered velocity and power
for lap = 1:length(LapLog)
 for entry = 1:length(LapLog{6,lap})-1
 sample_dif(entry) = (LapLog{6,lap}(entry+1) - LapLog{6,lap}(entry))^-1;
 samplerate_cam(lap) = mean(sample_dif); % find avg. sampling rate of cameras for
lap
 end
end
% assuming near constant sampling rate over course of a trial
samplerate_cam = mean(samplerate_cam);
Wn_cam = 0.1;
Wn_pow = Wn_cam*samplerate_cam/SamplingRate;
[B_cam,A_cam] = butter(2,Wn_cam);
[B_pow,A_pow] = butter(2,Wn_pow);
for i = 1:length(LapLog)
 LapLog{21,i} = filtfilt(B_cam,A_cam,LapLog{9,i}); % filtered velocity
 LapLog{22,i} = filtfilt(B_pow,A_pow,LapLog{14,i}); % filtered power
end

%% Making x-pos and y-pos interp classes for 3D power plot
for i = 1:length(LapLog)
Time_Cam{i} = single(LapLog{6,i});
Time_Pow{i} = single(LapLog{16,i});
 index = [];
 for k = 1:length(Time_Cam{i})
 index(k) = find(Time_Cam{i}(k) == Time_Pow{i});
 end
 for m = 2:length(index)
 space = 1/(index(m)-index(m-1));
 X_Interp{i}(index(m-1):index(m)) = linspace(LapLog{4,i}(m-1),LapLog{4,i}(m),index(m)-
index(m-1)+1);
 Y_Interp{i}(index(m-1):index(m)) = linspace(LapLog{5,i}(m-1),LapLog{5,i}(m),index(m)-
index(m-1)+1);

103

 end
 LapLog{18,i} = X_Interp{i}';
 LapLog{19,i} = Y_Interp{i}';
end

LapLogKey{1} = 'Iteration';
LapLogKey{2} = 'X-position(pix)';
LapLogKey{3} = 'Y-position(pix)';
LapLogKey{4} = 'X-position(ft)';
LapLogKey{5} = 'Y-position(ft)';
LapLogKey{6} = 'Lap time (camera) (s)';
LapLogKey{7} = 'Lap number';
LapLogKey{8} = 'Total distance (ft)';
LapLogKey{9} = 'Velocity (ft/s)';
LapLogKey{10} = 'Velocity_Filt (old)';
LapLogKey{11} = 'Common path deviation (ft)';

LapLogKey{12} = 'Voltage (V)';
LapLogKey{13} = 'Current (A)';
LapLogKey{14} = 'Power (J/s)';
LapLogKey{15} = 'Iteration (power)';
LapLogKey{16} = 'Lap time (power) (s)';

LapLogKey{17} = 'Lap energy (J)';
LapLogKey{18} = 'X-pos(interp) (ft)';
LapLogKey{19} = 'Y-pos(interp) (ft)';
LapLogKey{20} = 'Lap distance (ft)';
LapLogKey{21} = 'Velocity_Filt (ft/s)';
LapLogKey{22} = 'Power_Filt (ft/s)';

LapLogKey = LapLogKey';

save('LapLog.mat','LapLog','LapLogKey');

A.6 Script6_Results.m

% Results
clc
clear
close all
load LapLog.mat

% Converting LapLog
convert = 1.355817; % 1 ft-lb = 1.3558 J

for lap = 1:length(LapLog)
 for row = [14 17 22];
 LapLog{row,lap} = LapLog{row,lap}/convert;
 end
end

% %% Plotting engine
% % Specifiy which two parameters from LapLog you would like plotted.
% for i = 1:length(LapLog)
% LapLogPlot{1,i} = LapLog{6,i}; % parameter 1
% LapLogPlot{2,i} = LapLog{17,i}; % parameter 2
% end
% figure
% plot(LapLogPlot{:})

%% Lap Plots
% Position of robot (colored by lap)
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{4,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{5,i}; % parameter 2
end

104

fig1 = figure;
subplot(3,2,1)
plot(LapLogPlot{:})
title('robot position')
xlabel('x-position (ft)')
ylabel('y-position (ft)')
axis([0 25 0 8])

% Total distance vs. time (good for checking for errors)
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{6,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{20,i}; % parameter 2
end
subplot(3,2,2)
plot(LapLogPlot{:})
title('distance traveled vs. time')
xlabel('time (s)')
ylabel('distance (ft)')
axis([0 30 0 70])

% Velocity vs. time
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{6,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{21,i}; % parameter 2
end
subplot(3,2,3)
plot(LapLogPlot{:})
title('velocity vs. time')
xlabel('time (s)')
ylabel('velocity (ft/s)')
axis([0 30 0 3])

% Deviation vs. time
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{6,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{11,i}; % parameter 2
end
subplot(3,2,4)
plot(LapLogPlot{:})
title('deviation vs. time')
xlabel('time (s)')
ylabel('deviation (ft/s)')
axis([0 30 0 2])

% Power vs. time
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{16,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{22,i}; % parameter 2
end
subplot(3,2,5)
plot(LapLogPlot{:})
title('power vs. time')
xlabel('time (s)')
ylabel('power (ft-lb/s)')
axis([0 30 0 200/convert])

% Energy vs. time
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{16,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{17,i}; % parameter 2
end
subplot(3,2,6)
plot(LapLogPlot{:})
title('energy vs. time')
xlabel('time (s)')
ylabel('energy (ft-lb)')
axis([0 30 0 3000/convert])

%print(fig1,'-djpeg','-r1500','Lap_plots')

105

%% 3D Plots
% plot velocity vs. position
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{4,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{5,i}; % parameter 2
 LapLogPlot{3,i} = LapLog{21,i}; % parameter 3
end
fig2 = figure;
subplot(2,2,1)
plot3(LapLogPlot{:})
title('velocity vs. position')
xlabel('x-position (ft)')
ylabel('y-position (ft)')
zlabel('velocity (ft/s)')
axis([0 25 0 8 0 3])
grid on

% plot deviation vs. position
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{4,i}; % parameter 1
 LapLogPlot{2,i} = LapLog{5,i}; % parameter 2
 LapLogPlot{3,i} = LapLog{11,i}; % parameter 3
end
subplot(2,2,2)
%figure
plot3(LapLogPlot{:})
title('deviation vs. position')
xlabel('x-position (ft)')
ylabel('y-position (ft)')
zlabel('deviation (ft)')
axis([0 25 0 8 0 2])
grid on

% plot power vs. position (using interpolated position points)
% downsample (for plotting purposes)
downsample = 100;
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{18,i}(1:downsample:length(LapLog{18,i})); % parameter 1
 LapLogPlot{2,i} = LapLog{19,i}(1:downsample:length(LapLog{19,i})); % parameter 2
 LapLogPlot{3,i} = LapLog{22,i}(1:downsample:length(LapLog{22,i})); % parameter 3
end
subplot(2,2,3)
%figure
plot3(LapLogPlot{:})
title('power vs. position')
xlabel('x-position (ft)')
ylabel('y-position (ft)')
zlabel('power (ft-lb/s)')
axis([0 25 0 8 0 200/convert])
grid on

% plot energy vs. position (using interpolated points)
% downsample (for plotting purposes)
for i = 1:length(LapLog)
 LapLogPlot{1,i} = LapLog{18,i}(1:downsample:length(LapLog{18,i})); % parameter 1
 LapLogPlot{2,i} = LapLog{19,i}(1:downsample:length(LapLog{19,i})); % parameter 2
 LapLogPlot{3,i} = LapLog{17,i}(1:downsample:length(LapLog{17,i})); % parameter 3
end
subplot(2,2,4)
%figure
plot3(LapLogPlot{:})
title('energy vs. position')
xlabel('x-position (ft)')
ylabel('y-position (ft)')
zlabel('energy (ft-lb)')
axis([0 25 0 8 0 3000/convert])
grid on

106

%print(fig2,'-djpeg','-r1500','Lap_plots_3D')

%% Cumulative Lap Trend Plots
LapNumber = 1:length(LapLog);
barlaps = 60;
% Time to complete each lap
for i = 1:length(LapLog)
 LapTime(i) = LapLog{6,i}(end);
end
fig3 = figure;
subplot(3,2,1)
title('time to complete each lap')
xlabel('lap number')
ylabel('time (s)')
hold on
k = 1; % subplot counter
% best fit line
P{k} = polyfit(LapNumber,LapTime,1);
Y{k} = LapNumber*P{k}(1) + P{k}(2);
plot(LapNumber,Y{k},'r','linewidth',2)
eqn = ['y = ' sprintf('%3.3fx + %3.3f',[P{k}])];
legend(eqn,'Location','south');
bar(LapTime)
axis([0 barlaps 0 30])
k = k + 1;

% Distance traveled each lap
for i = 1:length(LapLog)
 LapDist(i) = LapLog{20,i}(end);
end
subplot(3,2,2)
title('distance traveled each lap')
xlabel('lap number')
ylabel('distance (ft)')
hold on
% best fit line
P{k} = polyfit(LapNumber,LapDist,1);
Y{k} = LapNumber*P{k}(1) + P{k}(2);
plot(LapNumber,Y{k},'r','linewidth',2)
eqn = ['y = ' sprintf('%3.3fx + %3.3f',[P{k}])];
legend(eqn,'Location','south');
bar(LapDist)
axis([0 barlaps 0 75])
k = k + 1;

% Average velocity each lap
for i = 1:length(LapLog)
 LapVel(i) = mean(LapLog{9,i});
end
subplot(3,2,3)
title('avg velocity each lap')
xlabel('lap number')
ylabel('velocity (ft/s)')
hold on
% best fit line
P{k} = polyfit(LapNumber,LapVel,1);
Y{k} = LapNumber*P{k}(1) + P{k}(2);
plot(LapNumber,Y{k},'r','linewidth',2)
eqn = ['y = ' sprintf('%3.3fx + %3.3f',[P{k}])];
legend(eqn,'Location','south');
bar(LapVel)
axis([0 barlaps 0 3])
k = k + 1;

% Cumulative pathdev each lap
for i = 1:length(LapLog)
 LapDev(i) = sum(LapLog{11,i});
 % normalize to number of frames
 LapDev_Norm(i) = LapDev(i)/length(LapLog{1,i});

107

end
% Normalize to maximum deviation (optional):
% LapDev_Norm2 = LapDev_Norm/max(LapDev_Norm);
subplot(3,2,4)
title('deviation from common path each lap')
xlabel('lap number')
ylabel('lap deviation (ft/s)')
hold on
% best fit line
P{k} = polyfit(LapNumber,LapDev_Norm,1);
Y{k} = LapNumber*P{k}(1) + P{k}(2);
plot(LapNumber,Y{k},'r','linewidth',2)
eqn = ['y = ' sprintf('%3.3fx + %3.3f',[P{k}])];
bar(LapDev_Norm)
legend(eqn,'Location','south');
axis([0 barlaps 0 0.7])
k = k + 1;

% Average power each lap
for i = 1:length(LapLog)
 LapPow(i) = mean(LapLog{14,i});
end
subplot(3,2,5)
title('avg power each lap')
xlabel('lap number')
ylabel('power (ft-lb/s)')
hold on
% best fit line
P{k} = polyfit(LapNumber,LapPow,1);
Y{k} = LapNumber*P{k}(1) + P{k}(2);
plot(LapNumber,Y{k},'r','linewidth',2)
eqn = ['y = ' sprintf('%3.3fx + %3.3f',[P{k}])];
legend(eqn,'Location','south');
bar(LapPow)
axis([0 barlaps 0 140/convert])
k = k + 1;

% Energy consumed each lap
for i = 1:length(LapLog)
 LapEnergy(i) = LapLog{17,i}(end);
end
subplot(3,2,6)
title('energy consumed each lap')
xlabel('lap number')
ylabel('energy (ft-lb)')
hold on
% best fit line
P{k} = polyfit(LapNumber,LapEnergy,1);
Y{k} = LapNumber*P{k}(1) + P{k}(2);
plot(LapNumber,Y{k},'r','linewidth',2)
eqn = ['y = ' sprintf('%3.3fx + %3.3f',[P{k}])];
legend(eqn,'Location','south');
bar(LapEnergy)
axis([0 barlaps 0 3000/convert])
k = k + 1;

%print(fig3,'-djpeg','-r1500','Lap_trends')

%% Final test statistics

[M,N] = size(LapLog);
LapLog11 = [];
LapLog21 = [];
LapLog22 = [];
for i = 1:N
 LapLog6(i) = LapLog{6,i}(end); % time
 LapLog20(i) = LapLog{20,i}(end); % distance
 LapLog21 = [LapLog21;LapLog{21,i}]; %vel
 LapLog11 = [LapLog11;LapLog{11,i}]; %dev

