

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

MOTORIZED TESTBED FOR AUTOMATED RC VEHICLE CONTROL

RAVEEN FERNANDO

FALL 2014

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved* by the following:

Sean N. Brennan

Associate Professor of Mechanical Engineering

Thesis Supervisor and Honors Advisor

H. Joseph Sommer

Professor of Mechanical Engineering

Faculty Reader

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

This research focuses on structural modifications to the Pennsylvania State University Rolling

Roadway Simulator (PURRS). Operated within the Intelligent Vehicles and Systems Group, the

PURRS is a large treadmill for testing automated control algorithms on small scale vehicles before

they are implemented on full scale vehicles. Testbeds with scaled vehicles have a number of

benefits compared to testing on full scale vehicles, which is a strong motivation for the completion

of this project. For example, algorithm testing on a scale vehicle is more cost effective, convenient,

and significantly reduces safety concerns in the event of failure.

One of the major modifications undertaken in this thesis ws the installation of a new air bearing

under the running belt. Like an air hockey table, the air bearing uses air flow to lift the treadmill

belt, reducing the friction between the deck and the belt and improving motor efficiency. Speed

tests were performed with and without the air bearing, to provide conclusive results on the benefits

of adding the air bearing to the system.

Additionally, a new small scale vehicle for the PURRS was also used to test position-based

feedback control algorithms. Specifically, the vehicle was tested with the use of proportional and

proportional-derivative control algorithms. High resolution encoders were used to determine

vehicle position relative to a centerline and lateral position errors were used as inputs for controlling

the vehicle steering. Perturbation analysis of controller performance was done by manually

offsetting vehicle and then enabling control algorithm to correct the position, and both the P- and

PD-controlled vehicles were able to maintain centerline position while driving on the roadway.

ii

TABLE OF CONTENTS

List of Figures .. iii

List of Tables ... v

Acknowledgements .. vi

Chapter 1 Introduction ... 7

1.1 Thesis Overview .. 7
1.2 Literature Review ... 8
1.3 History of the PURRS .. 9
1.4 Goals of this thesis ... 11

Chapter 2 The PURRS ... 12

2.1 Description of Overall Structural Changes to PURRS ... 13
2.2 Construction of the guide channel .. 14
2.3 Installation of the belt and drive motor .. 15

Chapter 3 Sensors and Equipment ... 20

3.1 Encoders ... 20
3.2 Arduino Due ... 23
3.3 Arduino Uno .. 28

Chapter 4 Controller Implementation and Performance .. 31

4.1 Proportional Control .. 32
4.2 Derivative Gain .. 32
4.3 Performance and Errors.. 34

Chapter 5 Future Considerations ... 36

Appendix A Arduino Due Encoder Code ... 37

Appendix B Arduino Uno RC Code ... 48

BIBLIOGRAPHY .. 53

ACADEMIC VITA .. 54

iii

LIST OF FIGURES

Figure 1 Original PURRS .. 9

Figure 2 HPI WR8 Flux RC car ... 10

Figure 3 New Deck with Holes in Upper Deck ... 13

Figure 4 U-Channel for PURRS Deck ... 15

Figure 5 PURRS Deck with Perforated Sheets and Channel ... 15

Figure 6 2 HP AC Motor ... 16

Figure 7 One of Three Airways for Blower Attachment ... 16

Figure 8 Industrial Blower for Air Flow .. 17

Figure 9 Variable Frequency Drive, Power Supply, & E-Stop .. 18

Figure 10 Completed PURRS Set-

Up ... Error

! Bookmark not defined.

Figure 11 Encoder & Arm Set-Up ... 20

Figure 12 S2-2048-IB Optical Encoder ... 21

Figure 13 Initialization Set-Up .. 22

Figure 14 Geometry of Encoder Arms for Position Equations .. 23

Figure 15 Arduino Due (Pin attachments in Appendix A) .. 23

Figure 16 Encoder example. Channel A on top, Channel B on bottom 24

Figure 17 Arduino Due with Breadboard for 5V Distribution and Serial Communication

w/ Logic Leveler .. 25

Figure 18 Signal Flow: Arduino DUE ... 26

Figure 19 Logic Leveler from Sparkfun .. 27

Figure 20 Logic Leveler. (Flipped from figure 17) 5V on bottom. 3.3V on top. 27

Figure 21 Arduino Uno (Pin Attachments in Appendix B) ... 28

Figure 22 Signal Flow: Arduino UNO ... 29

Figure 23 RC Controller. Ch. 3 Switch .. 29

iv

Figure 24 Arduino Uno with Shield and RC Transmitter Connections. Manual RC Mode 30

Figure 25 Arduino Uno with Shield and RC Transmitter Connections. Serial Control

Mode .. 30

Figure 26 Steady State Position of Car .. 31

Figure 27 Proportional Gain Plot ... 32

Figure 28 Proportional and Derivative Gain .. 33

Figure 29 Desired Steady State Position .. 34

Figure 30 Error Produced Steady State Position .. 34

Figure 31 Desired Wheel Position in Same Location .. 35

v

LIST OF TABLES

Table 1 Average time for 1 revolution ... 18

Table 2 Average Speed of Belt .. 19

Table 3 Percentage Speed Increase .. 19

vi

ACKNOWLEDGEMENTS

 I would like to give thanks to everyone who has helped me find my way through my

years as an undergraduate. A lot has changed in how I view myself and my future. I would like to

give special thanks to:

-To my parents, for all their support and guidance throughout the years. My parents were

great role models to have growing up. I am thankful for all the late night lessons in

mathematics with my father, from middle school and even a little bit of college. My place

in engineering would not be the same otherwise.

-To Dr. Brennan, for being a great advisor over the years, and assisting me the research

that went into this thesis.

7

Chapter 1

 Introduction

1.1 Thesis Overview

The purpose of this research is to complete modifications of the existing rolling roadway

testbed that is operated within the Intelligent Vehicles and Systems Group of the Pennsylvania

State University. The testbed is a rolling treadmill platform that allows testing control algorithms

for automated vehicles but on a reduced-scale size. Scaled vehicle testing for control algorithms

has advantages over full scale vehicles. For example, the use of a scaled vehicle such as an RC

car is cheaper to implement control algorithms and run tests than it would be a full size vehicle

tested on a test track. The enclosed, small, testing area of a rolling-roadway decreases the need to

schedule and close off large areas for testing, such as a test track. An indoor testbed is unaffected

by weather and always available for researchers to use, thus making it convenient for rapid testing

and modification of code. Aside from convenience, a test bed is safer than the alternative of a full

sized vehicle, especially when there is a possibility of an unpolished control algorithm causing a

vehicle to steer erratically or off-course. The risk of damaging the test vehicle or even harming

personal is also considerably higher with full sized vehicles.

This research continues the work of previous students to complete such an indoor

treadmill testbed to be in working condition for current and future automated testing of an RC

car. A discussion of scale vehicle research and the history of the current test bed are in the

following two sections. The goals of what is to be done is explained in Section 1.4

8

1.2 Literature Review

 The history of research within automated vehicles and highways shows a historic concern

with the cost and limitations of running automation tests on full scale vehicles in full scale

environments. Full scale testing of experimental vehicles is costly and presents a potentially

dangerous environment for human operators in the vicinity [6][7][8]. Computer simulations

negate the safety concern, but simulations can be overly complicated and may not display all

outcomes from unexpected real life scenarios [8].

