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A B S T R A C T

This dissertation addresses the issue of influence in self-organizing
multi-agent systems by using traffic jams as a prototypical example of
self-organized behavior. Specifically, the problem of ascertaining the
influence of a set of agents on the ensemble dynamics is addressed
through two complementary approaches. In the first approach, dis-
cussed in Part I of the dissertation, the ability to influence ensem-
ble dynamics is studied as a function of changing agent population
demographics. Statistical mechanics-inspired methodologies, such as
the master equation and the generalized Ising model, are used to
study the effect of introduction of vehicles equipped with adaptive
cruise control (acc) algorithms on the self-organized dynamics of
traffic jams. Results indicate mixed positive and negative effects of
introduction of acc-equipped vehicles at various traffic densities.

While this approach can help guide long-term intelligent vehicle
deployment strategies on the time scale of years or decades, pop-
ulation demographic control is not a feasible solution for influenc-
ing large-scale multi-agent systems on the time scale of minutes or
hours. Thus, the second approach, discussed in Part II of this disser-
tation, addresses the problem by identifying appropriate regions of
the state space within which the control efforts exerted by a small set
of agents can influence the self-organized dynamics of the ensemble.
The methodologies adopted in this approach make use of the kine-
matic wave theory of traffic flow and the notion of controllability to
present the novel concept of influential subspaces. Results indicate that
there exists a strong spatial dependence that governs an agent’s abil-
ity to influence the self-organized dynamics of large-scale multi-agent
systems.
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Give me a place to stand and I will move the earth
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1
I N T R O D U C T I O N

The work presented in this dissertation has been undertaken to broad-
ly address the question of how microscopic agents may be able to con-
trol the macroscopic dynamics of complex systems. Specifically, the
presented work focuses on developing methods that may help control
the self-organizing behavior observed in many complex systems, with
emphasis on self-organized jams observed in highway traffic flow.

1.1 motivation : complex systems , self-organization and

macroscopic control

The study of complex systems is easily motivated: these systems
are ubiquitous in the natural and, increasingly, in the engineered
world. Systems typically touted as being complex in character include
stock markets [9], the human nervous system [10], communication
networks [11] etc. While the definition of what constitutes a complex
systems remains nebulous in nature, it is widely understood that any
system consisting of a ‘large’ number of entities which interact with complex system

one another may be referred to as a complex system.
Complex systems are often said to exhibit self-organization, which is

vaguely defined as the ‘spontaneous often seemingly purposeful for- self-organization

mation of spatial, temporal, spatio-temporal structures or functions in
systems composed of few or many components’ [12]. Humans have
an innate ability for pattern recognition, so it is not surprising that
we are able to ‘identify’ several systems that tend to self-organize.
Examples of self-organization exhibited by complex systems include
flocking of birds, ant colonies, chemical reactions, communication net-
works, and avalanches on snow-capped mountains, to name a few.

In many situations, macroscopic control of the complex system may
be required, i.e. it may be desirable to lead the system to a pre-
determined spatio-temporally patterned global state (or macrostate). macrostate

However, one of the characteristic features of self-organized systems
is that they evolve to the spatio-temporally patterned state in the ab-
sence of any external control. For example, the seminal work by Per
Bak and his colleagues indicates how sand piles self-organize to main-
tain a stable slope – the same underlying ability of complex systems
also causes avalanches and earthquakes, and self-organization in sev-
eral other complex systems. It then seems reasonable to assume that
introduction of a small set of agents with some characteristics that
differ from the existing agent population may cause a change in the
macroscopic dynamics. For example, in a traffic jam, controlling a few
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(a) Schools of fish often exhibit self-
organized behavior to avoid preda-
tors.

(b) The Belusov-Zhabotinsky reaction
exhibits spatio-temporal patterns
characteristic of self-organized be-
havior.

Figure 1.1: Example of self-organizing behavior. Spatial patterns are evident
to the human observer.

select agents (intelligent vehicles) may cause the traffic jam to dissi-
pate faster – a desirable macroscopic outcome. Some of the central
issues that motivate complex systems research are discussed next.

1.1.1 Motivating questions in complex systems research

For a complex multi-agent system whose macroscopic dynamics need
to be controlled, the research community is actively investigating sev-
eral key problems. Broadly speaking, these problems can be divided
into the following categories:

• Which macrostate is best suited to describe ‘global’ behavior?
(The model order reduction problem)

• Which agent controller design leads to the desired global behavior?
(The top-down agent design problem)

• which global behavior is expected to be observed, given specific
agent controllers or dynamics? (The bottom-up complex system
design problem)

• Which agent is best suited for controlling global behavior? (The
agent selection problem)

To which one could add another equally important, but overlooked,
problem:

• Given a set of pre-selected agents, in which region are they best
suited to control the global behavior? (The subspace selection
problem)
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Researchers in the domain of complex systems are motivated by
these broad questions in some form or the other, albeit in their respec-
tive fields of expertise. While the study of complex systems is well
motivated, the motivation for studying systems in a specific field of
expertise may vary. In this thesis, some of these motivating questions
are answered with respect to self-organized traffic jams on highways.
The next section discusses the motivation for studying the interplay
between intelligent vehicles and self-organized traffic jams. As we
will see, some of these motivations are common across all engineered
systems, such as the desire to improve operational efficiency of a sys-
tem, while reducing costs and meeting the customers’ needs.

1.2 motivation : controlling self-organized traffic

jams

To make meaningful progress towards answering these questions,
attention has been directed towards a specific instance of a com-
plex system, viz. traffic flow on highways. Specifically, this disser-
tation focuses on the formation of self-organized vehicular clusters
in medium-to-high density traffic, and analyzes the effects that mi-
croscopic agents (i.e. vehicles) have on the macroscopic dynamics (i.e.
traffic jam dynamics) in this complex system.

Until recently, highway congestion was not considered to be a con-
sequence of the complex nature of the traffic system. However, a slew
of advances in traffic flow modeling in the 1990s [13], followed by
some commendable experimental work in the 2000s [5], have resulted
in a strong case for pursuing complex systems-based analyses for traf-
fic systems, especially in the case of self-organized traffic jams. The
choice to study traffic systems as a prototypical complex system is
not accidental – it is motivated by the special nature of the traffic sys-
tem. Specifically, traffic flow essentially generates a one-dimensional
problem, significantly simplifying analysis of an otherwise complex
problem. Additionally, traffic dynamics have been studied for a sig-
nificant period of time and we possess a reasonable understanding of
vehicular behavior.