108

 LapLog22 = [LapLog22;LapLog{22,i}]; %pow
 LapLog17(i) = LapLog{17,i}(end);
end

% Key
ResultStatsKey{1} = 'Total laps completed';
ResultStatsKey{2} = 'Total time (s)';
ResultStatsKey{3} = 'Total distance (ft)';
ResultStatsKey{4} = 'Total energy (ft-lb)';
ResultStatsKey{5} = 'Lap time avg (s)';
ResultStatsKey{6} = 'Lap time std (s)';
ResultStatsKey{7} = 'Lap distance avg (ft)';
ResultStatsKey{8} = 'Lap distance std (ft)';
ResultStatsKey{9} = 'Lap velocity avg (ft/s)';
ResultStatsKey{10} = 'Lap velocity std (ft/s)';
ResultStatsKey{11} = 'Lap deviation avg (ft)';
ResultStatsKey{12} = 'Lap deviation std (ft)';
ResultStatsKey{13} = 'Lap power avg (ft-lb/s)';
ResultStatsKey{14} = 'Lap power std (ft-lb/s)';
ResultStatsKey{15} = 'Lap energy avg (ft-lb)';
ResultStatsKey{16} = 'Lap energy std (ft-lb)';
ResultStatsKey = ResultStatsKey';

ResultStats(1) = LapLog{7,end}(1) + 1; % total laps completed
ResultStats(2) = sum(LapLog6); % total time
ResultStats(3) = sum(LapLog20); % total distance
ResultStats(4) = sum(LapLog17); % total energy
ResultStats(5) = mean(LapLog6); % avg lap time
ResultStats(6) = std(LapLog6); % std lap time
ResultStats(7) = mean(LapLog20); % avg lap distance
ResultStats(8) = std(LapLog20); % std lap distance
ResultStats(9) = mean(LapLog21); % avg lap velocity
ResultStats(10) = std(LapLog21); % std lap velocity
ResultStats(11) = mean(LapLog11); % avg lap deviation
ResultStats(12) = std(LapLog11); % std lap deviation
ResultStats(13) = mean(LapLog22); % avg lap power
ResultStats(14) = std(LapLog22); % std lap power
ResultStats(15) = mean(LapLog17); % avg lap energy
ResultStats(16) = std(LapLog17); % std lap energy
ResultStats = ResultStats';

% Cell array of trendline information (slopes and intercepts)
TrendStats = P;
% Saving final information
save('ResultStats.mat','ResultStats','ResultStatsKey','TrendStats');

A.7 Script_Debug_CalibDistort.m

% This script loads in test calibration images.
% For each image, tweek parameters and resulting image is displayed.
% Calls function which employs process.

% Image 1
I = imread('TestImg_1.jpg');
imshow(I)
XPixRight = 9;
YPixDown = -20;
RotDegCCW = 0.5;
K = -0.4;
figure
[im1,input_points,base_points] =
FcnUndistort_Transform_Calib(I,XPixRight,YPixDown,RotDegCCW,K);
imshow(im1)

% input_points = [121.1789 318.0222
% 120.2525 99.8560

109

% 354.6307 320.3382
% 361.1155 97.5400];
% base_points = [120.7157 318.4854
% 120.7157 100.7824
% 360.6523 319.4118
% 361.1155 98.9296];

%% Image 2
I = imread('TestImg_2.jpg');
imshow(I)
XPixRight = 16;
YPixDown = 0;
RotDegCCW = 1;
K = -0.4;
figure
[im1,input_points,base_points] =
FcnUndistort_Transform_Calib(I,XPixRight,YPixDown,RotDegCCW,K);
imshow(im1)

% input_points = [120.5209 302.0057
% 125.6589 75.9348
% 371.3475 301.0715
% 365.2753 72.1981];
% base_points = [126.5930 302.0057
% 126.1259 76.4019
% 364.8082 300.6044
% 364.8082 76.4019];

%% Image 3
I = imread('TestImg_3.jpg');
imshow(I)
XPixRight = 22;
YPixDown = 0;
RotDegCCW = -.5;
K = -0.3;
figure
[im1,input_points,base_points] =
FcnUndistort_Transform_Calib(I,XPixRight,YPixDown,RotDegCCW,K);
imshow(im1)

% input_points = [96.1662 299.0311
% 99.8718 32.2291
% 381.9594 32.2291
% 391.6865 299.9575];
% base_points = [96.6294 298.1047
% 97.0926 31.7659
% 393.0761 31.7659
% 394.0025 298.1047];

A.8 Script_Debug_RawPower.m

% This script looks at raw power data (for debugging purposes)
clear
clc

Listing = dir('F:\ARL_New\MATLAB_4\power_logger*.CSV');

% Get the number of files of data
NumFiles = length(Listing);

% Initialize 'RawData'
RawData = [];

% For every file...
for n=1:NumFiles

110

 % Get the data from the current file
 Import = CSVread(strcat('F:\ARL_New\MATLAB_4\power_logger\',Listing(n,1).name),10,0);

 % Add the data to 'RawData'
 RawData(length(RawData)+1:length(RawData)+length(Import),:) = Import;
end

% Produce powerlog file with voltage, current, power

PowerLog(:,1) = RawData(:,2); % voltage
PowerLog(:,2) = RawData(:,3); % current
PowerLog(:,3) = PowerLog(:,1).*PowerLog(:,2); % power

SamplingRate = 1000;

%Sample = PowerLog(:,1);
Voltage = PowerLog(:,1);
Current = PowerLog(:,2);
Power = Voltage.*Current;
time = (1:length(Power))/SamplingRate;

figure
plot(time,Power,'b')
xlabel('Time (s)')
ylabel('Power (J/s)')
title('power data')

A.9 Script_Debug_Realspace.m

% This script allows users to plot calibrated camera images in realspace,
% good for verifying calibration
clear
clc

% Initialize variables for the code that users may want to modify
[FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File] = FcnInitTestConditions;

% Initialize parameters for the cameras
[IP,CamRes,CamParam] = FcnInitCamParams(FlagLive);

% Initialize variables for the code
[
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps] = FcnInitVars(Data2File,FlagLive);

%% Loading pixel image
im = FcnGetImage_All(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams);
% Undistort the images
load DataCalibCamDistort.mat
im = FcnUndistort(im,DistortionMapping,NumCams,CamRes);

% Real-world position calibration for mapping later
load DataCalibDistTrack.mat

figure
imshow(im)
% im2 = imresize(im,[500 1080]);
% figure (2)
% imshow(im2)

% Grayscale
imgray = rgb2gray(im);
% Contrast
imgray = imadjust(imgray,[.15 .95],[]);
figure
imshow(imgray)

111

% Splitting imgray into individual images
im1 = imgray(:,1:360);
im2 = imgray(:,361:720);
im3 = imgray(:,721:1080);
im1Vec = im1(:);
im2Vec = im2(:);
im3Vec = im3(:);

%% Creating meshpoints from CalibDistTrack
% Cam1 meshgrid
[Cam1MeshX,Cam1MeshY] = meshgrid(CalibDistTrack(1:360,1,1),CalibDistTrack(:,2,1));
Cam1VecX = Cam1MeshX(:);
Cam1VecY = Cam1MeshY(:);
% Cam2 meshgrid
[Cam2MeshX,Cam2MeshY] = meshgrid(CalibDistTrack(1:360,1,2),CalibDistTrack(:,2,2));
Cam2VecX = Cam2MeshX(:);
Cam2VecY = Cam2MeshY(:);
% Cam3 meshgrid
[Cam3MeshX,Cam3MeshY] = meshgrid(CalibDistTrack(1:360,1,3),CalibDistTrack(:,2,3));
Cam3VecX = Cam3MeshX(:);
Cam3VecY = Cam3MeshY(:);

CamTotVecX = [Cam1VecX;Cam2VecX;Cam3VecX];
CamTotVecY = [Cam1VecY;Cam2VecY;Cam3VecY];
imTotVec = [im1Vec;im2Vec;im3Vec];

figure
scatter(CamTotVecX,CamTotVecY,[4],imTotVec);
colormap(gray)
title('Camera real-space mapping')
xlabel('x-position (ft)')
ylabel('y-position (ft)')

A.10 Script_Debug_Velocity.m

% Plot individual data points, from TrialLog.mat

load DataLog.mat
DataLog = FcnDataLogZeros;
X_Pos = DataLog(:,4);
Y_Pos = DataLog(:,5);
figure
plot(X_Pos,Y_Pos,'bs:')
xlabel('x-pos (ft)')
ylabel('y-pos (ft)')

% Plot velocity
[Velocity,Velocity_Filt] = FcnVelocity(DataLog);
DataLog(:,9) = Velocity;
DataLog(:,10) = Velocity_Filt;
figure
plot3(X_Pos,Y_Pos,Velocity_Filt,'bs:')
grid on
xlabel('x-pos (ft)')
ylabel('x-pos (ft)')
zlabel('velocity (ft/s)')

A.11 Script_Skew.m

% This script uses position data from TrialLog.mat to calculate average
% path taken over a whole test. (Work this script into script 4).

112

% Average path data will be plotted, and compared to most common path data,
% also plotted.

close all
clear
clc

load TrialLog.mat
load DataLog.mat
DataLog = FcnDataLogZeros;

%%
X_Pos = DataLogInterp(:,4);
Y_Pos = DataLogInterp(:,5);
Coord = [X_Pos,Y_Pos];

%% Selecting center of figure-8
plot(X_Pos,Y_Pos)
display('Select center of figure-8 (approx.)')
[X_Mid,Y_Mid] = ginput

% Grouping data into two halves
countA = 1;
countB = 1;
for i = 1:length(Coord)
 if Coord(i,1) < X_Mid
 GroupA(countA,:) = Coord(i,:);
 countA = countA + 1;
 else
 GroupB(countB,:) = Coord(i,:);
 countB = countB + 1;
 end
end

% Selecting center points of each half
display('Select midpoint of left loop')
[X_CentA,Y_CentA] = ginput;
display('Select midpoint of right loop')
[X_CentB,Y_CentB] = ginput;

%% Side A / Side B
[X_AvgPathA,Y_AvgPathA,X_Std1UpA,Y_Std1UpA,X_Std1DownA,Y_Std1DownA] =
FcnArcAvg(GroupA,X_CentA,Y_CentA);
[X_AvgPathB,Y_AvgPathB,X_Std1UpB,Y_Std1UpB,X_Std1DownB,Y_Std1DownB] =
FcnArcAvg(GroupB,X_CentB,Y_CentB);

figure
hold on
plot(X_AvgPathA,Y_AvgPathA,'r',X_Std1UpA,Y_Std1UpA,'g',X_Std1DownA,Y_Std1DownA,'g');
plot(X_AvgPathB,Y_AvgPathB,'r',X_Std1UpB,Y_Std1UpB,'g',X_Std1DownB,Y_Std1DownB,'g');
%set(gca,'Color',[0 0 0])

%% Generating common path
[C1,C2] = meshgrid(C{1},C{2});

%% Most common path overlay
count = 1;
CommonPoints = [C1(:),C2(:),Ridge(:)];
for i = 1:length(CommonPoints)
 if Ridge(i) ~= 0
 CommonSparse(count,:) = CommonPoints(i,:);
 count = count + 1;
 end
end

scatter(CommonSparse(:,1),CommonSparse(:,2))

113

A.12 FcnArcAvg.m

function [X_AvgPath,Y_AvgPath,X_Std1Up,Y_Std1Up,X_Std1Down,Y_Std1Down] =
FcnArcAvg(Group,X_Cent,Y_Cent)

% This function takes the position data from one side of a figure-8, and
% the centerpoint, and calculates the average and +1 and -1 std path.