 Between these two extremes, experimentation on a small scale vehicle provides a bridge

between pure simulation and implementation on full scale vehicles. Scale vehicles have been used

in research in small scale vehicles move on a fixed roadway [4][12][13][14]. For example, in

1996 researchers at the Virginia Polytechnic Institute and State University developed a scaled

vehicle testing environment called the Flexible Low-cost Automated Scale Highway (FLASH)

laboratory [4]. The laboratory used multiple scale vehicles that run on a modular highway that

could be adapted to present different scenarios or roadway conditions. Small scale vehicle testing

allowed for hardware-in-the-loop experiments. Impervious to outside weather conditions, these

indoor testbeds offered convenience and a removed the danger of human operators with full scale

vehicles [4].

 Alternatively, instead of fixing the roadway in place, the scale vehicle can be fixed in

location while the roadway is moved underneath it using a treadmill [10][11]. This is analogous

to wind tunnels in testing the aerodynamic qualities of an airplane. An example of this, in 1996,

the University of Illinois created the Illinois Roadway Simulator (IRS). The IRS used a moving

roadway platform in the form of a 4 x 8 ft treadmill to simulate driving over distance, allowing

for tests involving steering performance [2][3]. The IRS used optical encoders on a jointed boom

arm to measure position and direction of the test vehicle. The IRS treadmill testbed was also

9

designed with the considerations that it will reduce cost of trials, increase the safety by being in a

sealed environment, and convenience. The PURRS system took the testbed design one step

further with the implementation of actuators on the rolling roadway itself, allowing for the entire

system to be angled [8]. This allows for further control of the surface to simulate more

environments, such as a vehicle corning an embankment.

 A common note about scale vehicle testing, especially using a rolling roadway testbed, is

that it allows for quick iterations and advancements in new control algorithms; which in turn

makes a testbed highly desirable testing equipment for vehicular research.

1.3 History of the PURRS

Figure 1 Original PURRS

10

 The Intelligent Vehicles and Systems Group uses a large treadmill to act as a roadway

surface the moves under the vehicle, hence the name Rolling Roadway simulator. The

Pennsylvania State University Rolling Roadway Simulator (PURRS) features a 9 ft by 6 ft deck

allowing scale vehicles to have moderate mobility both longitudinally and laterally. The testbed is

run by a 2 HP AC motor controlled by a Variable Frequency Drive. The original testbed (Figure

1) featured 4 actuators attached to the PURRS frame to allow the entire platform to be angled[

However future modifications done by masters student Anthony Mangus, increased the overall

weight of the PURRS, necessitating that the actuators be removed and the PURRS rest flat on the

ground. Work by Mangus also introduced an air bearing system to be installed directly

underneath the belt, to decrease friction between the belt and the upper deck surface. The

installation of the new deck was incomplete at the end of Mangus’ thesis, and thus was the

starting point of the present work described in this thesis.

Figure 2 HPI WR8 Flux RC car

11

 Additional changes saw the old car (Figure 1) replaced with a new RC car (Figure 2), and as well

the vehicle was fitted with an Arduino to be controlled via manual remote control or serial

communication.

1.4 Goals of this thesis

The primary goal of this thesis is to complete the PURRS testbed with a functioning air

bearing. The second goal is to create a control scheme for the RC vehicle to run autonomously on

the working PURRS.

The design process used to achieve these goals is ultimately an experimental approach.

The system was decomposed into subsystems, each sequentially calibrated and tested, and then

interconnected so that that each subsystem can communicate to each other. For this endeavor,

there are three main subsystems to control.

-The position determination of vehicle using encoders an Arduino Due

-Control Algorithm and servo control of vehicle using an Arduino Uno

-Communication between the separate Arduinos

Details on this process are described in the remainder of the thesis. First, the discussion on the

modifications and completion of the PURRS occurs in the following chapter. A presentation of

the subsystem related to the control architecture is given in Chapter 3. Chapter 4 details the

performance of the algorithm. The concluding chapter discusses the primary outcomes of the

thesis, and presents some areas in which future research can proceed with the completed PURRS

testbed.

12

Chapter 2

 The PURRS

Figure 3 Completed PURRS Set-Up

One of the main facets of this project is to have a completed scale testbed to be able to

test control algorithms on scale vehicles. The Pennsylvania State University Rolling Roadway

(PURRS) is the testbed for the Intelligent Vehicles and Systems Group. The modifications as

mentioned in the history section were not complete as of this project, and so the majority of the

thesis work was to implement hardware and structural changes to the physical design. These

efforts are described task-by-task in the following sections, and are presented in the approximate

time sequence used for the construction of the new PURRS.

13

2.1 Description of Overall Structural Changes to PURRS

The original design of the rolling roadway had the upper surface of the treadmill belt

riding across a plywood surface. It was determined that, with such a large deck area of 36 cubic

feet, there was a lot of friction between the physical tread and the supporting deck underneath.

Excess friction started to cause the deterioration both the belt and the deck during prolonged use.

As part of Mangus’ MS thesis work mentioned earlier, it was proposed that an air bearing be

installed to reduce the friction and thereby prolong the longevity of the PURRS components.

Figure 4 New Deck with Holes in Upper Deck

 The design ultimately constructed and implemented in this thesis replaces the plywood

deck with a box with tiny holes covering the top surface (Figure 4). A blower pumps air into the

box and the pressure and force of the escaping air along the top surface is enough to create a

small layer of air between the belt and the deck, such that it reduces the friction between the belt

and the deck surface. To implement this concept, 5 inch tall wooden box was created to replace

the existing particleboard deck. This box had to be sufficient in strength to both hold the vehicle

and distribute the air underneath the belt surface, but also had to be thin enough to fit between the

14

2 layers of moving belt. The top surface was created with two 4ft x 8ft aluminum plates that are

1/8 inch thick and perforated with ¼ inch holes. Aluminum was chosen because it was a cost-

effective solution for weight, strength, and also because it was non-magnetic. The use of non-

ferromagnetic materials was important for future considerations, because the treadmill was

intended for testing positioning algorithms that utilize magnetic fields. The 2 aluminum plates sit

on top of eachother and are able to slide relative to each other such that the alignment of the holes

alter size and therefore the pressure of the air flow.

Additional modification was required as the belt has a ½ in wide by ½ in deep protrusion

continuously along the inside of the belt to ensure proper alinement of the belt on the 2 rollers on

either end. This protrusion rubbed against the deck and risked damaging the belt. To avoid this

rubbing effect, a 1 in x 1/2 in channel had to built into the deck to allow obstruction free passage

of the protrusion. This channel is shown in figure 1.

When Anthony Mangus left the project, the air box was only partially built and was not

functioning. When the work for this thesis began, the following had to be done:

-Construct channel for belt protrusion

-Install new deck within PURRS frame

-Install Belt

-Install Motor

2.2 Construction of the guide channel

 The construction of a channel within the deck was necessary to allow the belt’s guide

mechanism to operate correctly. This required the installation of an aluminum U-channel.

Aluminum was chosen again for the cost effectiveness and being non-magnetic. The channel

needed to fit flush and fit precisely with the sheet-metal surface, such that there was not a large

gap for air to escape from. The sheet metal was taken to a metal shop and was sheared into four

15

segments, each measuring 23 ½ in x 8 ft. The rest of wooden frame was slotted using a router and

a 1 in bit to carve a slot for the channel.