More importantly though, the key motivator for pursuing research
on self-organized traffic jams is the rising cost of congestion, accom-
panied by the limited avenues for infrastructure expansion required
to alleviate congestion. The cost of congestion is experienced not only cost of congestion

in terms of financial expenditure, but also as a loss of human produc-
tivity (travel delay) and damage to the environment (emissions and
wasted fuel). Recent studies indicate that “between 1985 and 2006, ve-
hicle miles traveled increased by nearly 100 percent, while highway
lane miles only increased 5 percent during the same period” [14], and
that “between 1982 and 2005, the percentage of the major road sys-
tem that is congested grew from 29 percent to 48 percent” [15]. These
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data lead to the conclusion that directing infrastructure investments
towards building new roads is quickly becoming an infeasible solu-
tion to the congestion problem.
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Figure 1.2: Evidence of increasing cost of congestion. [1]

An evolving traffic landscape, now comprising intelligent vehicles
equipped with adaptive cruise control (acc), and infrastructure-to-
vehicle (i2v) and vehicle-to-vehicle (v2v) technologies, presents new
avenues for directing infrastructure investment. Apart from making
roads safer, reducing congestion is perhaps the key motivator for in-
vesting in intelligent transportation systems. In this scenario, the cen-
tral theme naturally progresses towards addressing how introduction
of intelligent vehicles could impact traffic jam dynamics. More impor-
tantly, the presented work considers critical issues pertaining to the
spatial location of these microscopic agents (intelligent vehicles), and
how varying these spatial locations can affect macroscopic traffic jam
dynamics. This work lays the foundations of the novel concepts of
influential subspaces and event horizons in multi-agent systems, dis-
cussed later in the text. The next section discusses some key problems
in the domain of intelligent transportation systems pertinent to self-
organized traffic jams.
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1.2.1 Motivating questions in intelligent transportation research

Traffic systems and automobiles have been under development for
over a century now, but the rate of change occurring today has not
been observed in the past. That the present-day traffic system, dom-
inated by human drivers, will transition to a future where most ve-
hicles are driven by algorithms on intelligent highways, is almost a
foregone conclusion. Technical progress along key areas, such as sens-
ing, data fusion, database management etc., has continued at such an
explosive rate, that today the primary hurdles to widespread adop-
tion are seen to be legal in nature. However, while technical advances
have been demonstrated in specific scenarios, certain questions re-
main unanswered. In the context of reducing congestion arising from
self-organized traffic jams, these questions can be broadly classified
into the following categories:

• Which algorithm or technology is best suited to serve the transition
period and long-term requirements of improving macroscopic
traffic flow? (The technology selection and deployment prob-
lem, closely related to the top-down agent design problem)

• Given a specific technology, how widespread should its acceptance
be in order to produce a meaningful improvement of the macro-
scopic traffic behavior? (The technology penetration rate prob-
lem, closely related to the bottom-up complex system design
problem)

• Given a specific technology, what communication and messaging
specifications need to be satisfied in order to benefit the macro-
scopic traffic behavior? (The communication protocol problem,
closely related to the subspace selection problem)

Researchers in the intelligent transportation community continue
to tackle these questions using various approaches. The work pre-
sented in this dissertation addresses all three questions in varying
degrees of detail. In the included analyses, the macroscopic traffic
behavior corresponds to the formation of self-organized traffic jams.

1.3 goals of the study

The primary goals of this study are:

• To understand and quantify of the impact of introduction of
acc-enabled vehicles on macroscopic traffic jam dynamics, via:

– Analytical techniques that make use of known agent dy-
namics (i.e. car-following behavior), and

– General numerical techniques that do not require explicit
knowledge of microscopic agent dynamics.

5



• To formalize the notion of influential subspaces, loosely defined
as regions within which the application of a limited local control
input to a small set of agents has the potential to modify the
macroscopic dynamics of a self-organizing multi-agent system,
and

• To identify the influential subspaces of connected vehicles in a
traffic system with self-organized jams.

1.4 outline of remaining chapters

The remainder of this dissertation is organized into two parts which
discuss two different types of influence inducing strategies. In Part
I, the influence of agents on ensemble dynamics is approached from
the perspective of population modification. In this part, secondary
agents that have different characteristics than the original population
are gradually introduced into the system. As the population of the
secondary agents increases as a ratio of the total population, their in-
fluence on the ensemble dynamics is observed. Chapters 3 and 4 con-
stitute Part I. In Part II, an alternative approach is attempted, where
agent-specific subspaces of the state space are selected such that one
agent has significant influence on the ensemble dynamics. Chapters
5 and 6 constitute Part II. The remainder of the thesis is organized as
follows:

• Chapter 2 discusses prior work performed in the fields of multi-
agent systems with specific emphasis on agent selection, macro-
scopic dynamics, and influential subspaces, as well as relevant
research pertaining to traffic flow theory.

• Chapter 3 develops a master equation-based approach to ana-
lyze the evolution of self-organized traffic jams on a single-lane
highway, as a function of a specific driver algorithm. The anal-
yses is then extended to study the impact of increasing acc

penetration rates on reducing congestion.

• Chapter 4 builds upon the analysis presented in chapter 3, by
presenting a statistical mechanics-inspired numerical technique
for analyzing the evolution of self-organized traffic jams for var-
ied mixed traffic flows. The numerical analysis presented here is
general enough to be applied to several complex systems, with
minimal knowledge of the individual agent dynamics.

• Chapter 5 presents a kinematic wave theory-based analysis of
influential subspaces of connected vehicles present in highway
traffic where self-organized traffic jams have formed.
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• Chapter 6 formalizes the concept of spatial dependence of agent
influence in a rigorous control-theoretic framework for multi-
agent systems.