Shift(:,1) = Group(:,1) - X_Cent;
Shift(:,2) = Group(:,2) - Y_Cent;
[Theta,Rho] = cart2pol(Shift(:,1),Shift(:,2));
Pol = [Theta,Rho];
Sort = sortrows(Pol);

%figure
%polar(Sort(:,1),Sort(:,2),'square')

arcsize = 1; % in degrees
binbounds = [-180:arcsize:180]*pi/180;

for i = 1:length(binbounds)-1
 count_bin = 1;
 for k = 1:length(Sort)
 if Sort(k,1) >= binbounds(i) && Sort(k,1) < binbounds(i+1)
 ThetaBins{i}(count_bin,:) = Sort(k,:);
 count_bin = count_bin + 1;
 end
 end
end

for i = 1:length(ThetaBins)
 Rho_Avg(i) = mean(ThetaBins{i}(:,2));
 Rho_Std(i) = std(ThetaBins{i}(:,2));
end

Bin_Centers = binbounds + arcsize/2*(pi/180);
Bin_Centers(end) = [];

Rho_Std1Up = Rho_Avg + Rho_Std;
Rho_Std1Down = Rho_Avg - Rho_Std;

[X_AvgPath,Y_AvgPath] = pol2cart(Bin_Centers,Rho_Avg);
[X_Std1Up,Y_Std1Up] = pol2cart(Bin_Centers,Rho_Std1Up);
[X_Std1Down,Y_Std1Down] = pol2cart(Bin_Centers,Rho_Std1Down);

X_AvgPath = X_AvgPath + X_Cent;
Y_AvgPath = Y_AvgPath + Y_Cent;
X_Std1Up = X_Std1Up + X_Cent;
Y_Std1Up = Y_Std1Up + Y_Cent;
X_Std1Down = X_Std1Down + X_Cent;
Y_Std1Down = Y_Std1Down + Y_Cent;

end

A.13 FcnCalcDist.m

function [TotalDist] = FcnCalcDist(TotalDist,CentroidFT_Last,CentroidFT_Current)

% This function uses the distance formula to compute the distance traveled
% by the fiducial since the last frame.
% It then adds this to the previous total distance to find a new total.

% Calculate the distance traveled between iterations

114

DistChange = sqrt((CentroidFT_Current(1)-CentroidFT_Last(1))^2 + (
CentroidFT_Current(2)-CentroidFT_Last(2))^2);

% Use for horizontal axis distance calibrations
%DistChange = abs(CentroidFT_Current(1)-CentroidFT_Last(1));

% Use for vertical axis distance calibrations
%DistChange = abs(CentroidFT_Current(2)-CentroidFT_Last(2));

% Add the distance traveled between iterations to the previous total
TotalDist = TotalDist + DistChange;

end

A.14 FcnCalcLaps.m

function [TotalLaps,LastZone] = FcnCalcLaps(
CalibEndzones,TotalLaps,LastZone,CentroidPX_Current)

% This function keeps tracks of laps completed by the fiducial.

% Extract endzone parameters;
Lm = CalibEndzones(1,1);
Lb = CalibEndzones(1,2);
Rm = CalibEndzones(2,1);
Rb = CalibEndzones(2,2);

% When the object is first in an endzone, start lap counting by changing
% 'LastZone' to 1 or 2 depending on the endzone it is in
if LastZone == 0
 if CentroidPX_Current(1) >= CentroidPX_Current(2)*Rm+Rb
 LastZone = 1;
 end
 if CentroidPX_Current(1) <= CentroidPX_Current(2)*Lm+Lb
 LastZone = 2;
 end
end

% Look for the fiducial to enter the opposite endzone from the last it entered
% and update the lap counter
if LastZone == 1
 if CentroidPX_Current(1)<=CentroidPX_Current(2)*Lm+Lb
 LastZone = 2;
 TotalLaps = TotalLaps+.5;
 end
end

if LastZone==2
 if CentroidPX_Current(1)>=CentroidPX_Current(2)*Rm+Rb
 LastZone = 1;
 TotalLaps = TotalLaps+.5;
 end
end

end

A.15 FcnDataLogZeros.m

function [DataLog] = FcnDataLogZeros()

% This function removes the zeros off the end of the datalog matrix
load DataLog.mat
Endlog = max(DataLog,[],1);

115

MaxIter = Endlog(1);
DataLog = DataLog(1:MaxIter,:);

end

A.16 FcnGetCalibrations.m

function [CalibDistTrack,CalibEndzones,newlocation,DistortionMapping,CalibBlackBars] =
FcnGetCalibrations

% This function loads data files for calibrations necessary to the algorithms

% Initialize a flag for whether we have all the necessary data files so that the loop
runs at least once
Flag = 0;

% While we DON'T have all the data files
while Flag == 0

 % Try to load all the data files and set Flag = 1 if we make it all the way through
 try
 load DataCalibDistTrack.mat % Creates variable: CalibDistTrack
 load DataCalibEndzones.mat % Creates variable: CalibEndzones
 load DataCalibCamDistort.mat % Creates variable: CalibDistort
 load DataCalibBlackBars.mat % Creates variable: CalibBlackBars
 Flag = 1;
 catch fail
 Flag = 0;
 end

 % If we DIDN'T find all the data files last iteration, run the calibration script
 if Flag == 0
 commandwindow
 disp('WARNING: One or more of the calibration data files could not be found.
Check which is missing and press any key to run the calibration script!');
 pause;
 ScriptCalibrate
 Flag = 0;
 end
end
end

A.17 FcnGetImage.m

function [im] = FcnGetImage(IP,FlagLive,TimeStamps,Iter,CamNum)

% This function loads an image from a camera and corrects it for barrel distortion.

% If taking images in real-time
if FlagLive == 1

 % Get IP address for the camera
 name = IP{CamNum};

 % Load image from the camera
 im = imread(name);

 % If loading image from file
else

 % Use the first image in the initialiation step
 if Iter ==0

116

 Iter = 1;
 end

 % Generate the file name for each image to be loaded
 name =
strcat('images_PY/','cam_',num2str(CamNum),'/',num2str(TimeStamps(Iter),'%f'),'.jpg');

 % Load image from file
 im = imread(name);
end

% Rotate the image appropriately
switch CamNum
 case 1
 im = imrotate(im,-90);
 case 2
 im = imrotate(im,-90);
 case 3
 im = imrotate(im,-90);
end

% Crop out the top and bottom of the image
im(1:50,1:360,:)=0;
im(450:480,1:360,:)=0;

end

A.18 FcnGetImage_All.m

function [im] = FcnGetImage_All(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams)

% This function gets an image from every camera in the system.

% Make an empty matrix to hold the camera images
im = uint8(zeros(CamRes(1),CamRes(2)*NumCams,3));

% Get an image from each camera and concatenate
for CamNum=1:NumCams
 newim = FcnGetImage(IP,FlagLive,TimeStamps,Iter,CamNum);

 if CamNum == 1
 im(:,1:CamRes(2),:) = newim;
 else
 im(:,(CamRes(2)*(CamNum-1)) + 1:CamRes(2)*CamNum,:) = newim;
 end
end

end

A.19 FcnGetImage_Select.m

function [im,LeftBound,TopBound] = FcnGetImage_Select(
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams,CentroidPX_Last,CalibBlackBars)

% This function get images from only those cameras within 'MatWidth' pixels of
% the last fiducial location and crops the image to be more or less
% centered at that location.

% Set the width of the box to search, more or less centered at the previous centroid
location
MatWidth = 300; % The defualt is 300

117

LeftBound = CentroidPX_Last(1)-MatWidth/2; % Set the left boundary
RightBound = CentroidPX_Last(1)+MatWidth/2; % Set the right boundary
TopBound = CentroidPX_Last(2)-MatWidth/2; % Set the top boundary
BottomBound = CentroidPX_Last(2)+MatWidth/2; % Set the bottom boundary

% If the left boundary is out of bounds, set it as the boundary
if LeftBound < 1
 LeftBound = 1;
end
% If the right boundary is out of bounds, set it as the boundary
if RightBound > NumCams*CamRes(2)
 RightBound = NumCams*CamRes(2);
end
% If the top boundary is out of bounds, set it as the boundary
if TopBound < 1
 TopBound = 1;
end
% If the bottom boundary is out of bounds, set it as the boundary
if BottomBound > CamRes(1)
 BottomBound = CamRes(1);
end

% Get the number of the camera in which each bound lies
CamNum_Left = ceil(LeftBound / CamRes(2));
CamNum_Right = ceil(RightBound / CamRes(2));

% Generate a list of the border cameras from from which we need images
Cams = sort(unique([CamNum_Left,CamNum_Right]));

% If cameras 1 and 3 are needed, add in camera 2 as well
if Cams == [1 3]
 Cams = [1 2 3];
end

% Make an empty matrix to hold the camera images
im = uint8(zeros(CamRes(1),CamRes(2)*max(Cams),3));

% Get an image from each camera
for CamIndex=1:size(Cams,2)
 newim = FcnGetImage(IP,FlagLive,TimeStamps,Iter,Cams(CamIndex));

 % Crop out overlap in the images
 % (this is done in FcnUndistort when FlagPlot is 1
 switch Cams(CamIndex)
 case 1
 % newim(1:480,330:360,:) = 0;
 % black bars
 newim(:,CalibBlackBars(1):CalibBlackBars(2),:) = 0;
 newim(:,CalibBlackBars(3):CalibBlackBars(4),:) = 0;
 % cone boxes

newim(CalibBlackBars(5,2):CalibBlackBars(6,2),CalibBlackBars(5,1):CalibBlackBars(6,1),:)
= 0;

newim(CalibBlackBars(7,2):CalibBlackBars(8,2),CalibBlackBars(7,1):CalibBlackBars(8,1),:)
= 0;

 case 2
 % newim(1:480,1:30,:) = 0;
 case 3
 % newim(1:480,330:360,:) = 0;
 case 4
 % newim(1:480,1:10,:) = 0;
 end

 if CamIndex == 1
 im(:,1:CamRes(2),:) = newim;
 else
 im(:,(CamRes(2)*Cams(CamIndex-1)) + 1:CamRes(2)*Cams(CamIndex),:) = newim;

118

 end
end

% Adjust the bounds to refer to the indices of the images we just compliled
LeftBound_Ref = LeftBound - (Cams(1) - 1)*CamRes(2);
RightBound_Ref = RightBound - (Cams(1) - 1)*CamRes(2);

% Crop the image by taking these bounds
im = im(TopBound:BottomBound,LeftBound_Ref:RightBound_Ref,:);
end

A.20 FcnGetPosition.m

function [CentroidFT_Current,CentroidPX_Current,CentroidPX_Current_Raw,FlagObjFound] =
FcnGetPosition(
IP,CamRes,FlagLive,TimeStamps,FlagObjFound,Iter,NumCams,CalibDistTrack,CalibEndzones,Cent
roidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagPlot,newlocation,DistortionMapping,Ca
libBlackBars)

% This function gets the position of the fiducial in both pixels and feet.

if FlagObjFound == 1 && FlagPlot == 0
 % If we found the fiducial last iteration AND are NOT plotting every iteration,
 % get an image from nearby cameras and crop the image around the last known position
 [im,LeftBound,TopBound] = FcnGetImage_Select(
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams,CentroidPX_Last,CalibBlackBars);
 FlagScopeLimited = 1;
else
 % If we didn't find the fiducial last time, get an image from every camera
 im = FcnGetImage_All(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams);
 FlagScopeLimited = 0;
end

% If we're in the zero iteration, can test to benchmark validity of
% the distortion lookup table.
if Iter==0
 im_bench_transform = FcnUndistort_Transform(im,NumCams,CamRes);
 im_bench_lookup = FcnUndistort(im,DistortionMapping,NumCams,CamRes);
 im_bench_difference = abs(im_bench_transform - im_bench_lookup);
 figure
 subplot(3,1,1)
 imshow(im_bench_transform)
 title('image comparison - transform')
 subplot(3,1,2)
 imshow(im_bench_lookup)
 title('image comparison - lookup')
 subplot(3,1,3)
 imshow(im_bench_difference)
 title('image comparison - difference')
end

% If we're IN the zeroth iteration OR the plot flag is ON...
if Iter==0 || FlagPlot == 1
 % Undistort the entire image
 im = FcnUndistort(im,DistortionMapping,NumCams,CamRes);
 % Display black bars on image
 im(:,CalibBlackBars(1):CalibBlackBars(2),:) = 0;
 im(:,CalibBlackBars(3):CalibBlackBars(4),:) = 0;
 % Display cone boxes on image
 im(CalibBlackBars(5,2):CalibBlackBars(6,2),CalibBlackBars(5,1):CalibBlackBars(6,1),:)
= 0;
 im(CalibBlackBars(7,2):CalibBlackBars(8,2),CalibBlackBars(7,1):CalibBlackBars(8,1),:)
= 0;
end

% Get the fiducial location in pixels and update FlagObjFound

119

[Mask,FlagObjFound,CentroidPX_Current] = FcnMask(im,CentroidPX_Last);