Figure 5 U-Channel for PURRS Deck

Once the aluminum plates and U-channel were installed, the entire deck was fitted into

the PURRS steel frame, as seen in Figure 5.

Figure 6 PURRS Deck with Perforated Sheets and Channel

2.3 Installation of the belt and drive motor

Once the frame was completed, the treadmill belt was fitted over the rollers. Afterwards,

the drive motor was mounted to the PURRS. With the motor and belt attached, both the motor

belt, and the PURRS belt had to be tensioned properly. Proper tensioning of the belt ensures that

16

belt slack is addressed and that both rollers of the belt are parallel. Uneven rollers will cause the

belt to slide off the rollers with continued use. One set of rollers is adjustable on a set of tracks

and needs a wrench to adjust both ends until the belt is adequately tensioned to prevent roll-off as

mentioned earlier. The motor (Figure 7) position is also adjustable, using a bolt and nut, to ensure

that that the motor drive belt is also kept a proper tension to rotate the treadmill rollers.

Figure 7 2 HP AC Motor

Figure 8 One of Three Airways for Blower Attachment

Attached to the deck are 3 airway channels (Figure 8) that are attached to an industrial

blower with hose attachments (Figure 9) to it supply sufficient airflow to the entire box. The fan

17

does not provide a great deal of force with the air flow pressure, but in an enclosed area such as

the box within the PURRS, it provides enough air flow to lift the belt off the deck slightly.

Figure 9 Industrial Blower for Air Flow

The treadmill runs with a 2 HP AC motor (Figure 7) that is controlled via a Variable

Frequency Drive (Figure 10) that allows for variable speed and direction of the treadmill. The

Variable Frequency Drive is attached to the power supply along with an emergency stop, which

stops the belt within ¼ of a belt revolution.

18

Figure 10 Variable Frequency Drive, Power Supply, & E-Stop

The introduction of the air bearing has reduced the effects of friction, allowing the

treadmill to move the belt with less torque. The motor does not have feedback of how fast the belt

is actually moving, but instead is an open loop control with a speed set via the VFD. Table 1

displays the average time for 1 complete revolution taken over multiple trials. 12 Hz is the speed

at which the control algorithms were tested, but lower frequencies were looked at as well. From

time alone, it is evident there is a slight decrease in time when the air bearing is engaged.

Table 1 Average time for 1 revolution

 5 Hz 10 Hz 12 Hz

W/O Air Avg time (s) 12.22 5.63 4.65

W/ Air Avg Time (s) 11.47 5.46 4.54

The length of the belt is 254.25 in. so the average speed of each trial is listed inError! Reference

source not found..

19

Table 2 Average Speed of Belt

 5 Hz 10 Hz 12 Hz

W/O Air Speed (mph) 1.18 2.57 3.11

W/ Air Speed (mph) 1.26 2.65 3.18

The speed is higher in each case with the air bearing engaged, and Table 3Error! Reference

source not found. displays the percentage by how much the speed increase. As shown, the air

bearing has a greater effect on the low speeds and as speed is increased, the air bearing while still

offering an increase in speed, is less noticeable.

Table 3 Percentage Speed Increase

 5 Hz 10 Hz 12 Hz

Percent Increase (%) 6.51% 3.18% 2.50%

20

Chapter 3

Sensors and Equipment

For the PURRS system to be used for vehicle guidance, a method is needed to accurately

measure the lateral position of the scale vehicle, in this case an RC car, and use that position to

control the steering of the car. This thesis used high resolution encoders on an arm to determine

position, and used Arduino microcontrollers to calculate and change the steering angle

accordingly. Details of this process are given in this chapter.

3.1 Encoders

Available in the current set up are 5 high resolution US Digital S2-2048-IB encoders.

Two are attached to the position arms and three are attached to the vehicle to measure roll, pitch,

and yaw (Figure 11). For the purposes of this research, only the 2 encoders attached to the

positioning arms are necessary.

Figure 11 Encoder & Arm Set-Up

Arm Encoder 1

Arm Encoder 2

Roll,Pitch,Yaw

Encoders

21

The relative-position encoders were used in this thesis to measure angular position with

respect to a reference position. These measurements, and taking the length of each arm, allow one

to calculate the position of the center of the vehicle as well as the vehicle’s orientation. The

encoders (Figure 12) have a resolution of 8000 counts per revolution, so it is accurate to 0.045°.

High resolution is important especially when dealing with long radii of arms. With such

resolution, and 36 inch arms, the measured position has a resolution of roughly 5/100th of an inch.

Figure 12 S2-2048-IB Optical Encoder

The encoders are incremental as opposed to absolute, so in order to read the angle

correctly, they have to be initialized at a known starting point. To achieve this, the arms have to

be set at a 90° angle, with the first arm parallel to the PURRS side, and the 2nd arm facing the

belt. (Error! Reference source not found.) Using this set up and the manner in which the

ncoder counts are set up, the frame of reference is set such that 0° is forward, and positive angle

clockwise to that.

22

Figure 13 Initialization Set-Up

Taking the first segment of the arm attached to the PURRS as arm 1, and the segment attached to

the car as arm 2, the lengths and angles of each can be used to determine the x and y position of

the vehicle via the following equations:

𝑋𝑝 = 𝐿1 cos(𝜃1) + 𝐿2cos(𝜃1 + 𝜃2 + 90°)

𝑌𝑝 = 𝐿1 sin(𝜃1) + 𝐿2sin(𝜃1 + 𝜃2 + 90°)

23

Figure 14 Geometry of Encoder Arms for Position Equations

The difference of the vehicle lateral position and the target lateral position of the car

gives the lateral position error, which will go into the proportional control discussed later.

3.2 Arduino Due

Figure 15 Arduino Due (Pin attachments in Appendix A)

The processing for the control system is implemented using 2 Arduino microcontrollers.

One is an Arduino Due which processes the encoders and sends a displacement value to the

24

second Arduino, the Uno model, on the RC car which uses the displacement to calculate a

steering command as appropriate.

Arduinos are powerful but low-cost microcomputers. They are suitable for this project

because of the ease of programming and community support available for the devices. Each

Arduino is equipped with a “shield”, a circuit that connects to the top of the microcontroller that

enables circuitry to be hardwired for a more permanent solution. The use of a shield board allows

the Arduino to be removed and repurposed in other applications, or easily replaced if there is a

failure.

The Arduino Uno is the most popular and commonly used board for projects; however, it

is not adequate for the encoder measurements of this particular project. Arduino Unos only have 2

interrupt pins, which is insufficient for the accurate use of the minimum of 3 encoders on this

system which require a minimum of 6 interrupt pins. Rotational optical encoders work by shining

a light through a slotted Mylar disk with a light sensor on the other side. When light passes, the

sensor registers 5 volts, and when light is obstructed, it registers 0 volts. An encoder is able to

measure rotation based on the number of changes the sensor undergoes. A quadrature encoder has

4x the resolution by simply having a second light sensor offset from the first sensor. An example

is seen below in Figure 16.

Figure 16 Encoder example. Channel A on top, Channel B on bottom

25

A normal rotation creates 2 square waves as seen in the example, but depending on the direction,

signal A will lead signal B, or signal B will lead signal A. The encoder looks for changes in states

for signal A or B, and this change can occur at any time, necessitating interrupts in the code to

detect these changes. The Arduino Due has a faster processor and is able to use any of its pins as

interrupt pins, making it ideally suited to read the encoders here. On the shield, 7 ports have been

added to allow up to 7 encoders to be read simultaneously if needed. However only two are

needed for the two arm encoders. (Error! Reference source not found.).