• Chapter 7 summarizes the major conclusions of this work, prese-
nts the major contributions, and lists potential future work.
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2
L I T E R AT U R E R E V I E W

By necessity, the study of complex systems borrows mathematical
tools and elements from a wide range of existing fields of research.
Some of these fields include synchronization theory, information the-
ory, consensus dynamics, network science, multi-agent systems, and
statistical mechanics, to name a few. In the following discussion, prior
work relevant to the study of control of self-organized behavior in
complex systems will be presented. Specifically, the discussion will
include literature relevant to:

• Macroscopic modeling and dynamics,

• Influence in multi-agent systems, and

• Traffic flow theory

2.1 macroscopic modeling and dynamics

A prerequisite for the study of control of complex systems is a model
that describes the system’s behavior. Specifically, an appropriate model
of a complex system must mimic a key feature: self-organization, i.e.
the presence of spatio-temporal patterns that evolve at a scale that is
larger than the spatial and temporal scales of the individual agents.
In order to accurately model the evolution of a complex system, in-
cluding these spatio-temporal patterns, one must identify the system
macrostate and its associated dynamics. While identification of the
macrostate is a significant step in understanding the macroscopic
dynamics in a complex system, we forego a detailed discussion on
this topic to maintain focus on the stated goals of the study. Instead,
the following subsections discuss research related to modeling the
macroscopic dynamics of a multi-agent system when the macrostate
is known to us. Specifically, the following discussion focuses on exist-
ing literature in the fields of:

• Macrostate identification,

• Synchronization theory,

• Consensus dynamics, and

• Statistical mechanics

A detailed discussion on the specifics of macroscopic dynamics of
traffic flow is reserved for the section on traffic flow theory presented
in Section 2.3.
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2.1.1 Macrostate identification

As already mentioned, a detailed discussion of the field of macrostate
identification – and it does represent an entire field of study – is be-
yond the scope of this dissertation. Nevertheless, a very brief survey
of techniques geared towards this purpose is presented in this sub-
section.

Macrostate identification may essentially be treated as a model or-
der reduction (mor) problem. Often large-scale or complex systems
have dynamics that evolve over distinct spatial or temporal scales. As
a result, model order reduction techniques may be used to obtain
a simplified description of the system dynamics. The states that de-
scribe the reduced-order dynamics may be referred to as macrostates. macrostate

Model order reduction techniques have a rich history, and tradition-
ally can be classified into two main categories: (a) singular value de-
composition (svd) techniques, and (b) moment matching techniques.
A brief review of some standard model order reduction techniques
can be found in the works of Antoulas et al. [16]. Some modern model
reduction techniques also approach the problem from an information-
theoretic perspective, and are also briefly mentioned here.

Singular value decomposition techniques

As the name suggests, svd techniques for model order reduction rely
on identifying a set of the largest singular values of a matrix and
neglecting the smaller singular values, in the process obtaining a re-
duced order representation of the system. The largest singular values
are assumed to encapsulate the most important dynamics of the sys-
tem. Specifically, if a linear system (A, B) is given by ẋ = Ax + Bu,
where A ⊆ RN×N and B ⊆ RN×M, then by selecting the k(< N)

largest singular values of A, a reduced order representation of the
system (Â, B̂) can be obtained such that Â ⊆ Rk×k and B̂ ⊆ Rk×M.
More generally, for data-driven model order reduction, this process is
also known as Karhunen-Loève decomposition, principal component
analysis (pca), and proper orthogonal decomposition (pod) [17]. One
of the popular techniques for singular value decomposition is balanced
truncation which preserves only those states that are simultaneously
more controllable and observable than the others [17]. While this is a
desirable property from the perspective of control, it is currently un-
known if the underlying mechanisms governing self-organizing sys-
tems naturally prefer macrostates generated in this manner.

Moment matching techniques

Another approach to model order reduction, and eventual macrostate
identification, makes use of the moments of the system’s transfer
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function G(s) = C(sI − A)−1B + D, expanded about a point s0 ∈ C

as follows [16]:

G(s0 + σ) = η0 + η1σ + η2σ2 + ... (2.1)

The goal of the moment matching approach to model order reduction
is to obtain a reduced-order system where the expansion of the trans-
fer function of the reduced-order system about s0 ∈ C may be written
as:

Ĝ(s0 + σ) = η̂0 + η̂1σ + η̂2σ2 + ... (2.2)

such that the the first k(� N) moments are identical, i.e. ηi = η̂i(i =
1, 2, ..., k). Popular moment matching approaches make use of Krylov
subspaces and Padé approximations, and are implemented numeri-
cally using Lanczos or Arnoldi algorithms [16].

Information-theoretic techniques

Recently, several information-theoretic approaches have been propos-
ed that may provide a better platform for approaching the prob-
lem of macrostate identification for self-organizing systems. These
approaches are primarily applicable to discrete-state systems mod-
eled by Markov chains. Model order reduction can be performed on
such Markov chains either by time aggregation or state aggregation. The
underlying premise in either case is that states that are ‘close’ to each
other and indistinguishable during system evolution should be aggre-
gated into a single state. Some of the earliest works on state aggrega-
tion of Markov chains was performed by Schweitzer in 1976 [18]. Re-
cent works by Ren and Krogh [19], Cao et al. [20], Shalizi and Moore
[21], and Adenis et al. [22] have proposed approaches to handle state
aggregation or merging to obtain system macrostates.

In summary, model order reduction remains a rich and vibrant field
of study and possesses significant untapped potential for application
to macrostate identification in self-organizing systems. Further, the
use of mor techniques, especially those founded in information the-
ory, may also help clarify the meaning of self-organization.

2.1.2 Synchronization theory

Synchronization theory refers to the study of self-sustained oscillat-
ing systems that interact with each other and have a tendency to
achieve coherence in terms of frequency entrainment. This phenomen-
on is of interest when studying self-organizing multi-agent systems
since it provides a natural model for ensemble dynamics. This is ev-
ident from the fact that an ensemble of agents (self-sustained oscil-
lating systems with moderately disparate frequencies) whose trajec-
tories reside in a high-dimensional state space can be described in a
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low-dimensional (mesoscopic or macroscopic) space in terms of its
ensemble dynamics that manifest as a common oscillating behavior.
Thus, the dynamics of the oscillators over time, and their eventual
synchronization, provides a reasonable starting point for the general
study of self-organizing dynamics of complex systems. Examples of
synchronization that motivated the development of this field include
the collective behaviors observed in systems such as pendulum clocks,
fireflies, circadian rhythm, neurons etc.