% If the fiducial was found...
if FlagObjFound == 1

 % If the scope was limited, adjust the centroid locations to refer to
 % the full range of the camera images
 if FlagScopeLimited == 1
 CentroidPX_Current(1) = CentroidPX_Current(1) + LeftBound;
 CentroidPX_Current(2) = CentroidPX_Current(2) + TopBound;
 end

 one_sigmaX = .7;%= 0.2265;
 one_sigmaY = .7;%= 0.2477;
 % If we are within the 3-sigma bounds of the expected steady state noise, set the
position to be equal to the last position
 if FlagPlot == 1
 if abs(CentroidPX_Current(1)-CentroidPX_Last(1)) < 3*one_sigmaX
 CentroidPX_Current(1) = CentroidPX_Last_Raw(1);
 end
 if abs(CentroidPX_Current(2)-CentroidPX_Last(2)) < 3*one_sigmaY
 CentroidPX_Current(2) = CentroidPX_Last_Raw(2);
 end
 elseif FlagPlot == 0
 if abs(CentroidPX_Current(1)-CentroidPX_Last_Raw(1)) < 3*one_sigmaX
 CentroidPX_Current(1) = CentroidPX_Last_Raw(1);
 end
 if abs(CentroidPX_Current(2)-CentroidPX_Last_Raw(2)) < 3*one_sigmaY
 CentroidPX_Current(2) = CentroidPX_Last_Raw(2);
 end
 end

 % Round the centroid locations to integers
 CentroidPX_Current = round(CentroidPX_Current);

 % Save the pixel position (for when FlagPlot = 0
 CentroidPX_Current_Raw = CentroidPX_Current;

 % Get the number of the camera in which the fiducial was found
 CamNum = ceil(CentroidPX_Current(1) / CamRes(2));

 % Get the X location of fiducial WRT that camera's indices only
 CentroidPX_Current_Ref = CentroidPX_Current(1) - ((CamNum-1) * (CamRes(2)));

 % If we're AFTER the zeroth iteration and the plot flag is OFF...
 if Iter~=0 && FlagPlot == 0

 % If we have not undistorted the entire image
 if FlagScopeLimited == 1
 % Correct the centroid position only for barrel distortion
 linearInd =
sub2ind([CamRes(2),CamRes(1),1],CentroidPX_Current_Ref,CentroidPX_Current(2));
 [CentroidPX_Current_Ref, CentroidPX_Current(2)] =
ind2sub([CamRes(2),CamRes(1),1],newlocation(linearInd,CamNum));
 end
 end

 % Get the real-world coordinates of the pixels
 CentroidFT_Current(1) = CalibDistTrack(CentroidPX_Current_Ref,1,CamNum);
 CentroidFT_Current(2) = CalibDistTrack(CentroidPX_Current(2),2,CamNum);
 %CentroidFT_Current(2) = CalibDistTrack(480-CentroidPX_Current(2) ,2,CamNum);

else
 % Otherwise, position variables don't change
 CentroidFT_Current = CentroidFT_Last;
 CentroidPX_Current = CentroidPX_Last;
 CentroidPX_Current_Raw = CentroidPX_Last_Raw;
end

120

% If we're IN the zeroth iteration OR the plot flag is ON...
if Iter==0 || FlagPlot == 1

 if FlagObjFound == 0 && Iter == 0
 % If we're in the zeroth iteration and the object is not found, display an error
message
 error('Object not found at first check. Please place it in view of the camera
and run the script again.')
 else

 % Clear the figure window
 if Iter > 1
 pause(.01)
 clf
 end

 % If the object is found, plot it

FcnPlot(im,Mask,CalibEndzones,CentroidPX_Current,CentroidFT_Current,CamRes(2)*NumCams,Cam
Res(1),FlagObjFound);
 end
end

A.21 FcnGetTimestamps.m

function [TimeStamps] = FcnGetTimestamps()

% This function extract timestamps from the image filenames

% Check for the necessary file and don't run without it
while isdir('images_PY') == 0
 disp('WARNING! The "images_PY" folder was not found in the current directory. Move
it there and press any key to continue. ');
 pause
end
while isdir('images_PY/cam_1') == 0
 disp('WARNING! The "cam_1" folder was not found in the current directory. Move it
there and press any key to continue. ');
 pause
end
while isdir('images_PY/cam_2') == 0
 disp('WARNING! The "cam_2" folder was not found in the current directory. Move it
there and press any key to continue. ');
 pause
end
while isdir('images_PY/cam_3') == 0
 disp('WARNING! The "cam_3" folder was not found in the current directory. Move it
there and press any key to continue. ');
 pause
end

% Get the filenames in the images_PY folder
listing = dir('images_PY/cam_1/*.jpg');

% Initialze a variable for iteration number
Iter = 1;

% Cycle through all the files in the folder
for file=1:length(listing)

 % Get the number of characters in the filename
 numchars = length(listing(file).name);

 % If it is a valid filename and for camera 1
 if numchars > 8
 % Save the timestamps

121

 TimeStamps(Iter,1) = str2num(listing(file).name(1:(numchars-4)));

 % Increase the iteration counter
 Iter = Iter+1;
 end
end

TimeStamps = sort(TimeStamps);

end

A.22 FcnInitBlackBars.m

function [] = FcnInitBlackBars(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams)
% This function initializes the process of generating or loading black bar
% calibrations, to eliminate overlap in the camera images.

% Use a dialogue to ask whether the user wants to create new calibrations
choice = questdlg('Load last black bar calibrations or create new ones?', ...
 'Black Bar Calibrations', ...
 'Use Last','Create New','Create New');
% Handle response
switch choice
 case 'Create New'
 CalibBlackBars =
FcnInitBlackBars_Calib(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams); % Take new
calibrations
 save('DataCalibBlackBars.mat','CalibBlackBars')
end
end

A.23 FcnInitBlackBars_Calib.m

function [CalibBlackBars] = FcnInitBlackBars_Calib(
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams)
% This functions generates the black bar calibrations

% Get an image for each camera
im = FcnGetImage_All(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams);

% Undistort the images
load DataCalibCamDistort.mat
im = FcnUndistort(im,DistortionMapping,NumCams,CamRes);

figure (1)
imshow(im)

disp('Select points as where to put black bars in between camera images.')
disp('Choose points in order of left to right.')
disp('Select two corners (top-left to bottom-right) of boxes for cones')
CalibBlackBars = ginput;
CalibBlackBars = round(CalibBlackBars);
im(:,CalibBlackBars(1):CalibBlackBars(2),:) = 0;
im(:,CalibBlackBars(3):CalibBlackBars(4),:) = 0;
im(:,CalibBlackBars(5,1):CalibBlackBars(6,1),CalibBlackBars(5,2):CalibBlackBars(6,2)) =
0;
im(:,CalibBlackBars(7,1):CalibBlackBars(8,1),CalibBlackBars(7,2):CalibBlackBars(8,2)) =
0;

end

122

A.24FcnInitCamParams.m

function [IP,CamRes,CamParam] = FcnInitCamParams(FlagLive)

% This function initialize parameters for all the cameras.

% Save URLs for the cameras (also sets their resolutions)
IP = {'http://172.16.1.01/axis-cgi/jpg/image.cgi?resolution=480X360';
 'http://172.16.1.02/axis-cgi/jpg/image.cgi?resolution=480X360';
 'http://172.16.1.03/axis-cgi/jpg/image.cgi?resolution=480X360'};

if FlagLive == 1
 % Extract and package camera resolutions from URLs above
 IP1 = IP{1,1};
 CamRes = [str2double(IP1(1,54:56)),str2double(IP1(1,58:60))];
else
 % Set a camera resolution for whne images are loaded from file
 CamRes = [480,360];
 %CamRes = [320,240];
end

% Load and organize camera calibraiton parameters
% --> kc,cc,fc are taken with the OpenCV camera calibration toolbox
% --> alpha_c is always zero

% For Camera 1 (sees the door)
alpha_c1 = 0; % Skew Coefficient
fc1 = [302.149012 ; 295.704801]; % Focal lengths for each axis in pixels
cc1 = [223.006212 ; 182.921981]; % Image center for each axis
kc1 = [-0.342700; 0.108096; 0.007426; 0.003782; 0.000000]; % Distortion matrix
Cam1 = struct('kc',kc1,'cc',cc1,'fc',fc1,'alpha_c',alpha_c1);

% For Camera 2 (sees the middle of the track)
alpha_c2 = 0; % Skew Coefficient
fc2 = [276.514980 ; 247.499571]; % Focal lengths for each axis
cc2 = [222.343345 ; 205.275207]; % Image center for each axis
kc2 = [-0.268546; 0.055665; -0.010588; 0.001720; 0.000000]; % Distortion matrix
Cam2 = struct('kc',kc2,'cc',cc2,'fc',fc2,'alpha_c',alpha_c2);

% For Camera 3 (sees the back wall)
alpha_c3 = 0; % Skew Coefficient
fc3 = [348.098814 ; 313.024017]; % Focal lengths for each axis
cc3 = [209.421260 ; 185.194388]; % Image center for each axis
kc3 = [-0.406560; 0.150852; 0.001216; 0.005513; 0.000000]; % Distortion matrix
Cam3 = struct('kc',kc3,'cc',cc3,'fc',fc3,'alpha_c',alpha_c3);

CamParam=struct('Cam1',Cam1,'Cam2',Cam2,'Cam3',Cam3);

end

A.25 FcnInitDistortCorrection.m

function [] = FcnInitDistortCorrection(CamParam,NumCams,CamRes)

% This function initializes the process of calculating or loading camera distortion
calibrations.

% Use a dialogue to ask whether the user wants to create new calibrations
choice = questdlg('Load last camera distortion corrections or create new ones?', ...
 'Camera Distortion Corrections', ...
 'Use Last','Create New','Create New');
% Handle response
switch choice
 case 'Create New'

123

 FcnInitDistortCorrection_Calib_Part1(CamParam,NumCams,CamRes); % generating table
 FcnInitDistortCorrection_Calib_Part2; % clean up holes and save

end

end

A.26 FcnInitDistortCorrection_Calib_Part1.m

function [] = FcnInitDistortCorrection_Calib_Part1(CamParam,NumCams,CamRes)

% This function conducts calibrations for camera distortion.

% Distorted images for each camera must be in the current directory and
% saved as "Calib_im_1" , "Calib_im_2" , etc.

commandwindow
disp('WARNING: This calibration takes a very long time to process (~20 hrs). Press any
key to run it anyway!');
pause;

% Create a place to store where indices move to:
im_distorted = imread(strcat('Calib_im_1.jpg'));
greyim_distorted = rgb2gray(im_distorted);
newlocation = zeros(numel(greyim_distorted),NumCams);

DistortionMapping = ones(length(newlocation),NumCams);
DistortionMappingSparse = zeros(size(DistortionMapping));

for CamNum = 1:NumCams

% % Load the cameara calibration parameters
% name = strcat('Cam',num2str(CamNum));
% alpha_c = CamParam.(name).alpha_c;
% fc = CamParam.(name).fc;
% cc = CamParam.(name).cc;
% kc = CamParam.(name).kc;
% Cam = struct('kc',kc,'cc',cc,'fc',fc,'alpha_c',alpha_c);
% KK = [fc(1) alpha_c*fc(1) cc(1);0 fc(2) cc(2) ; 0 0 1];

 % Open an image from that camera from file and make it greyscale
 im_distorted = imread(strcat('Calib_im_',num2str(CamNum),'.jpg'));
 greyim_distorted = rgb2gray(im_distorted);

 % Save the number of rows & columns in the original image
 [rows cols] = size(greyim_distorted);

 % Create a linear array of zeros... many rows, one column
 zerotemplate_distorted = zeros(numel(greyim_distorted),1);

 for i=1:length(zerotemplate_distorted)
 % Fill in one pixel with 255, leaving all others to be zeros.
 template_distorted = zerotemplate_distorted;
 template_distorted(i) = 255;

 % Convert back to an array
 matrixtemplate_distorted = reshape(template_distorted,rows,cols);

 % Correct distortion
 % matrixtemplate_undistorted =
uint8(FcnFixDistort_Rect(double(matrixtemplate_distorted),eye(3),fc,cc,kc,alpha_c,KK));
 matrixtemplate_undistorted =
uint8(FcnUndistort_Transform_Inputs(double(matrixtemplate_distorted),CamNum));

 if 1==1 % Change to 1 to see it working live... painfully slow
 % Plot the distorted and undistorted versions side by side

124

 figure(3)
 subplot(1,2,1)
 imshow(matrixtemplate_distorted)
 title('DISTORTED')
 subplot(1,2,2)
 imshow(matrixtemplate_undistorted)
 title('UNDISTORTED')
 xlabel(sprintf('%3.2f percent
complete',i/length(zerotemplate_distorted)*100));
 pause(0.01);
 end

 % Find maximum
 template_undistorted = reshape(matrixtemplate_undistorted,rows*cols,1);
 [~,max_ind] = max(template_undistorted);

 % Store resulting index, e.g. where the original pixel moved to
 newlocation(i,CamNum) = max_ind;

 % Print a percent completion
 fprintf('Stage 1, Camera %d, %3.2f percent complete
\n',CamNum,i/length(zerotemplate_distorted)*100)

 end
 fprintf('100.00 percent complete\n')