Figure 17 Arduino Due with Breadboard for 5V Distribution and Serial Communication w/ Logic Leveler

 The only drawback to using the Due is that it is natively a 3.3V board, while the encoders

require a 5V power supply to perform correctly. Previous research by Mangus used the 3.3V

power supply, and while this usually was sufficient to power the encoders, the performance was

inconsistent when the encoders were attached to the Due when the shield was soldered together.

The culprit was the power supply was not providing enough voltage to the encoders. This was

rectified by diverting a 5V supply from the one 5V pin available to the Due to a breadboard

Encoder 1: Pins 26 & 27

Encoder 2: Pins 28 & 29
TX1

3.3V

5V

Ground

Logic Leveler

26

where the 5V supply could then be routed back to each encoder cable. This is seen with the

yellow wires connecting to the lower left of the breadboard from the two encoder ports in Figure

17 Arduino Due with Breadboard for 5V Distribution and Serial Communication w/ Logic

Leveler

 The Due monitors the interrupt pins for changes associated with each encoders 2 signal

channels (A and B) and, when changes are detected, it converts the counts to radians. Then using

the equation mentioned above, it calculates the position, and subtracts the steady state value to

determine the position error value.

Figure 18 Signal Flow: Arduino DUE

 The Due uses serial connection to transmit the position error to the Arduino Uno on the

car to control the steering servos. However, the 3.3V of the Due again has a slight drawback in

that it cannot talk directly with the Arduino Uno which is a 5V board. In order to boost the

voltage of the signal without adding noise and distorting the message, a logic leveler from

Sparkfun is used. The chip was connected to both power supplies and as seen in the yellow

arrows on Figure 19, it allows signals to be sent from (TXI) the low voltage source and sent to

(TXO), the high voltage receiver.

27

Figure 19 Logic Leveler from Sparkfun

The logic leveler was attached to the breadboard for easy manipulation (Figure 20). The green

wires in the figure represent the serial communication lines. Only one connection line is

necessary as it is one-way communication with the Due broadcasting and the Uno receiving.

Testing of this system showed that the Arduino Uno can now receive the signal over serial

communication properly, using the logic leveler.

Figure 20 Logic Leveler. (Flipped from figure 17) 5V on bottom. 3.3V on top.

3.3V

5V

Arduino Due TX1

Arduino Uno RX0

28

3.3 Arduino Uno

Figure 21 Arduino Uno (Pin Attachments in Appendix B)

The Arduino Uno is connected to both the steering servo on the RC car, and the electric

speed control which in turn controls the drive motor of the RC car. However, where it gets the

instructions on how to control the servos depends on the operator. There are two modes of

operations that the Uno can be in: the first mode is manual mode, in which the Arduino receives

steering and speed control signals from the RC transmitter, as they RC connections are connected

to pins on the Arduino, allowing the RC car to be completely controlled from the RC controller.

The control architecture of the Arduino Uno can be seen in Figure 22.

29

Figure 22 Signal Flow: Arduino UNO

The third RC transmitter connection is for the channel 3 switch, to allow the vehicle to be

controlled via a manual transmitter (Figure 24). The Arduino continually checks the state of the

signal from the channel 3 switch. If the switch is pressed, the top LED (Figure 24) is off, and the

Arduino takes the commands for the servos from the RC controller. The controller signals are

between 1100 and 1900, with 1500 being the neutral signal.

Figure 23 RC Controller. Ch. 3 Switch

30

Figure 24 Arduino Uno with Shield and RC Transmitter Connections. Manual RC Mode

If the channel 3 switch is pushed out, the Arduino recognizes the change in the signal,

and turns on the LED (Figure 25) to indicate the Arduino is now receiving information from the

serial communication instead of the RC transmitter pins. Over the serial communication is the

displacement value which, in this thesis, is an integer error value indicating how many 1/00th of

an inch the car is away from its steady state position. The Arduino Uno uses a simple gain to

multiply with the error value and adds that to the neutral value of 1500 to make a control value

for the servos to use. In this mode, only the steering is controlled via serial communication, and

speed is still controlled from the RC controller.

Figure 25 Arduino Uno with Shield and RC Transmitter Connections. Serial Control Mode

31

Chapter 4

Controller Implementation and Performance

Basic control algorithms can be applied to the system using the 2 Arduinos, and this chapter

explains several implementations of such algorithms. Given that the scale RC vehicle is to be run

at relatively high speeds, proportional gain was used as a starting point for feedback control.

Maintaining speed with the belt speed was not in the scope of this project, and to isolate steering

dynamics from longitudinal dynamics, a simple tow line was incorporated to tow the vehicle at a

safe distance from the front of the PURRS. It is offset from the center line as is seen in Figure 26

to ensure any that influences from the rope will not help keep the car in desired position even if

the control algorithm is lacking, thereby ensuring that centering of the vehicle is being achieved

through steering control rather than via the tow line.

Figure 26 Steady State Position of Car

32

4.1 Proportional Control

The error values given from the Arduino Due mark how many 1/100ths of an inch the

vehicle is from the steady state position. The steering input values have a range between 0-1500

in either direction, so a proportional gain of 50 was chosen to multiply with the error value. Using

only the proportional gain, a plot of the lateral distance given a disturbance is seen in Figure 27.

Figure 27 Proportional Gain Plot

Evidently, with only proportional gain, there is a steady oscillations, 1 inch to either side

of the steady position. In an attempt to decrease the oscillations, a derivative element was added.

4.2 Derivative Gain

Derivative gain was added in an attempt to minimize the oscillations seen in purely

proportional gain with the RC car. While the resulting performance does effectively remove the

steady state oscillations, there is significant lateral deviations in the behavior of the vehicle

75 80 85 90 95

-6

-4

-2

0

2

4

6

Displacement vs time: Gain=50

L
a
te

ra
l
D

is
p
la

c
e
m

e
n
t

(i
n
)

Time (sec)

33

(Figure 28). The results of the derivative gain are not definitive, and additional retuning would

likely achieve smoother results. However, they do show that derivative control is having an effect

on performance and that the system

Figure 28 Proportional and Derivative Gain

68 69 70 71 72 73 74 75

-6

-4

-2

0

2

4

6

Displacement vs Time: Kp = 50 Kd = 1

L
a
te

ra
l
D

is
p
la

c
e
m

e
n
t

(i
n
)

Time (sec)

34

4.3 Performance and Errors

The proportional gain works well on the vehicle for light disturbances away from the

center, roughly 10 inches right or left. However if the vehicle is perturbed greater than that, it

appears to malfunction and a new “center line” or steady state is perceived by the vehicle. As

seen below. The wheels in figure 30 show that the vehicle now drives straight roughly 4 inches to

the right of where it should be, shown in figure 29, after one of these perturbations.

Figure 29 Desired Steady State Position

Figure 30 Error Produced Steady State Position

35

The correct wheel alignment in that position should be turned slightly to the left, as the

control algorithm is compensating for the 4 inch error to the right.

Figure 31 Desired Wheel Position in Same Location

Through testing of how the steering wheels react to forced movements, while operating

under the control algorithm, it is concluded that the wheels can become misaligned due to a slight

force on the tires themselves. If the car is in the center position, with the wheels straight and the

front wheels are forcibly turned to the right for a brief moment, they will attempt to return back to

straight, but a slight turn to the right will remain, until the signal is reset.