The first mathematical treatment of collective synchronization was
offered by Weiner in 1958 [23]. However, the field of synchronization
theory owes its origins to formal studies performed by Winfree in
1967 [24], who first used simplifying assumptions to obtain results
pertaining to the onset of synchronization in weakly-coupled nearly
identical oscillators. Specifically, Winfree assumed that each oscilla-
tor was coupled to the collective behavior of the entire ensemble of
oscillators, analogous to a mean-field approximation, as follows [24]
[25]:

θ̇i = ωi +

(
N

∑
j=1

X(θj)

)
Z(θi), (i = 1, 2, ..., N) (2.3)

where θi denotes the phase of the oscillator i, ωi denotes the oscil-
lator’s natural frequency, X(θj) is the phase-dependent influence of
the jth oscillator on all other oscillators and Z(θi) represents the ith

oscillator’s sensitivity to the influence of the other oscillators. Later,
Kuramoto’s work on identifying the evolution of a system of weakly
interacting coupled oscillators provided a firm theoretical foundation
for the study of phase transitions and synchronization [26]. He sim-
plified Winfree’s model as follows:

θ̇i = ωi +
N

∑
j=1

Γij(θj − θi), (i = 1, 2, ..., N) (2.4)

where Γij represents an interaction function relating the ith and jth

oscillators.
As the field developed, several categories of synchronization were

identified, such as complete synchronization (all oscillators possess iden- complete
synchronizationtical states across time), phase synchronization (oscillator phases are
phase
synchronization

identical across time) etc. Some of these categories are indicated in
Figure 2.1. However, the key element that distinguishes synchronized
systems from self-organizing systems is the inability of individual en-
tities in synchronized systems to acquire disparate states while still
evolving on a low-dimensional subspace. In other words, synchro-
nization forces the states of individual entities to be identical in some
respect at a given instant of time, unlike self-organized systems that
allow individual agents to have arbitrary states as long as the system
evolution proceeds along a low-dimensional subspace.

11



𝑡

𝑥1

𝑡

𝑥2

𝑥1 𝑡 = 𝑥2(𝑡)

Lag synchronization

𝑡

𝑡

𝑥1

𝑥2

𝑥1 𝑡 = 𝑥2(𝑡 + 𝜙)

𝑥2

𝑥1

Generalized synchronization

𝑡

𝑡

𝑥1 𝑡 = 𝑓(𝑥2(𝑡))

Complete synchronization

Figure 2.1: Different types of synchronization that may potentially serve as
models to describe the macroscopic dynamics of self-organizing
systems

Recent work by Rosenblum et al. introduces the concept of lag lag synchronization

synchronization, wherein individual entities may be synchronized but
with an included time lag [27]. In other words, lag synchronized sys-
tems allow individual oscillators to possess different states at the
same instant of time, by ensuring that the oscillators follow iden-
tical time-shifted trajectories. While the concept of lag synchroniza-
tion brings the theory closer towards explaining the phenomenon of
self-organization in multi-agent systems, it still does not allow agents
to possess arbitrary states while evolving on a low-dimensional sub-
space. A more general approach, proposed by Rulkov et al., intro-
duces the concept of generalized synchronization, wherein the states of generalized

synchronizationa driven system only need to be functionally related to those of the
driving system, without requiring an identity relationship in space or
time [28][29]. In the realm of synchronization theory, such behavior
most closely resembles that of self-organizing multi-agent systems.
Unfortunately, these works are limited in their analysis to systems
with unidirectional coupling between driving and driven oscillators
and hence do not accurately represent the interactions or topology
that lead to self-organized behavior in multi-agent systems. However,
it may be possible to use generalized synchronization to develop con-
cepts of influential subspaces and control of self-organizing systems
in the future. In this regard, the work of Kiss et al. is perhaps the
closest to the study of control of self-organizing systems that can be
found in the literature [30].

2.1.3 Consensus dynamics

Consensus dynamics are closely related to the study of synchroniza-
tion, but are studied in the more general context of multi-agent sys-
tems using the framework provided by network theory. Recent re-
search has looked into consensus-type problems in multi-agent sys-
tems in several applications areas such as synchronization of coupled
oscillators, flocking, distributed sensor fusion, and distributed forma-
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tion control [2]. A more detailed discussion of consensus-type prob-
lems and related literature will be provided in Section 2.2, when some
aspects of control of networked systems are discussed.

2.1.4 Statistical mechanics

Statistical mechanics deals with the evolution of states of a large
number of entities or agents in terms of their probability distribu-
tions and statistics. Developments in the field of statistical mechanics
are of interest because they deal directly with the ensemble dynam-
ics of a large number of entities that interact with one another. The
knowledge of these ensemble or macroscopic dynamics is necessary
to achieve the stated goals of this study.

The field of statistical mechanics owes its origins to the works of
Boltzmann in 1872, who first presented the idea of statistical analy-
sis of positions and momenta of gas particles, i.e. the study of their
probability distributions rather than the individual gas molecules
themselves [31]. Over the years, this fundamentally novel approach
towards handling the evolution of large scale systems has been ap-
plied to systems as diverse as protein folding [32], neural systems
[33], financial markets [34], and traffic flow [4], to name a few. Later
in 1925, Ising along with his advisor Lenz, developed a prototypical Ising model

model of ferromagnetism that has since been used to model a wide
variety of systems [35]. In 1944, Onsager was able to obtain an an-
alytical solution of the 2-dimensional Ising model. Potts who later
became active in the field of traffic flow analysis, also provided ex-
tensions to the Ising model which will be discussed in Chapter 4.
Gradually, interest in the application of statistical mechanics-based
techniques to traffic flow analysis arose, with Prigogine and his col-
leagues providing a framework for the traffic flow problem in the
1960s [4]. However, while the field of statistical mechanics continued
to prosper, with seminal works by the likes of Glauber (solution of
the time-dependent dynamics of the Ising model) [36] and Wilson
(renormalization group theory) [37], interest in its application to the
problem of traffic flow analysis diminished. Recent works by Mahnke
[38] and Sopasakis [39] that study statistical mechanics-based models
of traffic flow hope to revive this interest. Some additional details
about the general statistical mechanics approach to traffic flow anal-
ysis as presented by Prigogine will be provided in Section 2.3. Later,
this dissertation will build on this interest in macroscopic modeling of
traffic flow dynamics in Chapter 3 and Chapter 4, where the influence
of a population of a particular class of drivers on the self-organizing
behavior in traffic jams will be studied.
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2.2 influence in multi-agent systems

Armed with the knowledge of the system macrostate, one can pro-
ceed forward with the goal of developing the notion of influence and
influential subspaces in self-organizing multi-agent systems. Over the
past few decades, the study of multi-agent systems has been gaining
traction as systems become more complex and decentralized. As a
natural consequence, interest in identifying specific agents that are
most influential in their group has also increased. Before outlining
some of these research efforts, a case for developing the concept of
influence in multi-agent systems must be made.