 % Now flip the mapping (could do this in the code above, but forgot and don't want to
re-run it!)
 for i=1:length(newlocation)
 DistortionMapping(newlocation(i,CamNum),CamNum) = i;
 end

 % Save result, because it illustrates where interpolation is necessary
 DistortionMappingSparse(:,CamNum) = DistortionMapping(:,CamNum);

end

save('DistortionMappingSparse.mat') % checkpoint for debugging purposes (table generation
takes a long time)

A.27 FcnInitDistortCorrection_Calib_Part2.m

function [] = FcnInitDistortCorrection_Calib_Part2()

load('DistortionMappingSparse.mat')
for CamNum = 1:NumCams
 %% Now, fix locations where mapping is sparse
 for i=1:length(DistortionMappingSparse)
 if 1==DistortionMappingSparse(i,CamNum)

 % Identify the pixel values that are adjacent to an empty pixel
 % Uncomment the one below if need to do corners as well
 neighbors = [i-rows-1, i-rows, i-rows+1, i-1, i+1, i+rows-1, i+rows,
i+rows+1];

 % Grab adjacent rows
 % neighbors = [i-rows, i-1, i+1, i+rows];

 % Make sure they are valid neighbors , e.g. they are not hanging over edge of
image
 good_neighbors = neighbors(neighbors>0);
 good_neighbors = good_neighbors(good_neighbors<(rows*cols+1));

 % Make sure the map isn't = 1 at these locations

125

 indices_to_chose_from =
good_neighbors(DistortionMappingSparse(good_neighbors,CamNum)>1);

 % Pick one at random and assign the gap to this neighbor
 value = ceil(rand*length(indices_to_chose_from));
 if value > 0
 DistortionMappingSparse(i,CamNum) =
DistortionMappingSparse(indices_to_chose_from(value),CamNum);
 end
 end
 end

DistortionMapping(:,CamNum) = DistortionMappingSparse(:,CamNum);
 %% Now fix missing locations in newlocation matrix

 % First, save sparse version of newlocation
 newlocationSparse = newlocation;

 % Fill in some arrays
 good_values = find(newlocationSparse(:,CamNum)>1);
 [good_rows, good_cols] = ind2sub(size(greyim_distorted),good_values);

 % Define the pixel we are looking for (I do an entire column to illustrate
 % situations where the pixel is found AND not found)
 count = 0;
 for row = 1:rows
 for col = 1:cols
 count = count+1;
 % First, find the indices of the point inside the distorted image
 linearInd = sub2ind(size(greyim_distorted),row,col);

 % Below is unnecessary. I used to need it before I fixed the
 % newlocation array to point to nearest term
 if 1==1
 is_good = find(good_values==linearInd); % gives a number if it is good

 % If you don't find the pixel, we have to search for nearby ones.
 if isempty(is_good) % Pixel wasn't found!
 % Find distances from this row/col to all good rows/cols
 distances = (good_rows - row).^2 + (good_cols - col).^2;

 % Take minimum... keep only the index of the minimum
 [junk,min_i] = min(distances);

 % Assign this good index to replace the bad index value
 newlocation(linearInd,CamNum) =
newlocation(good_values(min_i),CamNum);
 end
 end
 fprintf('Stage 2, Camera %d, %0.2f percent complete
\n',CamNum,100*count/(rows*cols));
 end
 end

 %% Save data from calibration
 name = strcat('Cam_',num2str(CamNum));
% info_newlocation.(name).Cam = Cam;
% info_newlocation.(name).fc = fc;
% info_newlocation.(name).alpha_c = alpha_c;
% info_newlocation.(name).cc = cc;
% info_newlocation.(name).kc = kc;
% info_newlocation.(name).KK = KK;
 info_newlocation.(name).rows = rows;
 info_newlocation.(name).cols = cols;

 save DataCalibCamDistort.mat newlocationSparse newlocation DistortionMappingSparse
DistortionMapping info_newlocation

 disp(strcat('Cam ',CamNum,' Complete!'))

126

end

A.28 FcnInitDistTrack.m

function [] = FcnInitDistTrack(IP,FlagLive,TimeStamps,Iter,NumCams,CamRes)

% This function initializes the process of calculating or loading distance tracking
calibrations.

% Use a dialogue to ask whether the user wants to create new calibrations
choice = questdlg('Load last distance tracking calibrations or create new ones?', ...
 'Distance Tracking Calibrations', ...
 'Use Last','Create New','Create New');
% Handle response
switch choice
 case 'Create New'
 CalibDistTrack =
FcnInitDistTrack_Calib(IP,FlagLive,TimeStamps,Iter,NumCams,CamRes); % Take new
calibrations
 save('DataCalibDistTrack.mat','CalibDistTrack')
end

end

A.29 FcnInitDistTrack_Calib.m

function [CalibDistTrack] = FcnInitDistTrack_Calib(
IP,FlagLive,TimeStamps,Iter,NumCams,CamRes)

% This function allows the user to conduct calibrations for distance tracking.

% Load images from each camera, one at at time
for CamNum= 1:3
 calibcheck = 'n';
 while calibcheck ~= 'y'
 % Read in a camera image
 im = FcnGetImage(IP,FlagLive,TimeStamps,Iter,CamNum);
 % Undistort the image
 load DataCalibCamDistort.mat
 % Flip the image segment back to how it was originally
% switch CamNum
% case 1
% im = imrotate(im,90);
% case 2
% im = imrotate(im,90);
% case 3
% im = imrotate(im,90);
% case 4
% im = imrotate(im,90);
% end
 for Dimension = 1:3
 imlayer = im(:,:,Dimension);
 switch CamNum
 case 1
 I = imrotate(imlayer,90);
 XPixRight = 9;
 YPixDown = -20;
 RotDegCCW = 0.5;
 K = -0.4;
 input_points = [121.1789 318.0222
 120.2525 99.8560
 354.6307 320.3382
 361.1155 97.5400];

127

 base_points = [120.7157 318.4854
 120.7157 100.7824
 360.6523 319.4118
 361.1155 98.9296];
 imlayer =
FcnUndistort_Transform_Ind(I,XPixRight,YPixDown,RotDegCCW,K,input_points,base_points);
 imlayer = imrotate(imlayer,-90);
 case 2
 I = imrotate(imlayer,90);
 XPixRight = 16;
 YPixDown = 0;
 RotDegCCW = 1;
 K = -0.4;
 input_points = [120.5209 302.0057
 125.6589 75.9348
 371.3475 301.0715
 365.2753 72.1981];
 base_points = [126.5930 302.0057
 126.1259 76.4019
 364.8082 300.6044
 364.8082 76.4019];
 imlayer =
FcnUndistort_Transform_Ind(I,XPixRight,YPixDown,RotDegCCW,K,input_points,base_points);

 imlayer = imrotate(imlayer,-90);
 case 3
 I = imrotate(imlayer,90);
 XPixRight = 22;
 YPixDown = 0;
 RotDegCCW = -.5;
 K = -0.3;
 input_points = [96.1662 299.0311
 99.8718 32.2291
 381.9594 32.2291
 391.6865 299.9575];
 base_points = [96.6294 298.1047
 97.0926 31.7659
 393.0761 31.7659
 394.0025 298.1047];
 imlayer =
FcnUndistort_Transform_Ind(I,XPixRight,YPixDown,RotDegCCW,K,input_points,base_points);
 imlayer = imrotate(imlayer,-90);
 end
 %imlayer = reshape(imlayer(DistortionMapping(:,CamNum)),CamRes(2),CamRes(1));
 im(:,:,Dimension) = imlayer;
 end
 % Re-rotate the image segment
 % Note: Image rotation dependant on camera setup!
% switch CamNum
% case 1
% im = imrotate(im,-90);
% case 2
% im = imrotate(im,-90);
% case 3
% im = imrotate(im,-90);
% case 4
% im = imrotate(im,-90);
% end

 commandwindow
 % Get two vertical points
 fprintf('Select two points in a vertical line.\n')
 [pointPX_Vert,pointFT_Vert] = FcnInitDistTrack_Get2Pts(im);

 commandwindow
 % Get two horizontal points
 fprintf('Select two points in a horizontal line.\n')
 [pointPX_Horiz,pointFT_Horiz] = FcnInitDistTrack_Get2Pts(im);

128

 % Get a scale factor of pixels/feet
 FTperPX_Vert = (pointFT_Vert(1,2)-pointFT_Vert(2,2)) / (pointPX_Vert(1,2)-
pointPX_Vert(2,2));
 FTperPX_Horiz = (pointFT_Horiz(2,1)-pointFT_Horiz(1,1)) / (pointPX_Horiz(2,1)-
pointPX_Horiz(1,1));

 % Get the length of the longest axis
 Length=length(im);

 % Get the size of the image
 Res_Vert = size(im,1);
 Res_Horiz = size(im,2);

 % Initialize 1D arrays in which to store real-world pixel locations
 FT_Vert = zeros(Length,1);
 FT_Horiz = zeros(Length,1);

 % Initialize 'CalibDistTrack' on the first iteration
 if CamNum == 1
 CalibDistTrack=zeros(Length,2,NumCams);
 end

 % Calculate the real-world location of every vertical pixel
 for Res = 1:Res_Vert
 FT_Vert(Res) = pointFT_Vert(1,2) + FTperPX_Vert * (Res - pointPX_Vert(1,2)
);
 end

 % Calculate the real-world location of every horizontal pixel
 for Res = 1:Res_Horiz
 FT_Horiz(Res) = pointFT_Horiz(1,1) + FTperPX_Horiz * (Res -
pointPX_Horiz(1,1));
 end

 figure(1)

 % Set the axes so that the text about to be plotted will be visibile
 axis([-200 Res_Horiz+200 -200 Res_Vert+200])

 % Identify some pixel locations at which to plot the calibrated real-world points
 PointsToPlot =
[1,1;1,Res_Vert;Res_Horiz,1;Res_Horiz,Res_Vert;round(Res_Horiz/2),round(Res_Vert/2)];

 % Plot and label the real-world points on the image
 for n=1:size(PointsToPlot,1)

 plot(PointsToPlot(n,1),PointsToPlot(n,2),'black.-','markersize', 30);
 plot(PointsToPlot(n,1),PointsToPlot(n,2),'red+','markersize', 10);
 text(PointsToPlot(n,1), PointsToPlot(n,2),horzcat(...
 ' ',num2str(FT_Horiz(PointsToPlot(n,1))),' , ',...
 ' ',num2str(FT_Vert (PointsToPlot(n,2)))), 'FontSize',18);
 end

 % Verify with the user that the calibration for this camera is okay
 commandwindow
 calibcheck = input('Calibration okay (y/n)? ', 's');

 if calibcheck ~= 'y'
 fprintf('Restarting calibration for this camera...\n')
 end

 % Clear the command window and close the figure
 close(1)
 end

 clc

 %Package and return CalibDistTrack

129

 CalibDistTrack(:,:,CamNum)= [FT_Horiz,FT_Vert];
end

A.30 FcnInitDistTrack_Get2Pts.m

function [pointPX,pointFT] = FcnInitDistTrack_Get2Pts(im)

% This function allows the user to select two locations on the image and
% enter their real-world locations.

% Prepare the figure
figure(1)
clf(1)
imagesc(im)
hold on
axis tight

for PointNum=1:2

 pointcheck = 'n';

 while pointcheck ~= 'y'

 figure(1)

 % Have user input a point
 pointPX(PointNum,:) = ginput(1);

 % Show the point on the figure
 h(1) = plot(pointPX(PointNum,1),pointPX(PointNum,2),'black.-','markersize', 30
);
 h(2) = plot(pointPX(PointNum,1),pointPX(PointNum,2),'red+','markersize', 10);

 commandwindow

 % Verify that the point is okay
 pointcheck = input('Point okay (y/n)? ', 's');

 if pointcheck ~= 'y'
 delete(h(1));
 delete(h(2));
 fprintf('Select a new point.\n')
 end
 end

 % Obtain and store the real-world point locations
 pointX = str2num(input('Enter X location (ft): ', 's'));
 pointY = str2num(input('Enter Y location (ft): ', 's'));
 pointFT(PointNum,:)=[pointX,pointY];

end

delete(h(1));
delete(h(2));

end

A.31 FcnInitEndzones.m

function [] = FcnInitEndzones(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams)

% This function initializes the process of calculating or loading endzone calibrations.

130

% Use a dialogue to ask whether the user wants to create new calibrations
choice = questdlg('Load last endzone calibrations or create new ones?', ...
 'Endzone Calibrations', ...
 'Use Last','Create New','Create New');
% Handle response
switch choice
 case 'Create New'
 CalibEndzones =
FcnInitEndzones_Calib(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams); % Take new
calibrations
 save('DataCalibEndzones.mat','CalibEndzones')
end

end

A.32 FcnInitEndzones_Calib.m

function [CalibEndzones] = FcnInitEndzones_Calib(
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams)

% This function allows the user to conduct calibrations for lap tracking.