However the error is most likely electrical instead of mechanical as mentioned in the

paragraph above. The 5V control signal is sent to the Arduino Uno over a relatively large

distance, 40 in., without properly shielded wires. The current set up uses simple 24 gauge wire,

which may falter at times. The error in electrical signal could cause misalignment of the wheels

until they are reset.

36

Chapter 5

Future Considerations

The PURRS test bed is equipped for a more in depth look at methods for positioning and

control methods. There is a need to develop a control structure for the speed of the vehicle so it

does not have to rely on the tow rope to remain in position, but can work under the vehicles own

power. This change might have an effect on the dynamics of how the vehicle turns and responds

to wide lateral disturbances.

There are also additional encoders on the vehicle to measure the roll, pitch, and yaw, of

the vehicle to aid in the analysis of the vehicles dynamics. Future work could be conducted that

utilize these sensors in a feedback control algorithm.

Available are additional sensors to assist in vehicle positioning, including: an in-vehicle,

forward facing camera for lane detection; an overhead camera for simulated GPS tracking with

fiducials; 2 magnetic sensors mounted on vehicle bumpers for magnetic guidance. These systems

are available through USB interfacing with ROS using a Linux-based operating system.

Refinement of any of these systems can lead to more research on the reliability of one positioning

method vs the other. This would be a major new utilization of rolling-roadway simulators, and is

an obvious next step in this research.

37

Appendix A

Arduino Due Encoder Code

/*

Code to read multiple (seven) encoders with the Arduino DUE. The Arduino DUE is a 3.3V platform but has several

advantages over the Arduino UNO, namely a faster processor (84 MHz vs. 16 MHz) and it natively has interrupt

capabilities on all pins. The syntax for attaching interrupts is slightly different and the Arduino website should be

consulted.

Code Core written by: Jesse Pentzer, The Pennsylvania State University

Code Modified by: Anthony Mangus, The Pennsylvania State University

Code Modified by: Raveen Fernando, The Pennsylvania State University

Edits:

8/21/13: Start of the edit tracking (better late than never)

8/22/13: finished/commented the more robust communication protocol, specifically for [PC ----> arduino]

communication

*/

// Assign your channel in pins

#define CHANNEL_A1_PIN 26

#define CHANNEL_B1_PIN 27

#define ENC_1_INT_PIN 32

#define CHANNEL_A2_PIN 28

#define CHANNEL_B2_PIN 29

#define ENC_2_INT_PIN 33

#define CHANNEL_A3_PIN 30

#define CHANNEL_B3_PIN 31

#define ENC_3_INT_PIN 35

#define CHANNEL_A4_PIN 52

#define CHANNEL_B4_PIN 53

#define ENC_4_INT_PIN 46

#define CHANNEL_A5_PIN 50

#define CHANNEL_B5_PIN 51

#define ENC_5_INT_PIN 47

#define CHANNEL_A6_PIN 48

#define CHANNEL_B6_PIN 49

#define ENC_6_INT_PIN 44

#define CHANNEL_A7_PIN 34

#define CHANNEL_B7_PIN 38

#define ENC_7_INT_PIN 40

volatile long unCountShared1;

volatile long unCountShared2;

volatile long unCountShared3;

volatile long unCountShared4;

volatile long unCountShared5;

volatile long unCountShared6;

volatile long unCountShared7;

char incomingDataBuffer[3];

char dataTransmit;

int intRef1 = 0;

int intRef2 = 0;

int intRef3 = 0;

int intRef4 = 0;

38

int intRef5 = 0;

int intRef6 = 0;

int intRef7 = 0;

float deg1;

float deg2;

float rad1;

float rad2;

float L1 = 36;

float L2 = 36.5;

float x;

int x_int;

const float pi=3.14;

void setup()

{

 Serial.begin(115200);

 Serial1.begin(115200);

 //attach the interrupts

attachInterrupt(CHANNEL_A1_PIN, channelA1,CHANGE);

attachInterrupt(CHANNEL_B1_PIN, channelB1,CHANGE);

attachInterrupt(ENC_1_INT_PIN, interrupt1,CHANGE);

attachInterrupt(CHANNEL_A2_PIN, channelA2,CHANGE);

attachInterrupt(CHANNEL_B2_PIN, channelB2,CHANGE);

attachInterrupt(ENC_2_INT_PIN, interrupt2,CHANGE);

attachInterrupt(CHANNEL_A3_PIN, channelA3,CHANGE);

attachInterrupt(CHANNEL_B3_PIN, channelB3,CHANGE);

attachInterrupt(ENC_3_INT_PIN, interrupt3,CHANGE);

attachInterrupt(CHANNEL_A4_PIN, channelA4,CHANGE);

attachInterrupt(CHANNEL_B4_PIN, channelB4,CHANGE);

attachInterrupt(ENC_4_INT_PIN, interrupt4,CHANGE);

attachInterrupt(CHANNEL_A5_PIN, channelA5,CHANGE);

attachInterrupt(CHANNEL_B5_PIN, channelB5,CHANGE);

attachInterrupt(ENC_5_INT_PIN, interrupt5,CHANGE);

attachInterrupt(CHANNEL_A6_PIN, channelA6,CHANGE);

attachInterrupt(CHANNEL_B6_PIN, channelB6,CHANGE);

attachInterrupt(ENC_6_INT_PIN, interrupt6,CHANGE);

attachInterrupt(CHANNEL_A7_PIN, channelA7,CHANGE);

attachInterrupt(CHANNEL_B7_PIN, channelB7,CHANGE);

attachInterrupt(ENC_7_INT_PIN, interrupt7,CHANGE);

}

void loop()

{

 // create local variables to hold a local copies of the channel inputs

 // these are declared static so that thier values will be retained

 // between calls to loop.

 static long unCount1;

 static long unCount2;

 static long unCount3;

 static long unCount4;

 static long unCount5;

 static long unCount6;

 static long unCount7;

 noInterrupts(); // turn interrupts off quickly while we take local copies of the shared variables

39

 unCount1 = unCountShared1;

 unCount2 = unCountShared2;

 unCount3 = unCountShared3;

 unCount4 = unCountShared4;

 unCount5 = unCountShared5;

 unCount6 = unCountShared6;

 unCount7 = unCountShared7;

 rad1=(pi/4000)*unCount1;

 deg1=(9/200)*unCount1;

 rad2=(pi/4000)*unCount2;

 deg2=(9/200)*unCount2;

 x=L1*sin(rad1)+L2*sin(rad1+rad2+(pi/2))-36.5;

 x_int=x*100;

 Serial.print(deg1);

 Serial.print(" ");

 Serial.print(deg2);

 Serial.print(" ");

 Serial.print(x);

 Serial.print(" ");

 Serial.println(x_int);

 Serial1.println(x_int);

 interrupts(); // turns interrupts back on from the noInterrupts() command

// /*

// This section is for communication via USB with ROS, which is for future consideration of the project.

// Serial communication protocol for checking incoming data. This block of code looks for a three unit long

// incoming piece of data on the serial (USB) interface. This data is brought in as a three value long character

// array. The messages that are useful for this code are R0S (with a zero) to stop the flow of data and R1S (with a one)

to

// start the flow of data. The idea is the first character is the TRANSMITTING device (designed for use with ROS,

// therefore the R), the middle is the data, and the last character is a STOP (akin to the STOP used in telegrams,

// therefore the S).