2.2.1 The need for the concept of influence

Before embarking on a quest to measure agent influence and define
novel ideas such as influential subspaces, one must ask the broader
question: Does there exist a need for such concepts? In recent years,
the engineered and the natural world have begun to coalesce. Pace-
makers have been installed to control the cardiac cycle, intelligent
vehicles will intermingle with and may affect the natural driving
behavior of humans, strategies are being sought to improve human
control over the Earth’s climate, computer algorithms are performing
stock trades in a traditionally human-centric arena, and experimental
research is on the verge of providing techniques to control epilep-
tic seizures in the human brain. This trend of interaction between
natural and engineered worlds is expected to continue into the fore-
seeable future. In this scenario, certain entities in the system – the
natural agents – are beyond our direct control, whereas other enti-
ties – the engineered agents – can easily be programmed to do our
bidding. As a result, the solution to the macroscopic control of such
self-organizing multi-agent systems hinges on answers to two ques-
tions already mentioned in Chapter 1, and repeated here in a slightly
modified form:

• Given a set of pre-selected engineered agents, in which region
are they best suited to control the self-organized behavior of
a natural-engineered complex system? (The subspace selection subspace selection

problem)

• Which engineered agent is best suited for controlling self-organizi-
ng behavior of a natural-engineered complex system? (The agent agent selection

selection problem)

The answer the first question pertains the problem of identifying
the influential subspaces of engineered agents, within which action
of these agents can help govern global dynamics. The answer to the
second question helps identify which agents in a complex system
are the most influential and hence have the greatest ability to govern
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global dynamics. For a natural-engineered system, the first question
is often more important than the second, since the selection of arbi-
trary agents based on their ability to influence global dynamics is
not always an option. As we will see in Chapter 5, engineered agents
(connected or intelligent vehicles) have influence over the global dy-
namics (traffic jams) only in specific regions of the state space (high-
way). Agent selection is not a feasible option in this scenario, since a
‘dumb’ vehicle driven by a human cannot be arbitrarily controlled to
influence the traffic jam dynamics.

2.2.2 The subspace selection problem in agent-centric control of large-scale
systems

Large-scale systems often lend them selves easily to description in a
multi-agent system framework. While the control of large scale sys-
tems has been a topic of research for a few decades, its formulation
in a multi-agent systems framework is a recent phenomenon, tak-
ing the shape in the form of cooperative control and control of net-
worked systems [2] [40]. While research in the domain of subspace
selection has been limited, several important foundational elements,
such as the identification of controllable and reachable sets, as well
as application-specific research has been performed in the past. In
the following discussion, research pertinent to the identification of
influential subspaces will be discussed.

Controllable and reachable sets

While the concept of influential subspaces has not been studied pre-
viously in the context of multi-agent systems, related problems on
identification of controllable and reachable sets have been studied for
a few decades. The concept of controllability of a system was first for-
malized by Kalman in his seminal work presented in 1960 [41]. Over
the years, these ideas have served the control systems research com-
munity quite well. Controllability and observability concepts have
been heavily studied for linear systems, and to a somewhat lesser
extent for nonlinear systems [42][43].

A natural extension of the idea of controllability is the notion of
controllable and reachable sets. Simply put, a controllable set denotes controllable set

the region of the state space from where admissible control policies
can be applied to take the system to a pre-specified arbitrarily chosen
final state. Quite often this final state is assumed to be the origin of
the state space coordinate system. Similarly, the reachable set is de-
fined as the region of the state space that can be reached from a pre-
specified arbitrarily chosen initial state, which is often chosen to be
the origin of the state space coordinate system, using the admissible
control policies. It is evident that the controllable set for a system be-
ing controlled to the origin (determined by moving forward in time)
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is identical to the reachable set for a system beginning from the origin
(determined by moving backward in time).

FORWARD TIME

BACKWARD TIME

X0

X2

X1

Reachable 
from X1

Controllable
to X1

Reachable 
from X1

Controllable
to X1

t0 t1 t2

Figure 2.2: Schematic depicting controllable and reachable sets. A control-
lable set X0 in forward time is identical to the reachable set
(reachable from X1) in backward time provided that the system
mapping is invertible.

While controllability is well-defined and easily evaluated, the eval-
uation of controllable and reachable sets is a more difficult ordeal.
Moreover, the research community has shown only limited interest in
tackling this problem [44], despite the potentially appealing applica-
tions of input constrained controllability to self-organization in com-
plex systems. Early work in controllable set evaluation was driven
by specific applications, such as collision avoidance on roadways [45]
and target capture [46]. Recent works aimed at determining control-
lable and/or reachable sets of a given system can be broadly classified
into three categories based on their approach – they may make use of
optimal control theory, Lyapunov-like functions, or polyhedron geom-
etry. Some prior work in each of these categories is discussed below.

optimal control-based approach Early attempts at evaluat-
ing controllable sets date back to the 1970s and relied on the relatively
well-developed optimal control literature of the time [47]. One of the
earliest works used Pontryagin’s minimum principle to identify the
optimal control strategy, so that the resulting optimal solution x∗(t)
to the system equations resided on a the boundary of the controllable
set [48]. In later work, Vincent and Wu proposed a technique to de-
couple systems and subsequently identify over- and under-estimates
of the controllable set [49][50]. Interestingly, Vincent and Wu also dis-
cuss projecting the controllable sets to a lower dimension to enhance
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visualization of high-dimensional systems, but do not discuss projec-
tion in the context of identifying influential subspaces.

lyapunov-like function-based approach The Lyapunov-like
function-based approach provides an alternative technique for iden-
tifying controllable sets and was developed almost simultaneously
with the optimal control-based approach [51][52][53]. While applica-
ble for both linear and nonlinear systems, the approach is presented
here for the simpler case of linear systems, following Summers’ anal-
ysis [54]. Considering a linear system given by:

ẋ = Ax + Bu (2.5)

where x ∈ RN , A is stable and the scalar control |u| ≤ U. If a
Lyapunov-like function is given by:

V(x) = xTPx (2.6)

where P is the symmetric positive definite solution to the Lyapunov
equation ATP + PA = −Q, where Q ∈ RN×N is a positive definite
symmetric matrix, then the time derivative of V(x) is given by:

V̇(x, u) =
dV(x, u)

dt
= −xTQx + 2xTPBu (2.7)

In order to evaluate the reachable set, the condition V̇(x, u) ≥ 0 is
used to obtain the inequality:

xTQx− 2xTPBu ≤ 0 (2.8)

which, considering the actuation constraints |u| ≤ U, yields:

xTQx± 2xTPBU ≤ 0 (2.9)

It is evident from Equation 2.6 and Equation 2.9 that the problem
of identifying the reachable set reduces to the following:

Maximize: V(x) = xTPx (2.10)

subject to the conditions: xTQx± 2xTPBU ≤ 0 (2.11)

where the maximum value of the objective function V(x) , V∗, so
that the over-approximation Ŝ of the reachable set S from the equi-
librium point x = 0 can be defined as follows:

S ⊆ Ŝ , {x ∈ RN |V(x) ≤ V∗} (2.12)

If the positive definite matrix Q is set to be the identity matrix, then
the over-approximation of the reachable set yields hyper-spheres; in
all other cases the cases the over-approximation results in hyper-
ellipsoids in the state space. While extremely useful in identifying
conservative approximations of the controllable set, especially for
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nonlinear systems, this approach only yields conservative estimates
of the controllable sets. The polyhedron-based approaches discussed
next have the potential to determine a more accurate estimate of the
controllable or reachable set, because they do not rely on any addi-
tional constructs (such as the Lyapunov-like function) other than the
system equations themselves.

polyhedron-based approach Another approach to evaluate
the controllable/reachable sets makes use of polyhedron geometry.
Specifically, Lasserre’s work uses concepts related to linear program-
ming and polyhedron geometry to describe the controllable/reach-
able sets in terms of a set of linear inequalities [55]. One of the ad-
vantages of Lasserre’s work is that it offers an algorithm to evalu-
ate a closed-form solution of the controllable set in polynomial time.
The works of d’Alessandro and De Santis and more recently, of Hu
et al., extend this idea to higher dimensions in a more formal control-
theoretic sense while retaining the insights gained by approaching
the problem from the perspective of polyhedron geometry [44].

Actuator and sensor placement

Some of the earliest research similar to the concept of influential
subspaces can be traced back to work on actuator and sensor place-
ment in large-scale space structures by Lim [57] and Gawronski [58].
Whereas Lim attempted to identify locations on a flexible space struc-
ture where actuators (or sensors) must be placed so that a certain
degree of controllability (or observability) is achieved, Gawronski’s
work focused on placing actuators and sensors in locations where
they are able to replicate disturbance action and performance mea-
surements, respectively.

Lim’s work is sufficiently close to the central tenet of this disserta-
tion to warrant a more detailed explanation. Taking a closer look, one
observes an underlying theme that resonates with the idea behind
the control of self-organizing behavior in complex systems. As a first
step in [57], the large-scale linear system denoted by a second-order
system:

Mξ̈(t) + Qξ̇(t) + Kξ(t) = Eu(t) (2.13)

where M, Q, and K ∈ RN×N , is reduced in order using a linear trans-
formation:

ξ(t) = Tη(t) (2.14)

where T ∈ RN×k represents the structural mode shape vector corre-
sponding to the k ‘significant’ modes that describe the vibration of
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the flexible large-scale system [57]. The reduced-order system can be
written in the state space form by defining the macrostate as:

ψ(t) =

[
η(t)

η̇(t)

]
(2.15)

so that the reduced-order system may be expressed as follows:

ψ̇(t) = Âψ(t) + B̂u(t) (2.16)

y(t) = Ĉψ(t) + D̂u(t) (2.17)

Next, Lim identifies the controllable (or observable) subspace as the
range space of the controllability (or observability) grammian, Wc (or
Wo). The key insight presented here is that all states which lie within
the controllable subspace (or the range space of the controllability
Grammian) can be reached by an arbitrary actuation effort u(τ), τ ∈
[t0, ∞]. Another construct, the intersection subspace is defined as the
‘subspace of system states that can be both observed and controlled
by the ith actuator and jth sensor’ and is expressed as [57]:

Sij , R(Wc)
⋂

R(Wo) (2.18)

where R(W i
c) denotes the range space of the controllability grammian

corresponding to the ith actuator, and R(W j
o) denotes the range space

of the observability grammian corresponding to the jth sensor. Now,
for the ijth intersection subspace Sij, the projection of the rth ‘signifi-
cant’ mode φr onto this subspace is given by:

φ
ij
r = SijST

ijφr (2.19)

By evaluating a combined index α
ij
r , defined as:

α
ij
r ,

(
φ

ijT

r W i
cφ

ij
r

) (
φ

ijT

r W j
oφ

ij
r

)
(2.20)

that takes into account the controllability and observability grammi-
ans for different actuator and sensor location pairs, the optimal ac-
tuator/sensor locations that maximize the index can be found. Thus,
given a list of potential actuator/sensor pair locations, the location
that optimizes the controllability and observability of the large-scale
system can be found.

Limitations of prior work on subspace selection

While Lim’s work holds significant value and, at a first glance, may
perhaps appear to be conceptually similar to ideas presented later in
the dissertation, there are a few distinguishing features that make the
concept of an subspace selection novel. These will become evident
when the concept is formally defined in Chapter 6, but at this point
it suffices to discuss some potential issues that were not addressed in
Lim’s original work and other works discussed in this subsection:
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• Analytical solutions: The original work presented by Lim was
in essence a numerical exercise, where the controllability/ob-
servability of a large-scale system was evaluated for a fixed
number of locations in the state space. An analytical solution
that related system controllability to agent location was not pre-
sented.

• Actuation constraints: As with any other measure of controlla-
bility, actuation constraints have not been considered while as-
sessing a system’s ability to reach a pre-specified state. However,
in the author’s experience, when dealing with self-organizing
multi-agent systems, constraints on the control effort play a sig-
nificant role on the potential effect an agent may have on macro-
scopic dynamics. In some special cases, as in self-organized traf-
fic jams, the actuation constraints may be state-dependent.

• Controllable sets and temporal limits: In the discussion pro-
vided in [57], controllable and reachable sets were mentioned
but not discussed in relation to the time it took to reach cer-
tain states. Introduction of actuation constraints automatically
introduces temporal limits into the analysis, as will be seen in
Chapter 6. While some works on controllable sets do provide
analytical solutions, they do not extend the concept to the no-
tion of subspace selection.

Influential subspaces of Isner and Noton

The work of Isner and Noton [59] deserves an honorable mention in
this literature review because they were perhaps the first to use the
term influential subspace in a control theoretic setting, even though it
was in a slightly different context. Their work was focused on identi-
fying strategies to approximate the optimal control policy for a given
system and cost function. Specifically, Isner and Noton approximated
a control policy subspace (which they refer to as an influential sub-
space) to determine optimal control given a constrained set of initial
conditions. In other words, the research attempts to identify a control
policy subspace that is approximately optimal, from a wide range of
potential control policies, for a constrained region of the state space
that contains pre-specified initial conditions. As will be seen in later
chapters, in the current work, a similar problem is addressed. Specifi-
cally, this study attempts to identify a state subspace (influential sub-
space) from the entire state space for a constrained region of the con-
trol policy space that contains pre-specified control policies. In other
words, given the set of pre-specified control policies, the proposed
work seeks to identify regions of the state space where the use of
these policies produces the greatest effect on the ensemble dynamics.
As mentioned earlier, the notion of using a constrained set of con-

20



trol policies makes sense in several cases, especially when physical or
other limitations of the agents disallow additional control policies.