% Get an image for each camera
im = FcnGetImage_All(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams);

% Undistort the images
load DataCalibCamDistort.mat
im = FcnUndistort(im,DistortionMapping,NumCams,CamRes);

figure (1)
imshow(im)

hold on;

Lpoints = zeros(2,2);
Rpoints = zeros(2,2);

% Draw a line between two points on the screen selected by the user
% (store this as the left endzone for now)
for i = 1:2
 Lpoints(i,:) = ginput(1);
 plot(Lpoints(1:i,1),Lpoints(1:i,2),'b-')
 drawnow
end

% Draw the slope and intercept for this endzone
Lm = (Lpoints(2,1) - Lpoints(1,1)) / (Lpoints(2,2) - Lpoints(1,2));
Lb = Lpoints(1,1) - Lm*Lpoints(1,2);

% Superimpose this endzone on the image
for x=1:size(im,1);
 plot(Lm*x+Lb,x)
end

% Connect a line between two points on the screen selected by the user
% (store this as the right endzone for now)
for i = 1:2
 Rpoints(i,:) = ginput(1);
 plot(Rpoints(1:i,1),Rpoints(1:i,2),'r-')
 drawnow
end

% Calculate the slope and intercept for this endzone
Rm = (Rpoints(2,1) - Rpoints(1,1)) / (Rpoints(2,2) - Rpoints(1,2));
Rb = Rpoints(1,1) - Rm*Rpoints(1,2);

131

% Superimpose this endzone on the image
for x=1:size(im,1);
 plot(Rm*x+Rb,x,'r-')
end

% Ensure that the left and right endzones are actually located on the left and right
respectively

yL = 250*Lm + Lb; % Calculate the y value of the LEFT endzone line for an x value of 250
yR = 250*Rm + Rb; % Calculate the y value of the RIGHT endzone line for an x value of 250

% Compare the y values
if yR > yL % Endzones are are correct
 CalibEndzones=[Lm,Lb;Rm,Rb];
else % Endzones are switched, so reverse them when forming the matrix
 CalibEndzones=[Rm,Rb;Lm,Lb];
end

close(1)

% For debugging the above code - allows you to observe the endzones being switched

% Lm=CalibEndzones(1,1);
% Lb=CalibEndzones(1,2);
% Rm=CalibEndzones(2,1);
% Rb=CalibEndzones(2,2);
%
% hold off
% imagesc(im);
% hold on
%
% for x=1:size(im,1);
% plot(Lm*x+Lb,x,'b-')
% end
%
% for x=1:size(im,1);
% plot(Rm*x+Rb,x,'r-')
% end

end

A.33 FcnInitTestConditions.m

function [FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File] = FcnInitTestConditions

% This function initializes all necessary variables for the lap counting and distance
tracking that users may need to change.

% Flag for image collection
% --> 1 to collect data in real-time
% --> 0 to load images from file (the default basenames are: im_ 1_, im_ 2_ and im_ 3)
% REMEMBER THAT YOU HAVE TO MANUALLY SAVE DATA FOR THE LAST int (Iter/Dat2File)
% ITERATIONS WHEN RUNNING LIVE
FlagLive = 0;

% Flag for continuously plotting the camera images
% --> 1 to plot (better for debugging)
% --> 0 to NOT plot (runs faster)
FlagPlot = 1;

% Flag for saving the plots of camera images
% --> 1 to save
% --> 0 to NOT save (runs faster)
FlagSavePlot = 0;

132

% Number of cameras to be used for data collection
NumCams = 3;

% Script saves data to file every 'Data2File' iterations if we are running live
% IF we are not running live, it saves data to file once all images from file have been
processed
Data2File = 1000000;

% NOTE: To crop out overlap in the images:
% If FlagPlot is 1, use FcnUndistort
% If FlagPLot is 0, use FcnGetImage_select

end

A.34 FcnInitVars.m

function [
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps] = FcnInitVars(Data2File,FlagLive)

% This function initializes all necessary variables for the main script that users don't
need to change.

Iter = 0; % Counter for the number of iterations
CentroidPX_Last = [0,0]; % Pixel location of the fiducial at previous iteration
CentroidFT_Last = [0,0]; % Real-world location of the fiducial at previous iteration
CentroidPX_Last_Raw = [0,0]; %This is used in a trehshold against noise when FlagPlot = 0
TotalLaps = 0; % Number of laps completed
TotalDist = 0; % Distance traveled

% Last endzone the fiducial was in
LastZone = 0;
% --> 0 before the object ever enters an endzone
% --> 1 if the object was last in the right endzone
% --> 2 if the object was last in the left endzone

% Variable for whether we know where the fiducial is
FlagObjFound = 0;
% --> 1 if we know where the object is
% --> 0 if we don't know where the object is

% Variables for storing data
DataLog = zeros(Data2File,8);

% If loading images from file, extract timestamps from the filenames
if FlagLive == 0
 TimeStamps = FcnGetTimestamps;
 %TimeStamps_Ref = FcnGetTimestamps_Ref;
else
 TimeStamps = 0;
 %TimeStamps_Ref = 0;
end

end

A.35 FcnLensDistort.m

function I2 = FcnLensDistort(I, k, varargin)
%LENSDISTORT corrects for barrel and pincusion lens abberations
% I = LENSDISTORT(I, k)corrects for radially symmetric distortions, where
% I is the input image and k is the distortion parameter. lens distortion
% can be one of two types: barrel distortion and pincushion distortion.
% In "barrel distortion", image magnification decreases with

133

% distance from the optical axis. The apparent effect is that of an image
% which has been mapped around a sphere (or barrel). In "pincushion
% distortion", image magnification increases with the distance from the
% optical axis. The visible effect is that lines that do not go through the
% centre of the image are bowed inwards, towards the centre of the image,
% like a pincushion [1].
%
% I = LENSDISTORT(...,PARAM1,VAL1,PARAM2,VAL2,...) creates a new image image,
% specifying parameters and corresponding values that control various aspects
% of the image distortion correction. Parameter names case does not matter.
%
% Parameters include:
%
% 'bordertype' String that controls the treatment of the image
% edges. Valid strings are 'fit' and 'crop'. By
% default, 'bordertype' is set to 'crop'.
%
% 'interpolation' String that specifies the interpolating kernel
% that the separable resampler uses. Valid
% strings are 'cubic', 'linear' and 'nearest'. By
% default, the 'interpolation' is set to 'cubic'
%
% 'padmethod' string that controls how the resampler
% interpolates or assigns values to output elements
% that map close to or outside the edge of the input
% array. Valid strings are 'bound', circular',
% 'fill', 'replicate', and symmetric'. By
% default, the 'padmethod' is set to 'fill'
%
% 'ftype' Integer between 1 and 4 that specifies the
% distortion model to be used. The models
% available are
%
% 'ftype' = 1: s = r.*(1./(1+k.*r));
%
% 'ftype' = 2: s = r.*(1./(1+k.*(r.^2)));
%
% 'ftype' = 3: s = r.*(1+k.*r);
%
% 'ftype' = 4: s = r.*(1+k.*(r.^2));
%
% By default, the 'ftype' is set to 4.
%
% Class Support
% -------------
% An input intensity image can be uint8, int8, uint16, int16, uint32,
% int32, single, double, or logical. An input indexed image can be uint8,
% uint16, single, double, or logical.
%
% Examples
% --------
% % read image
% I = imread('cameraman.tif');
%
% % Distort Image
% I2 = lensdistort(I, 0.1);
%
% % Display both images
% imshow(I), figure, imshow(I2)
%
% References
% --------------
% [1] http://en.wikipedia.org/wiki/Distortion_(optics), August 2012.
%
% [2] Harri Ojanen, "Automatic Correction of Lens Distortion by Using
% Digital Image Processing," July 10, 1999.
%
% [3] G.Vassy and T.Perlaki, "Applying and removing lens distortion in post
% production," year???

134

%
% [4] http://www.mathworks.com/products/demos/image/...
% create_gallery/tform.html#34594, August 2012.
%
% Created by Jaap de Vries, 8/31/2012
% jpdvrs@yahoo.com
%
%---%

%---
% This part of the codes creates variable input parameters using the input
% parser object
p = inputParser;
% Make input string case independant
p.CaseSensitive = false;

% Specifies the required inputs
addRequired(p,'I',@isnumeric);
addRequired(p,'k',@isnumeric);

% Sets the default values for the optional parameters
defaultFtype = 4;
defaultBorder = 'crop';
defaultInterpolation = 'cubic';
defaultPadmethod = 'fill';

% Specifies valid strings for the optional parameters
validBorder = {'fit','crop'};
validInterpolation = {'cubic','linear', 'nearest'};
validPadmethod = {'bound','circular', 'fill', 'replicate', 'symmetric'};

% Funtion handles to determine wheter a proper input string has been used
checkBorder = @(x) any(validatestring(x,validBorder));
checkInterpolation = @(x) any(validatestring(x,validInterpolation));
checkPadmethod = @(x) any(validatestring(x,validPadmethod));

% Create optional inputs
addParamValue(p,'bordertype',defaultBorder,checkBorder);
addParamValue(p,'interpolation',defaultInterpolation,checkInterpolation);
addParamValue(p,'padmethod',defaultPadmethod,checkPadmethod);
addParamValue(p,'ftype',defaultFtype,@isnumeric);

% Pass all parameters and input to the parse method
parse(p,I,k,varargin{:});

%---
% This determines wether its a color (M,N,3) or gray scale (M,N,1) image
if ndims(I) == 3
 for i=1:3
 I2(:,:,i) = imdistcorrect(I(:,:,i),k);
 end
elseif ismatrix(I)
 I2 = imdistcorrect(I,k);
else
 error('Unknown image dimensions')
end

%---
% Nested function that perfoms the transformation
 function I3 = imdistcorrect(I,k)
 % Determine the size of the image to be distorted
 [M N]=size(I);
 center = [round(N/2) round(M/2)];
 % Creates N x M (#pixels) x-y points
 [xi,yi] = meshgrid(1:N,1:M);
 % Creates converst the mesh into a colum vector of coordiantes relative to
 % the center
 xt = xi(:) - center(1);
 yt = yi(:) - center(2);

135

 % Converts the x-y coordinates to polar coordinates
 [theta,r] = cart2pol(xt,yt);
 % Calculate the maximum vector (image center to image corner) to be used
 % for normalization
 R = sqrt(center(1)^2 + center(2)^2);
 % Normalize the polar coordinate r to range between 0 and 1
 r = r/R;
 % Aply the r-based transformation
 s = distortfun(r,k,p.Results.ftype);
 % un-normalize s
 s2 = s * R;
 % Find a scaling parameter based on selected border type
 brcor = bordercorrect(r,s,k, center, R);

 s2 = s2 * brcor;

 % Convert back to cartesian coordinates
 [ut,vt] = pol2cart(theta,s2);

 u = reshape(ut,size(xi)) + center(1);
 v = reshape(vt,size(yi)) + center(2);
 tmap_B = cat(3,u,v);
 resamp = makeresampler(p.Results.interpolation, p.Results.padmethod);
 I3 = tformarray(I,[],resamp,[2 1],[1 2],[],tmap_B,255);
 end

%---
% Nested function that creates a scaling parameter based on the
% 'bordertype' selected
 function x = bordercorrect(r,s,k,center, R)
 if k < 0
 if strcmp(p.Results.bordertype, 'fit')
 x = r(1)/s(1);
 end
 if strcmp(p.Results.bordertype,'crop')
 x = 1/(1 + k*(min(center)/R)^2);
 end
 elseif k > 0
 if strcmp(p.Results.bordertype, 'fit')
 x = 1/(1 + k*(min(center)/R)^2);
 end
 if strcmp(p.Results.bordertype, 'crop')
 x = r(1)/s(1);
 end
 end
 end

%---
% Nested function that pics the model type to be used
 function s = distortfun(r,k,fcnum)
 switch fcnum
 case(1)
 s = r.*(1./(1+k.*r));
 case(2)
 s = r.*(1./(1+k.*(r.^2)));
 case(3)
 s = r.*(1+k.*r);
 case(4)
 s = r.*(1+k.*(r.^2));
 end
 end

end

136

A.36 FcnLogData.m

function [DataLog] = FcnLogData(Iter, FlagLive ,TotalLaps, TotalDist, TotalTime,
CentroidPX_Current, CentroidFT_Current, DataLog, Data2File,TimeStampLength)

% This function saves data to 'DataLog' and saves data to file every 'Data2File'
iterations.