// */

// if (Serial.available() == 3){ // checks for three units of data on the serial buffer

// Serial.readBytes(incomingDataBuffer, 3); //reads the three units of data into a char[3] variable

//

// /* For Debugging within the arduino serial monitor

// Serial.println("Data String Received");

// Serial.println(incomingDataBuffer); //shows the char[3] variable

// Serial.println("Data Parts");

// Serial.println(incomingDataBuffer[0]); //shows the first unit in the char[3]

// Serial.println(incomingDataBuffer[1]); //shows the second unit in the char[3]

// Serial.println(incomingDataBuffer[2]); //shows the last unit in the char[3]

// */

//

// if (incomingDataBuffer[0] == 'R'){ // checks for the start character "R" (from ROS)

// if (incomingDataBuffer[2] == 'S'){ // checks for the end character "S" (STOP)

// dataTransmit=incomingDataBuffer[1]; // puts the data of the message into the dataTransmit variable

//

// /* For Debugging within the arduino serial monitor

// Serial.println("Data Received");

// Serial.println(dataTransmit); // shows the data from the message

40

// */

// }

// }

// Serial.read(); // this command is CRITICAL for the operation of the serial communication. This line ditches any

data

// // left in the arduino serial buffer to clear it out for the next command

// }

// if (dataTransmit == '1'){ //checks to see if the arduino should send the encoder data

// Serial.print("A");

// Serial.print(" : ");

// Serial.print(unCount1);

// Serial.print(" : ");

// Serial.print(unCount2);

// Serial.print(" : ");

// Serial.print(unCount3);

// Serial.print(" : ");

// Serial.print(unCount4);

// Serial.print(" : ");

// Serial.print(unCount5);

// Serial.print(" : ");

// Serial.print(unCount6);

// Serial.print(" : ");

// Serial.print(unCount7);

// Serial.print(" : ");

// Serial.println("S");

// }

}

// simple interrupt service routines

//Encoder 1 interrupts

void channelA1()

{

 if (digitalRead(CHANNEL_A1_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B1_PIN) == LOW)

 {

 unCountShared1++;

 }

 else

 {

 unCountShared1--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B1_PIN) == HIGH)

 {

 unCountShared1++;

 }

 else

 {

 unCountShared1--;

 }

 }

}

void channelB1()

{

41

 if (digitalRead(CHANNEL_B1_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_A1_PIN) == HIGH)

 {

 unCountShared1++;

 }

 else

 {

 unCountShared1--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_A1_PIN) == LOW)

 {

 unCountShared1++;

 }

 else

 {

 unCountShared1--;

 }

 }

}

void interrupt1()

{

 unCountShared1 = 0;

}

//Encoder 2 interrupts

void channelA2()

{

 if (digitalRead(CHANNEL_A2_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B2_PIN) == LOW)

 {

 unCountShared2++;

 }

 else

 {

 unCountShared2--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B2_PIN) == HIGH)

 {

 unCountShared2++;

 }

 else

 {

 unCountShared2--;

 }

 }

}

void channelB2()

{

 if (digitalRead(CHANNEL_B2_PIN) == HIGH)

 {

42

 if (digitalRead(CHANNEL_A2_PIN) == HIGH)

 {

 unCountShared2++;

 }

 else

 {

 unCountShared2--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_A2_PIN) == LOW)

 {

 unCountShared2++;

 }

 else

 {

 unCountShared2--;

 }

 }

}

void interrupt2()

{

 unCountShared2 = 0;

}

//Encoder 3 interrupts

void channelA3()

{

 if (digitalRead(CHANNEL_A3_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B3_PIN) == LOW)

 {

 unCountShared3++;

 }

 else

 {

 unCountShared3--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B3_PIN) == HIGH)

 {

 unCountShared3++;

 }

 else

 {

 unCountShared3--;

 }

 }

}

void channelB3()

{

 if (digitalRead(CHANNEL_B3_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_A3_PIN) == HIGH)

 {

43

 unCountShared3++;

 }

 else

 {

 unCountShared3--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_A3_PIN) == LOW)

 {

 unCountShared3++;

 }

 else

 {

 unCountShared3--;

 }

 }

}

void interrupt3()

{

 unCountShared3 = 0;

}

//Encoder 4 interrupts

void channelA4()

{

 if (digitalRead(CHANNEL_A4_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B4_PIN) == LOW)

 {

 unCountShared4++;

 }

 else

 {

 unCountShared4--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B4_PIN) == HIGH)

 {

 unCountShared4++;

 }

 else

 {

 unCountShared4--;

 }

 }

}

void channelB4()

{

 if (digitalRead(CHANNEL_B4_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_A4_PIN) == HIGH)

 {

 unCountShared4++;

 }

44

 else

 {

 unCountShared4--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_A4_PIN) == LOW)

 {

 unCountShared4++;

 }

 else

 {

 unCountShared4--;

 }

 }

}

void interrupt4()

{

 unCountShared4 = 0;

}

//Encoder 5 interrupts

void channelA5()

{

 if (digitalRead(CHANNEL_A5_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B5_PIN) == LOW)

 {

 unCountShared5++;

 }

 else

 {

 unCountShared5--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B5_PIN) == HIGH)

 {

 unCountShared5++;

 }

 else

 {

 unCountShared5--;

 }

 }

}

void channelB5()

{

 if (digitalRead(CHANNEL_B5_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_A5_PIN) == HIGH)

 {

 unCountShared5++;

 }

 else

 {

45

 unCountShared5--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_A5_PIN) == LOW)

 {

 unCountShared5++;

 }

 else

 {

 unCountShared5--;

 }

 }

}

void interrupt5()

{

 unCountShared5 = 0;

}

//Encoder 6 interrupts

void channelA6()

{

 if (digitalRead(CHANNEL_A6_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B6_PIN) == LOW)

 {

 unCountShared6++;

 }

 else

 {

 unCountShared6--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B6_PIN) == HIGH)

 {

 unCountShared6++;

 }

 else

 {

 unCountShared6--;

 }

 }

}

void channelB6()

{

 if (digitalRead(CHANNEL_B6_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_A6_PIN) == HIGH)

 {

 unCountShared6++;

 }

 else

 {

 unCountShared6--;

 }

46

 }

 else

 {

 if (digitalRead(CHANNEL_A6_PIN) == LOW)

 {

 unCountShared6++;

 }

 else

 {

 unCountShared6--;

 }

 }

}

void interrupt6()

{

 unCountShared6 = 0;

}

//Encoder 7 interrupts

void channelA7()

{

 if (digitalRead(CHANNEL_A7_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_B7_PIN) == LOW)

 {

 unCountShared7++;

 }

 else

 {

 unCountShared7--;

 }

 }

 else

 {

 if (digitalRead(CHANNEL_B7_PIN) == HIGH)

 {

 unCountShared7++;

 }

 else

 {

 unCountShared7--;

 }

 }

}

void channelB7()

{

 if (digitalRead(CHANNEL_B7_PIN) == HIGH)

 {

 if (digitalRead(CHANNEL_A7_PIN) == HIGH)

 {

 unCountShared7++;

 }

 else

 {

 unCountShared7--;

 }

 }

 else

47

 {

 if (digitalRead(CHANNEL_A7_PIN) == LOW)

 {

 unCountShared7++;

 }

 else

 {

 unCountShared7--;

 }

 }

}

void interrupt7()

{

 unCountShared7 = 0;

}

48

Appendix B

Arduino Uno RC Code

// Required Libraries

#include <Servo.h>

#include <PinChangeInt.h>

/*

This code is used to control the new vehicle designed for use on the Pennsylvania

State University Rolling Roadway Simulator. The vehicle is an off the shelf R/C car

that has been lightly modified to ease in control and for sensor mounts. The vehicle

is controlled in an extremely simple manner: the arduino is nothing but a gate between

the reciever (which receives manual commands from the transmitter given by the operator)

and the servo/electronic speed control (ESC). If the switch on the transmitter is

activated, the arduino ignores the commands from the receiver and uses commands given

from ROS. This achitecture gives the operator the ability to manually control the vehicle,

or let ROS control the vehicle. This architecture will also revert to manual mode if the

transmitter is turned off, effectively bringing the vehicle to a stop. There is also an LED

the arduino shield to determine which mode the arduino is in.