2.2.3 The agent selection problem

The subspace selection problem discussed in the previous subsection
is one that has not been addressed comprehensively by the multi-
agent systems research community, yet one cannot overstate its im-
portance in the context of natural-engineered systems, i.e. systems
that contain both natural entities that cannot not be controlled di-
rectly and engineered entities that can be. However, the multi-agent
systems and network control research community has been deeply in-
volved with the concept of influential agents, i.e. agents that may have
a significant impact on ensemble or global dynamics. In this regard,
the research community has focused on two related areas:

• control of networked systems, and

• measures of agent influence

Control of networked systems

Systems where the agents can be represented as nodes or vertices in
a graph, and the interactions between agents can be represented as
edges of the graph, are referred to as networked systems. Several con-
trol problems can be framed in such a network-theoretic framework,
and similarities between different systems can be leveraged to gener-
ate a common analysis scheme. In the literature, techniques related to
the dynamics of consensus and cooperation provide the foundation
for a control strategy known as pinning control, which can be used to
analyze the influence of agents. Both consensus dynamics and pin-
ning control will be discussed in the following subsections. Recent
works, such as those by Olfati-Saber et al., Porfiri and di Bernardo,
Wang and Chen, and Lu will be discussed.

consensus dynamics The general idea behind consensus dy-
namics is the same as has been discussed before in Section 2.1.2 and
Section 2.1.3. Specifically, the interactions between the agents and the
agents’ own dynamics cause the ensemble to converge to a single
state (or consensus) over a period of time. However, the consensus is
achieved only if all agents cooperate towards the common objective.
The presence of the so-called stubborn agents that refuse to work to-
wards the common goal results in the consensus not being achieved.
The seminal paper by Olfati-Saber et al. provides an excellent descrip-
tion of the basics of consensus dynamics and outlines its applications
in a wide range of systems such as synchronization of coupled oscilla-
tors, flocking theory, consensus in small-world networks, distributed
sensor fusion, and distributed formation control.
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One of the key elements in evaluation of consensus among the
agents of networked systems is the graph or network topology, which network topology

determines the interactions between agents. In its simplest form, the
interaction topology of agents in a networked multi-agent system can
be represented as the graph G = (V, E), where V is the set of vertices
or nodes of the graph, which represent the individual agents, and E
is the set of the edges of the graph, which represent the agent interac-
tions. All nodes (agents) that share an edge with a given node (agent),
form the neighborhood of that node (agent). The neighborhood of the
ith agent is denoted as N (i) = {j ∈ V : (i, j) ∈ E}. The mathematical
framework for addressing problems on consensus between agents in
a networked multi-agent system is an nth-order linear system on a
graph, expressed as:

ẋi = ∑
j∈N (i)

(
xj(t)− xi(t)

)
+ bi (2.21)

with given initial conditions xi(0) and agent bias bi. Readers may note
the similarity between the above equation and Equation 2.4 which
models the synchronization of coupled oscillators. Comparing the
two equations, the oscillator’s frequency ωi represents its bias. In
its simplest form, setting bi = 0 for all i, Equation 2.21 can also be
represented as follows:

ẋ = −Lx (2.22)

where L is referred to as the graph Laplacian, and its elements are graph Laplacian

given by:

lij =

{
−1, j ∈ Ni

|Ni|, j = i
(2.23)

where |Ni| represents the number of neighbors of node i. This de-
scription works for undirected graphs, i.e. graphs where edges (and
by extension, agent interactions) do not have a specific direction.

If the network is represented by a directed graph, also referred to directed graph

as a digraph (i.e. where the edges or interactions have a specific direc-
tion), then the graph Laplacian is defined more generally, as follows:

L = D −A (2.24)

where D denotes the degree matrix, and A denotes the adjacency ma- degree matrix

trix. The elements of the degree matrix D are defined as:

dij =

{
deg(vi), if i = j

0, otherwise
(2.25)

where deg(vi) denotes the out-degree, i.e. the number of outgoing
edges from node i. A similar matrix may be constructed for the in-
degree of a node, i.e. the number of incoming edges to a node, but
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will not be considered here due to convention. The elements of the
adjacency matrix A are defined as: adjacency matrix

aij =

{
−1, if (i, j) ∈ E

0, otherwise
(2.26)

Here the notation (i, j) or (i → j) denotes an edge in the direction
from node i to node j. The adjacency and degree matrices, as well
as the graph Laplacian, can be determined for undirected graphs as
well. Figure 2.3 describes a sample undirected graph along with its
adjacency matrix, degree matrix, and the graph Laplacian. Note that
in an undirected graph, the edges do not have an associated direction,
so that an edge (i, j) may equivalently be written as edge (j, i). Also
note that the graph Laplacian is symmetric, and each of its row sums
equals zero. Figure 2.4 shows the same graph but with directed edges,
i.e. where the edges (i, j) and (j, i) represent different interactions.
Note that graph Laplacian of the digraph is generally not symmetric,
and its row sums don’t always equal zero.

Figure 2.3: Undirected graph, associated graph Laplacian, and adjacency
and degree matrices.

Figure 2.4: Directed graph (or digraph), associated graph Laplacian, and ad-
jacency and degree matrices.
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Figure 2.5: Depiction of different convergence rates to consensus, as a func-
tion of the network topology [2]. Note the difference in time
scales for plots in parts (e) and (f), which represent the consen-
sus dynamics for interaction topologies shown in parts (b) and
(c), respectively. Part (a) represents a network with random topol-
ogy.

The emphasis on the graph Laplacian is not unmotivated. The spec-
tral properties of the graph Laplacian yield important information
related to network connectivity and consensus dynamics of the net-
worked multi-agent system. For example, if the eigenvalues of the
graph Laplacian are given by λ1 < λ2 ≤ ... ≤ λN , then λ2 dictates the
rate of convergence to consensus. Figure 2.5 offers an insight into how
convergence rates to consensus depend on different graph topologies.
Next, we consider how such consensus dynamics in networked multi-
agent systems may be controlled via specific ‘influential’ agents.

pinning control The foundations created by the study of con-
sensus dynamics provide an excellent launchpad to dive into a discus-
sion on pinning control and the determination of influential agents
based on pinning control analysis. Pinning control may be defined
as the control of a network of agents by forcing a small subset of
network nodes to follow a predefined trajectory, i.e. ‘pinning’ them
to the predefined trajectory. The result of pinning control is that all
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agents that reside on the network nodes eventually end up following
the predefined trajectory, i.e. attaining consensus.