% Get the number of iterations since the last time 'DataLog' was saved to file
Line = rem(Iter,Data2File);

if Line == 0
 Line = Data2File;
end

% Update 'DataLog'
DataLog(Line,:) = [
Iter,CentroidPX_Current,CentroidFT_Current,TotalTime,TotalLaps,TotalDist];

% If 'DataLog' is full and we are obtaining images live
if FlagLive == 1 && Line == Data2File

 % Save 'DataLog' to file with a unique postscript
 NameExtension = num2str(Iter/Data2File);
 Name=strcat('DataLog_',NameExtension,'.mat');
 save(Name,'DataLog');

 % Empty the 'DataLog' matrix so we can start filling it all over again
 DataLog = zeros(Data2File,8);
end

% If we are obtaining images from file and have reached the last one
if FlagLive == 0 && Iter == TimeStampLength

 % Save 'DataLog' to file with a unique postscript
 Name=strcat('DataLog','.mat');
 save(Name,'DataLog');

end

 % Also create one big file with all the data in one, named 'DataLog_Continuous'
 myformat = '%7d %4.4f %4.4f %3.2f %3.2 %10.2f %5d %10.2f\n';
 fid = fopen('DataLog_Continuous.txt','a');
 fprintf(fid,
myformat,[Iter,CentroidPX_Current,CentroidFT_Current,TotalTime,TotalLaps,TotalDist]);
 fclose(fid);

A.37 FcnMask.m

function [Mask,UpdatedFlagObjFound,CentroidPX_Current] = FcnMask(im,CentroidPX_Current
)

% This function makes a mask based on color and object size in LAB space for a pink
fiducial.

% Define the minimum pixel area of the fiducial expected
MinSize = 30; % Default around 180 for green disk fiducial
 % Default around 50 for LED fiducial

% Make a mask based on color only
Mask = FcnMask_Color(im);

% Filter out small objects
Mask = bwareaopen(Mask,MinSize);

137

% Smooth the border using a morphological closing operation
structuringElement = strel('disk', 4);
Mask = imclose(Mask, structuringElement);

% Fill in holes
Mask = uint8(imfill(Mask, 'holes'));

% Get region properties for all components
CC = bwconncomp(Mask);
props = regionprops(CC,Mask,'Area','Centroid','Eccentricity');

% Use the below for debugging the mask
%figure(3)
%imagesc(Mask)

% Find the fiducial out of the existing components
for n=1:size(props,1)
 if props(n).Eccentricity < 0.95 && props(n).Area < 10000
 ObjectIndex = n; %store the index of the object we want

 ObjectArea = props(n).Area;

 % Use the below for debugging the mask
 %disp(props(n).Eccentricity)
 %disp(props(n).Area)

 % Update FlagObjFound since we know where the object is
 UpdatedFlagObjFound = 1;
 end
end

% If the object was not found
if exist('ObjectIndex','var') == 0
 UpdatedFlagObjFound = 0;
 return
end

% Remove objects smaller than the size of the largest object
Mask = bwareaopen(Mask,ObjectArea-1);

% Store the location of centroid
CentroidPX_Current(1) = props(ObjectIndex).Centroid(1);
CentroidPX_Current(2) = props(ObjectIndex).Centroid(2);

% Overlay the mask - useful for debugging
%mask = cast(mask, class(im));
%maskr = mask.*im(:,:,1);
%maskg = mask.*im(:,:,2);
%maskb = mask.*im(:,:,3);
%maskedim = cat(3,maskr,maskg,maskb);

% Plot the mask
%imagesc(maskedim);

end

A.38 FcnMask_Color.m

function Mask = FcnMask_Color(im)
% This function creates a mask used to find for a green fiducial

% Background subtraction
im2 = abs(im);
% Fiducial mask
% im3 = rgb2hsv(im2);

138

% Extract the highest values from the second dimension
I = im2(:,:,3);
%I = im2(:,:,1) - im2(:,:,2) - im2(:,:,3);
% Add contrast
%I = imadjust(I,[.07 .36],[]);
% Normalize
I = double(I);
I = I/max(max(I));
% Apply threshold
Mask = I>.6;
end

A.39 FcnPathDev.m

function [C, Ridge, PathDev, DataLogInterp] = FcnPathDev(DataLog)

% This script plots a 3D histogram of robot path data.
% The histogram is then used to determine the most common path.
% Deviation from the optimum path for every position is calculated.

%% Fill out the DataLog position data through interpolation (make function?)

InterSize = 10; % How many points to interpolate between position entries

DataLogInterp = [];
DataLogInterp(1,:) = DataLog(1,:);
for i = 2:length(DataLog)
 DataLogInterp(InterSize*(i-1)+1,:) = DataLog(i,:);

 for column = 2:8
 % Generating linear interpolation
 Proto = linspace(DataLog(i-1,column),DataLog(i,column),InterSize+1);
 Proto = Proto(2:end); % taking off first (from linspace)
 DataLogInterp(InterSize*(i-1)-8:InterSize*(i-1)+1,column) = Proto;
 end

end

%% Bounding box for histogram

X_Pos = DataLogInterp(:,4);
Y_Pos = DataLogInterp(:,5);

Min_X = min(X_Pos);
Max_X = max(X_Pos);
Min_Y = min(Y_Pos);
Max_Y = max(Y_Pos);

Min_X = floor(Min_X) - 2;
Max_X = ceil(Max_X) + 2;
Min_Y = floor(Min_Y) - 2;
Max_Y = ceil(Max_Y) + 2;

% right now, steps should be divisors of feet
step_x = 1/12; % width of each bin in x dim (ft)
step_y = 1/12; % width of each bin in y dim (ft)

X_Grid = [Min_X:step_x:Max_X];
Y_Grid = [Min_Y:step_y:Max_Y];

% Edges for histogram
CTRS{1} = X_Grid(1:end-1) + step_x/2;
CTRS{2} = Y_Grid(1:end-1) + step_y/2;

Coord = [X_Pos,Y_Pos];

139

% Initialize sparse coordinates and bounding box
Coord_Sparse(1,:) = Coord(1,:);
X_Low = X_Grid(max(find(X_Grid<Coord(1,1))));
X_High = X_Grid(min(find(X_Grid>Coord(1,1))));
Y_Low = Y_Grid(max(find(Y_Grid<Coord(1,2))));
Y_High = Y_Grid(min(find(Y_Grid>Coord(1,2))));

% Loop time
% Iterate every position coordinate
count = 2;
for i = 2:length(Coord)
 % If robot has left box, new entry stored, otherwise entry forgotten
 if Coord(i,1) < X_Low || Coord(i,1) >= X_High || Coord(i,2) < Y_Low || Coord(i,2) >=
Y_High
 Coord_Sparse(count,:) = Coord(i,:);
 count = count + 1;
 % Defining new bounding box
 X_Low = X_Grid(max(find(X_Grid<Coord(i,1))));
 X_High = X_Grid(min(find(X_Grid>Coord(i,1))));
 Y_Low = Y_Grid(max(find(Y_Grid<Coord(i,2))));
 Y_High = Y_Grid(min(find(Y_Grid>Coord(i,2))));
 end
end

figure
hist3(Coord_Sparse,CTRS)
xlabel('x-axis (ft)')
ylabel('y-axis (ft)')
set(gcf,'renderer','opengl'); % colors histogram by magnitude
set(get(gca,'child'),'FaceColor','interp','CDataMode','auto');
%axis equal

%% Surface plot
[N,C] = hist3(Coord_Sparse,CTRS);
SurfLaps = N';
% figure
% surf(C{1},C{2},SurfLaps)
% xlabel('x-axis (ft)')
% ylabel('y-axis (ft)')

% Watershed (no segmentation)
% figure
L = watershed(SurfLaps);
% extracting the ridgeline
SurfMax = max(max(SurfLaps));
H = 1.0*SurfMax*double(~L);
% mesh(C{1},C{2},H)
% hidden('on')
% shading('interp')

%% Segmentation
% Imaging processing tutorial found at this location:
% http://www.mathworks.com/help/images/examples/marker-controlled-watershed-
segmentation.html

% Normalizing surface plot (treat as grayscale image)
SurfNorm = SurfLaps/SurfMax;
I = flipud(SurfNorm);
%figure,imshow(I,'Border','loose','InitialMagnification',1000)

% Blurring image
GausFilter = fspecial('gaussian',[3 3], 1);
IBlur = imfilter(I, GausFilter, 'replicate');
% Blur again
IBlur2 = imfilter(IBlur, GausFilter, 'replicate');
%figure,imshow(IBlur2,'Border','loose','InitialMagnification',1000)

% Opening and Closing

140

se = strel('disk',3); % VERY IMPORTANT TO CHANGE FOR RESOLUTION
se2 = strel('disk',10); % VERY IMPORTANT TO CHANGE FOR RESOLUTION
% Opening
IOpen = imopen(IBlur2, se);
%figure, imshow(IOpen,'InitialMagnification',1000)
% Closing
IClose = imclose(IOpen, se2);
%figure, imshow(IClose,'InitialMagnification',1000)

% Contrast
ICon = imadjust(IClose,[.07 .36],[]);
%figure,imshow(ICon,'Border','loose','InitialMagnification',1000)

%% Watershed (Segmentation)
W = watershed(flipud(ICon));
figure
hold on
surf(C{1},C{2},SurfLaps)
xlabel('x-axis (ft)')
ylabel('y-axis (ft)')
Ridge = 1.5*SurfMax*double(~W);
surf(C{1},C{2},Ridge)
hidden('on')

%% Deviation
% For every iteration of test, calculates shortest distance from current
% position to ridgeline (most common path)

PosXYZ = [DataLog(:,4),DataLog(:,5),ones(length(DataLog),1)*max(max(Ridge))];
[Xmesh,Ymesh] = meshgrid(C{1},C{2});
RidgeXYZ = [Xmesh(:),Ymesh(:),Ridge(:)];

[Indices,PathDev] = dsearchn(RidgeXYZ,PosXYZ);

end

A.40 FcnPlot.m

function [] = FcnPlot(
im,mask,CalibEndzones,CentroidPX_Current,CentroidFT_Current,Xres,Yres,FlagObjFound)

% This function plots the image from the cameras and highlights the
% location of the fiducial by enclosing it with a green line and placing a
% crosshair at the centroid. It also shows the locations of the left and
% right endzones.

% Extract endzone slope and intercept
Lm = CalibEndzones(1,1);
Lb = CalibEndzones(1,2);
Rm = CalibEndzones(2,1);
Rb = CalibEndzones(2,2);

% Calculate some points for plotting
X = 1:Yres;
Lbound = Lm*X+Lb;
Rbound = Rm*X+Rb;

% Show the image
figure(2)
imshow(im);
hold on

% If the object was found
if FlagObjFound == 1

141

% Plot the boundary of the object
Boundaries = bwboundaries(mask);
NumberOfBoundaries = size(Boundaries);
for k = 1 : NumberOfBoundaries
 ThisBoundary = Boundaries{k};
 plot(ThisBoundary(:,2), ThisBoundary(:,1), 'y', 'LineWidth', 4);
end

% Place a crosshair on the centroid of the object
plot(CentroidPX_Current(1),CentroidPX_Current(2),'k.-','markersize', 30);
plot(CentroidPX_Current(1),CentroidPX_Current(2),'r+','markersize', 10);

% Display the fiducial location in ft
text(CentroidPX_Current(1)+40, CentroidPX_Current(2),horzcat(...
 ' ',num2str(CentroidFT_Current(1)),2,' , ',...
 ' ',num2str(CentroidFT_Current(2)),2),'FontSize',14,'BackgroundColor',[.7 .9 .7],...
 'Margin',3);

end

% Plot the midline of the image
plot((1:Xres),(Yres/2:Yres/2));

% Plot the endzone locations
plot(Lbound,X);
plot(Rbound,X,'r') ;

end

A.41 FcnPowerLog.m

function [PowerLog] = FcnPowerLog()

% This function loads the power data into Matlab from CSV files in the
% specified folder.