Copyright Anthony Mangus 2013, The Pennsylvania State University

Modified Raveen Fernando 2014, The Pennsylvania State University

*/

int LED = 12;

// Defines the pins used for servo, esc, and reciever

int rxservopin = 4; // receiver servo pin

int rxescpin = 8; // receiver ESC pin

int rxcontrolstat = 13; // receiver 3rd channel (control button) pin

int val;

int steeringservopin = 5; // servo pin

int ESCservopin = 9; // ESC pin

Servo steeringservo; // creates a servo object for the steering servo

Servo ESCservo; // creates a servo object for the ESC (which works like a servo)

int current;

char incomingDataBuffer[20];

char dataTransmit;

int numbytes;

volatile long countservo;

volatile long posservoint;

volatile long countesc;

volatile long posescint;

volatile long countch3;

volatile long posch3int;

void setup() {

 Serial.begin(115200);

49

 pinMode(LED, OUTPUT);

 steeringservo.attach(steeringservopin);

 steeringservo.write(90);

 ESCservo.attach(ESCservopin);

 ESCservo.write(90);

 delay(2000);

 /*

 This code uses interrupts to read the three signals from the receiver.

 This is done by looking for the leading and trailing edge of the analog

 signal and converting it to calculate the position. The PinChangeInt library

 allows any digital pin on the arduino to have interrupt capability

 */

 PCintPort::attachInterrupt(rxservopin, servostatus, CHANGE);

 PCintPort::attachInterrupt(rxescpin, escstatus, CHANGE);

 PCintPort::attachInterrupt(rxcontrolstat, ch3status, CHANGE);

}

void loop() {

 //ESCservo.write(90);

 //current=steeringservo.read();

 static long posservo;

 static long posesc;

 static long posch3;

 static int RXservo = 1500;

 static int ROSESC = 1500;

 static int ROSstat = 1500;

 boolean gotdata = 0;

 noInterrupts();

 posservo = posservoint;

 posesc = posescint;

 posch3 = posch3int;

 interrupts();

 int incoming = Serial.available();

 if (incoming != 0)

 {

 val = Serial.parseInt(); //Reads integers as integer rather than ASCI. Anything else returns 0

 RXservo = 1500 + val; //Gain=1

 }

 /*

 Following code section is for ROS communication via Serial Communication.

 Serial communication protocol for checking incoming data. This block of code looks for a three unit long

 incoming piece of data on the serial (USB) interface. This data is brought in as a three value long character

 array. The messages that are useful for this code are R0S (with a zero) to stop the flow of data and R1S (with a one) to

 start the flow of data. The idea is the first character is the TRANSMITTING device (designed for use with ROS,

 therefore the R), the middle is the data, and the last character is a STOP (akin to the STOP used in telegrams,

50

 therefore the S).

 */

 // if (Serial.available() != 0){ // checks for three units of data on the serial buffer

 // numbytes = Serial.readBytesUntil('\r',incomingDataBuffer, sizeof(incomingDataBuffer)); //reads the three units of

data into a char[3] variable

 //

 // //For Debugging within the arduino serial monitor

 // //Serial.println(numbytes);

 // //Serial.println("Data String Received");

 // //Serial.println(incomingDataBuffer); //shows the char[3] variable

 // /*Serial.println("Data Parts");

 // Serial.print(incomingDataBuffer[0]); //shows the first unit in the char[3]

 // Serial.println(incomingDataBuffer[1]);

 // Serial.println(incomingDataBuffer[2]); //shows the second unit in the char[3]

 // Serial.print(incomingDataBuffer[3]); //shows the last unit in the char[3]

 // Serial.println(incomingDataBuffer[4]);

 // */

 //

 // if (incomingDataBuffer[0] == 'R' && incomingDataBuffer[1] == ':'){ // checks for the start character "R" (from

ROS)

 //

 // if (incomingDataBuffer[numbytes-2] == ':' && incomingDataBuffer[numbytes-1] == 'S'){ // checks for the end

character "S" (STOP)

 // //dataTransmit=incomingDataBuffer[2]; // puts the data of the message into the dataTransmit variable

 // //Serial.println("Got :S");

 // //For Debugging within the arduino serial monitor

 //

 // /* For troubleshooting

 // //Serial.println("Data Received");

 // Serial.print("A:");

 // for (int a = 2; a < numbytes-2; a++){

 // Serial.print(incomingDataBuffer[a]); // shows the data from the message

 // }

 // Serial.println(":S");

 // */

 // int count = 0;

 // int ROSvarcount = 0;

 // char dataConvertBuffer[4];

 // for (int a = 2; a < numbytes-1; a++){

 // if(incomingDataBuffer[a] != ':'){

 // dataConvertBuffer[count] = incomingDataBuffer[a];

 // count++;

 // //Serial.println(count);

 // }

 // else {

 // count = 0;

 // // note: the atoi function converts a string to an integer

 // switch (ROSvarcount){

 // case 0:

 // ROSservo = atoi(dataConvertBuffer); // captures the servo position from ROS

 // //Serial.println(ROSservo);

 // break;

 // case 1:

 // ROSESC = atoi(dataConvertBuffer); // captures the ESC positon from ROS

 // //Serial.println(ROSESC);

 // break;

 // case 2:

 // ROSstat = atoi(dataConvertBuffer); // captures the control status from ROS

 // //Serial.println(ROSstat);

 // break;

51

 // }

 // ROSvarcount++;

 // char dataConvertBuffer[4];

 // }

 //

 // //Serial.print(incomingDataBuffer[a]); // shows the data from the message

 // }

 //

 // //Serial.println(posch3);

 // // this next section prints the ROS command back to ROS if the vehicle is in ROS mode

 // if (posch3 < 1500 && posch3 > 800) // range of the control button singal to put the vehicle in ROS mode

 // {

 // //Serial.println("Data Out");

 // Serial.print("A:");

 // Serial.print(ROSservo);

 // Serial.print(":");

 // Serial.print(ROSESC);

 // Serial.print(":");

 // Serial.print(posch3);

 // Serial.println(":S");

 // }

 //

 //

 //

 // }

 // }

 // Serial.read(); // this command is CRITICAL for the operation of the serial communication. This line ditches any

data

 // // left in the arduino serial buffer to clear it out for the next command

 // }

 //

 // /*for (int angle=40; angle <140; angle++){

 // steeringservo.write(angle);