% Get the filenames of the data
Listing = dir('G:\ARL_New\MATLAB_3\power_logger\F201*.CSV');

% Get the number of files of data
NumFiles = length(Listing);

% Initialize 'RawData'
RawData = [];

% For every file...
for n=1:NumFiles

 % Get the data from the current file
 Import = CSVread(strcat('G:\ARL_New\MATLAB_3\power_logger\',Listing(n,1).name),10,0);

 % Add the data to 'RawData'
 RawData(length(RawData)+1:length(RawData)+length(Import),:) = Import;
end

% Produce powerlog file with voltage, current, power

PowerLog(:,1) = RawData(:,2); % voltage
PowerLog(:,2) = RawData(:,3); % current
PowerLog(:,3) = PowerLog(:,1).*PowerLog(:,2); % power
PowerLog(:,4) = RawData(:,1); % iteration

end

142

A.42 FcnUndistort.m

function im = FcnUndistort(im,DistortionMapping,NumCams,CamRes)

% This function corrects an image for barrel distorted using a
% pre-computed distortion matrix

% For all three dimensions
for Dimension = 1:3

 % Extract a dimension of the image
 imlayer = im(:,:,Dimension);

 % For all the cameras
 for CamNum = 1:NumCams

 % Get the segment of the image to undistort
 imsegment = imlayer(1:CamRes(1),1+CamRes(2)*(CamNum-1):CamRes(2)*CamNum);

 % Flip the image segment back to how it was originally
 switch CamNum
 case 1
 imsegment = imrotate(imsegment,90);
 case 2
 imsegment = imrotate(imsegment,90);
 case 3
 imsegment = imrotate(imsegment,90);
 end

 % Undistort the image segment
 imsegment = reshape(imsegment(DistortionMapping(:,CamNum)),CamRes(2),CamRes(1));

 % Re-rotate the image segment
 switch CamNum
 case 1
 imsegment = imrotate(imsegment,-90);
 case 2
 imsegment = imrotate(imsegment,-90);
 case 3
 imsegment = imrotate(imsegment,-90);
 end

 % Place the image segment back in the matrix
 imlayer(1:CamRes(1),1+CamRes(2)*(CamNum-1):CamRes(2)*CamNum) = imsegment;
 end

 im(:,:,Dimension) = imlayer;

end

% Crop out overlap in the images
% (this is done in FcnGetImage_Select when FlagPlot is 0
%im(1:480,340:360,:) = 0;
%im(1:480,720:740,:) = 0;
%im(430:480,:,:) = 0;
%im(1:50,:,:) = 0;

% Crop out the orange cone if it is messing up the fiducial identification
%im(213:259,280:355,:) = 0;

end

A.43 FcnUndistort_Transform.m

function im = FcnUndistort_Transform(im,NumCams,CamRes)

143

% This function corrects an image for barrel distorted using original
% transformation. Slow, but necessary to generate and benchmark
% computed distortion matrix table.

for Dimension = 1:3

 % Extract a dimension of the image
 imlayer = im(:,:,Dimension);

 % For all the cameras
 for CamNum = 1:NumCams

 % Get the segment of the image to undistort
 imsegment = imlayer(1:CamRes(1),1+CamRes(2)*(CamNum-1):CamRes(2)*CamNum);
 imsegment = imrotate(imsegment,90);

 % Calls functions where individual camera transformations take place
 imsegment = FcnUndistort_Transform_Inputs(imsegment,CamNum);

 % Place the image segment back in the matrix
 imsegment = imrotate(imsegment,-90);
 imlayer(1:CamRes(1),1+CamRes(2)*(CamNum-1):CamRes(2)*CamNum) = imsegment;
 end

 im(:,:,Dimension) = imlayer;

end

% Crop out overlap in the images
% (this is done in FcnGetImage_Select when FlagPlot is 0
% im(1:480,340:360,:) = 0;
% im(1:480,720:740,:) = 0;
% im(430:480,:,:) = 0;
% im(1:50,:,:) = 0;

% Crop out the orange cone if it is messing up the fiducial identification
% im(213:259,280:355,:) = 0;

end

A.44 FcnUndistort_Transform_Calib.m

function [I6,input_points,base_points] =
FcnUndistort_Transform_Calib(I,XPixRight,YPixDown,RotDegCCW,K)

% This function undistorts an image through translation, rotation, barrel
% distortion correction, skew correction, and cropping

%shift image
T = maketform('affine', [1 0 0; 0 1 0; XPixRight YPixDown 1]);
I2 = imtransform(I, T, 'XData',[1 size(I,2)], 'YData',[1 size(I,1)]);
%rotate image
I3 = imrotate(I2,RotDegCCW);
%barrel distortion correction
I4 = FcnLensDistort(I3,K); % K is distortion parameter
%skew distortion correction
transformtype = 'projective';
imshow(I4)
disp('Enter 4 skew corners as they are.')
disp('Enter 4 skew corners as you want them to be.')
input_points = ginput;
base_points = ginput;
tform = cp2tform(input_points,base_points,transformtype);
I5 = imtransform(I4,tform);
%trim image
I6 = I5(1:360,1:480,:);

144

end

A.45 FcnUndistort_Transform_Ind.m

function [I6] =
FcnUndistort_Transform_Ind(I,XPixRight,YPixDown,RotDegCCW,K,input_points,base_points)

% This function undistorts an image through translation, rotation, barrel
% distortion correction, skew correction, and cropping

%shift image
T = maketform('affine', [1 0 0; 0 1 0; XPixRight YPixDown 1]);
I2 = imtransform(I, T, 'XData',[1 size(I,2)], 'YData',[1 size(I,1)]);
%rotate image
I3 = imrotate(I2,RotDegCCW);
%barrel distortion correction
I4 = FcnLensDistort(I3,K); % K is distortion parameter
%skew distortion correction
transformtype = 'projective';
tform = cp2tform(input_points,base_points,transformtype);
I5 = imtransform(I4,tform);
%trim image
I6 = I5(1:360,1:480,:);
end

A.46 FcnUndistort_Transform_Inputs.m

function imsegment = FcnUndistort_Transform_Inputs(imsegment,CamNum)

 % Flip the image segment back to how it was originally & run
 % undistortion
 switch CamNum
 case 1
 %imsegment = imrotate(imsegment,-90);
 XPixRight = 9;
 YPixDown = -20;
 RotDegCCW = 0.5;
 K = -0.4;
 input_points = [121.1789 318.0222
 120.2525 99.8560
 354.6307 320.3382
 361.1155 97.5400];
 base_points = [120.7157 318.4854
 120.7157 100.7824
 360.6523 319.4118
 361.1155 98.9296];
 imsegment =
FcnUndistort_Transform_Ind(imsegment,XPixRight,YPixDown,RotDegCCW,K,input_points,base_poi
nts);
 case 2
 XPixRight = 16;
 YPixDown = 0;
 RotDegCCW = 1;
 K = -0.4;
 input_points = [120.5209 302.0057
 125.6589 75.9348
 371.3475 301.0715
 365.2753 72.1981];
 base_points = [126.5930 302.0057
 126.1259 76.4019
 364.8082 300.6044
 364.8082 76.4019];

145

 imsegment =
FcnUndistort_Transform_Ind(imsegment,XPixRight,YPixDown,RotDegCCW,K,input_points,base_poi
nts);
 case 3
 XPixRight = 22;
 YPixDown = 0;
 RotDegCCW = -.5;
 K = -0.3;
 input_points = [96.1662 299.0311
 99.8718 32.2291
 381.9594 32.2291
 391.6865 299.9575];
 base_points = [96.6294 298.1047
 97.0926 31.7659
 393.0761 31.7659
 394.0025 298.1047];
 imsegment =
FcnUndistort_Transform_Ind(imsegment,XPixRight,YPixDown,RotDegCCW,K,input_points,base_poi
nts);
 end

% % Undistort the image segment
% imsegment = reshape(imsegment(DistortionMapping(:,CamNum)),CamRes(2),CamRes(1));

end

A.47 FcnVelocity.m

function [Velocity,Velocity_Filt] = FcnVelocity(DataLog)

% This function produces velocity of robot from position data.

% Method:
% Calculates velocity every iteration (ft/s), from distance traveled and time
% Differencing technique: average of backward and forward difference at
% each point. (Just forward at first point, just backward at last.)
for i = 1:length(DataLog)
 if i == 1; % forward differencing at first
 Velocity(i) = (DataLog(i+1,8) - DataLog(i,8))/(DataLog(i+1,6) - DataLog(i,6));
 elseif i == length(DataLog) % backward differencing at last
 Velocity(i) = (DataLog(i,8) - DataLog(i-1,8))/(DataLog(i,6) - DataLog(i-1,6));
 else % average forward and backward differencing for rest
 Backward = (DataLog(i,8) - DataLog(i-1,8))/(DataLog(i,6) - DataLog(i-1,6));
 Forward = (DataLog(i+1,8) - DataLog(i,8))/(DataLog(i+1,6) - DataLog(i,6));
 Velocity(i) = (Forward + Backward)/2;
 end
end

% Perform filtering on the data

% Define a filter as a 2nd-order Butterworth low-pass filter, with
% bandwidth of 0.01. The 0.01 part was just a guess, since sampling rate is
% not clear from above data... make this number smaller for more smooth,
% like 0.001, and bigger (like 0.1) for more noise but better "tracking" of
% raw data.
[B,A] = butter(2,0.1);
% Perform a forward/backward (noncausal) filtering of data
Velocity_Filt = filtfilt(B,A,Velocity);

end

146

References

[1] "Guide for Evaluating, Purchasing, and Training with Response Robots Using DHS‐NIST‐

ASTM International Standard Test Methods," NIST.

[2] "Apparatus Assembly Guide for Standard Test Methods," NIST, March 2013.

[3] H. Pangborn, "Development and Applications of a Robot Tracking System for NIST Test

Methods," B.S. honors thesis, Pennsylvania State University, 2013.

[4] "Talon," [Online]. Available: https://www.qinetiq‐na.com. [Accessed 28 March 2014].

[5] "BT‐70791A (BB‐2590/U)," Bren‐Tronics, Inc., [Online]. Available: http://www.bren‐

tronics.com/. [Accessed 5 April 2014].

[6] "Enter the BomBot," 13 June 2006. [Online]. Available: http://www.defensetech.org.

[Accessed 28 March 2014].

[7] "BomBot," 26 September 2007. [Online]. Available: https://www.strategypage.com/.

[Accessed 28 March 2014].

[8] "BB‐390B/U," Maxa Vision Technologies, [Online]. Available: http://www.maxavision.net/.

[Accessed 5 April 2014].

[9] J. Vries, "barrel and pincushion lens distortion correction," Mathworks File Exchange, 31

August 2012. [Online]. Available: www.mathworks.com. [Accessed 6 April 2014].

[10] R. Siegwart, I. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous Mobile Robots,

2nd ed., Massachusetts Institute of Technology, 2011.

[11] L. Vincent and P. Soille, "Watersheds in Digital Spaces," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583‐598, June 1991.

[12] B. Hayes, "Dividing the Continent," vol. 88, no. 6, p. 481, November 2000.

ACADEMIC VITA

Adam
Crimboli

Campus Address:
67 Atherton Hall
University Park, PA 16802
Phone: (724) 610 - 8581

Permanent Address:
549 Austin St.
Greensburg, PA 15601
Email:
aac5230@psu.edu

Career Interest To research and work on projects relevant to
advancing the fields of robotics, automation, control
systems, and mechatronics.

Education BS - Mechanical
Engineering

BS - Nuclear
Engineering

The Schreyer Honors College at The Pennsylvania
State University
University Park, PA 16802

Graduation Date: May 2014

 Relevant Courses
Microcomputer Interfacing
Industrial Robot
Applications
Aerospace Control Systems

Modeling of Dynamic
Systems
Instrumentation &
Measurement

Computer Skills
MATLAB
Simulink

Arduino
Autodesk

ANSYS
SolidWorks

Scholarship Awards for Academic Excellence in Engineering
 Vollmer-Kleckner Scholarship in Engineering
 Jospeh B. Wharton Memorial Scholarship
 Gabron Scholarship in Engineering
 John J. Brennan Excellence in Nuclear Engineering

Award
 Louis Harding Memorial Scholarship

Work Experience Researcher: Applied Research Laboratory:
The Pennsylvania State University
Embedded Hardware/Software Systems and
Applications Dept.
State College, PA

5/2013 – Present Conduct mobile ground robot operator variability
and power consumption experiments.

 Collect and process image capture and power
logger data.

 Analyze and present data using MATLAB.

 Intern: Westinghouse Electric Company, LLC
Steam Generator Design & Analysis Dept.
Madison, PA

5/2012 – 8/2012 Took on more autonomy and responsibilities as a
returning intern.

 Processed steam generator corrosion data.
 Created corrosion data plots for management.
 Prepared technical reports for customers.

5/2011 – 8/2011 Performed 20-year update and digitization of
Westinghouse steam generator reference manual.

 Built and stress-tested virtual models of nuclear
reactor components using computer analysis
software ANSYS.

Affiliated
Organizations

American Society of Mechanical Engineers,
 PSU Chapter: Treasurer: Fall 2013 – Spring 2014
Alpha Nu Sigma – Nuclear Honor Society,
 PSU Chapter
Leonhard Engineering Scholars Program, Penn State
Penn State Ballroom Dance Team