 // //Serial.println(angle);

 // delay(10);

 // }

 // */

 // this next section prints the manual positions back to ROS if the vehicle is in manual mode

 if (posch3 > 1500 && posch3 < 2000) // range of the control button singal to put the vehicle in manual mode

 {

 digitalWrite(LED, LOW);

 ESCservo.writeMicroseconds(posesc); // sets the ESC to the value sent from the receiver

 steeringservo.writeMicroseconds(posservo); // sets the servo to the value sent from the receiver

 //Serial.println("Data Out");

 // Serial.print("A:");

 // Serial.print(posservo);

 // Serial.print(":");

 // Serial.print(posesc);

 // Serial.print(":");

 // Serial.print(posch3);

 // Serial.println(":S");

 }

 if (posch3 < 1500 && posch3 > 800) // range of the control button singal to put the vehicle in ROS mode

 {

 digitalWrite(LED, HIGH);

52

 ESCservo.writeMicroseconds(posesc); // sets the ESC to the value sent from ROS

 steeringservo.writeMicroseconds(RXservo); // sets the servo to the value sent from ROS

 }

}

/*

The following funtions are the interrupt driven reading of the servo/ESC/Channel 3 status. This is done

by starting a clock when the leading edge of the signal and stopping when the trailing edge is found.

*/

void servostatus() {

 if (digitalRead(rxservopin) == HIGH) {

 countservo = micros(); //positive edge

 }

 else {

 posservoint = micros() - countservo;

 }

}

void escstatus() {

 if (digitalRead(rxescpin) == HIGH) {

 countesc = micros(); //positive edge

 }

 else {

 posescint = micros() - countesc;

 }

}

void ch3status() {

 if (digitalRead(rxcontrolstat) == HIGH) {

 countch3 = micros(); //positive edge

 }

 else {

 posch3int = micros() - countch3;

 }

}

BIBLIOGRAPHY

[1] Brennan, S., and A. Alleyne. 2001. Using a scale testbed: Controller design and evaluation. IEEE
Control Systems 21, (3): 15.

[2] Brennan, S., and A. Alleyne. 2000. The illinois roadway simulator: A mechatronic testbed for vehicle

dynamics and control. IEEE/ASME Transactions on Mechatronics 5, (4): 349-359.

[3] Brennan, S., and A. Alleyne. 1999. A scaled testbed for vehicle control: The IRS. Proceedings of the

1999 IEEE International Conference on Control Applications (Cat. No.99CH36328) 1, : 327-332 vol. 1.

[4] Kachroo, P., K. Ozbay, R. G. Leonard, and C. Unsal. 1995. Flexible low-cost automated scaled highway

(FLASH) laboratory for studies on automated highway systems. 1995 IEEE International Conference on
Systems, Man and Cybernetics. Intelligent Systems for the 21st Century 1, : 771-776 vol.1

.
[5] Brennan, S., A. Alleyne, and M. DePoorter. 1998. The illinois roadway simulator-a hardware-in-the-loop

testbed for vehicle dynamics and control. Proceedings of the 1998 American Control Conference. ACC
(IEEE Cat. No.98CH36207) 1, : 493-497 vol.1

[6] Mangus, Anthony J., Sean Brennan, and Schreyer Honors College. 2013. Robust vehicle localization

using GPS, in-vehicle camera, magnetic guidance and kalman filtering. Ph.D. diss., Pennsylvania State
University.

[7] Brennan, S. N. (1999) Modeling and Control Issues Associated with Scaled Vehicles,
 Master’s thesis, University of Illinois at Urbana-Champaign.

[8] Lapapong, Sittikorn. 2007. Vehicle similitude modeling and validation of the pennsylvania state

university rolling roadway simulator. Ph.D. diss., .

[9] Woodley, R. and L. Acar (2004) “Autonomous Control of a Scale Model of a Trailer-
 Truck Using an Obstacle-Avoidance Path-Planning Hierarchy,” in Proceedings of the 2004
 American Control Conference, vol. 4, Boston, MA, pp. 3399–3404.

[10] Langer, W. (1995) “Validation of Flat Surface Roadway Technology,” SAE Technical
 Paper Series, (950310).

[11] Schultz, G., I. Tong, K. Kefauver, and J. Ishibashi (2005) “Steering and Handling
 Testing Using Roadway Simulator Technology,” International Journal of Vehicle Systems
 Modeling and Testing, 1(1/2/3), pp. 32–47.

[12] Sampei, M., T. Tamura, T. Kobayashi, and N. Shibui (1995) “Arbitrary Path Tracking
 Control of Articulated Vehicles Using Nonlinear Control Theory,” IEEE Transactions on Control Systems

Technology, 3(1), pp. 125–131.

[13] Henry, R. D. (2001) Automatic Ultrasonic Headway control for a Scaled Robotic Car,
 Master’s thesis, Virginia Polytechnic Institute and State University.

[14] Whitehead, R., B. Clark, M. Breland, K. Lambert, D. M. Bevly, and G. Flowers
 (2005) “Scaled Vehicle Electronic Stability Control,” in ESV International Collegiate
 Student Safety Technology Design Competition.

ACADEMIC VITA

Raveen Fernando

751 Stratford Dr. State College PA, 16801 / Raveen.L.Fernando@gmail.com

Education
 The Pennsylvania State University

University Park, PA
 Schreyer Honors College Fall 2014
 B.S in Mechanical Engineering, Minor in Spanish

Computer Skills
 SolidWorks (Associate’s Certificate) C++ Simulink
 AutoCAD MATLAB Excel

Work History
 Internship- Ford Motor Company Summer ‘14

 Analyzed behavior and accuracy of lane detection software
used for autonomous vehicles.

 Researcher-Intelligent Vehicles and Systems Group Spring 2013-Present

 Helped build a 360 degree multi-degree of freedom
simulator for trucks and tractors

 Developing a test bed for RC controlled autonomous
vehicles

 Internship- ArcelorMittal USA Summer 2011
 Created electronic parts databases for mobile equipment,

which increased the efficiency of repairs.

 Evaluated and designed safety devices for working at
heights, which increased the safety rating of the plant, and
decreased the insurance deductible.

 Internship- Caravansar, Gestión Cultural Spain. Spring 2012

 Captured images to document the clients, classes, and theatrical
events.

 Edited and produced the images for promotional uses of the
company.

Internship- Center County Democratic Campaign Headquarter Summer 2008

 Oversaw canvassing in sectors of State College to get
accurate voter positions.

 Visited local high school to educate seniors on the voting
process and to register them to vote

Activities
 Penn State IFC/Panhellenic Dance Marathon 2013-2014

 Merchandise Licensing Captain

 Oversaw all merchandise design requests for THON
organizations

 Protected the trademarks of THON and associated groups
 Beta Theta Pi Fraternity 2010-Present

 Community Service Chair 2011
o Organized brotherhood-wide community service events
o Ensured brothers fulfill community service hours

 Penn State Ballroom Dance Team 2012-Present
NAACP 2010

 Fundraising Events Committee
o Contacted businesses about prospects for future

fundraisers

Achievements
 Louis A. Harding Memorial Scholarship 2012, 2013
 Beta Theta Pi Men of Principle Scholarship 2010

Penn State President’s Freshman Award 2010
 Academic Excellence Scholarship 2009-2013

Golden Key International Honour Society 2010-Present
Dean’s List