The idea of pinning control perhaps took shape in 2002, when the
earliest notions were presented by Wang and Chen in [61], which
described the the control of a large networked system via local feed-
back applied to a fraction of the nodes of the network, thus ‘pinning’
them to a desired reference trajectory. Specifically, Wang and Chen
compared the number of pinned nodes required to drive the network
to consensus using specifically or randomly selected nodes. In recent
years, there has been significant activity in this research area [63] [60]
[64], and among these Porfiri and di Bernardo’s work provides an
excellent strategy for the optimal selection of pinned nodes. In their
work, Porfiri and di Bernardo model the dynamics of an ith oscillator
(i = 1, 2, ..., n) as follows:

ẋi(t) = f (xi(t))− σB
n

∑
j=1

lijxj(t) + ui(t) (2.27)

with known initial conditions xi(t0) = xi0 ∈ RN and t ≥ t0. Here
f : RN → RN denotes the ith oscillator’s dynamics, σ denotes the
coupling strength, B ∈ RN×N denotes the state variable interactions
between the coupled oscillators, lij denotes the elements of the graph
Laplacian L, and ui(t) denotes the control input to the ith oscillator.

In pinning control, the feedback control ui(t) is applied to a select
subset of nodes in order to track a reference trajectory s(t) which
satisfies the oscillator dynamics ˙s(t) = f (s(t)). The feedback control
input may be defined as:

ui(t) = piKei(t) (2.28)

where pi =

{
1, if node i is pinned

0, otherwise

K = feedback gain matrix, and

ei(t) = s(t)− xi(t)

which essentially means that the proportional control law is only ap-
plied to pinned nodes. The states of all the n oscillators can be com-
bined into a single nN dimensional state vector, so that the system
equations may be expressed as:

ẋ(t) = [1n ⊗ f ]x(t)− σL⊗ Bx(t) + P⊗ K (1n ⊗ s(t)− x(t)) (2.29)

where P = Diag[p1, ..., pn] and ⊗ represents the Kronecker product.
As a result of this reformulation, the error dynamics can be expressed
as:

ė(t) = [1n ⊗ f ]s(t)− [1n ⊗ f ]x(t)− σL⊗ Be(t) + P⊗ Ke(t) (2.30)
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Without going into lengthy details, the next step involves Lyapunov
stability analysis to prove the asymptotic stability of the error dy-
namics. As a result, a measure of synchronization strength can be
determined as a function of the exponential decay rate of the Lya-
punov candidate function. Iterating over (n

r) different combinations
of r pinned nodes, the configuration of pinned nodes that maximizes
the synchronization strength can be chosen to denote the set of r most
influential pinned nodes. Thus, this combinatorial search strategy can
be used to identify the influential agents in a networked multi-agent
system.

Some other noteworthy works have focused on adaptive laws that
govern interactions between network nodes so as to achieve pinning
control [62], the use of structural controllability to define controllabil-
ity of complex networks [65], and generation of sequential patterns
and de-synchronization of weakly coupled oscillators via carefully
designed interaction functions [30]. Next, we discuss some other at-
tempts at generating measures of agent influence that also rely on
controllability-like metrics, but not on the notion of pinning control.

Influential agents and measures of agent influence

Alternative approaches to the study of agent influence are primar-
ily taken up from the viewpoint of leader selection in leader-follower
multi-agent systems. Measures of agent influence in these approaches
typically take the form of controllability metrics of the system [65]
[66] [67] [68], or optimization of a performance metric [69] [70], though
other measures of influence take inspiration from diverse applica-
tions, such as sensitivity-like measures inspired by studies of robotic
arms [71].

controllability-based measures Initial studies on control-
lability of networked multi-agent systems have focused on determin-
ing the controllability of a network, and rightly so. With a well-develo-
ped understanding of controllability, it is not a far leap to generate a
reliable controllability-based measure of agent influence. In the early
2000s, Tanner derived conditions for controllability of a connected
graph for a single leader scenario. In this work, it was shown that in-
creased controllability does not necessarily lead to increased network
controllability [72]. Ji et al. derived a sufficient condition for controlla-
bility that depended on both number of leaders as well as the network
topology, though the network was considered to be static [66]. Specifi-
cally, the controllability condition was obtained for a connected graph
by comparing the null spaces of the incidence matrices of the set of
leaders and followers, though a rigorous measure of leader influence
was not evaluated.

Recent works have placed a greater emphasis in the identification
of influential agents via controllability-like metrics. Specifically, Chap-
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man and Mesbahi propose the calculation of the cost of anchor in-
fluence, which is the cost of introducing an external (possibly ma-
licious) agent to influence the consensus dynamics of a networked
multi-agent system [73]. They also discuss the use of the spectrum of
a modified graph Laplacian, as well as the controllability Grammian, controllability

Grammianto determine the ability of the external agent to influence the con-
sensus dynamics. Other works, such as by Pasqualetti et al. have also
considered controllability-based metrics to determine the influence of
a set of leaders on the networked systems. Often these controllability-
based metrics take the form of the determinant det(C) or minimum
eigenvalue λmin(C) of the controllability Grammian C, or the trace of
the inverse of the controllability Grammian, Tr(C−1). Most works that
utilize controllability-based metrics require some form of combinato-
rial search to find the optimal set of leaders, and this can be quite
a challenging task for even moderately large networked multi-agent
systems.

optimization-based approaches Optimization-based approa-
ches, like their controllability-based counterparts, also rely on per-
forming a combinatorial search, but the optimization is performed
with respect to some performance characteristic of the multi-agent
system such as network coherence [69] [70]. More recently, Clark
et al. have pointed out some drawbacks to the optimization-based
measures, viz., that while they may optimize leader selection for max-
imizing performance, they do not take into account the agent’s ability
to control the network [67]. In their work, Clark et al. have combined
both types of metrics metrics using matroid theory to devise influ-
ence measures that take into account both performance and network
controllability.

sensitivity-based approaches While the study of agent influ-
ence is a nascent field and only now beginning to gain traction, the
use of sensitivity-like measures of influence is conspicuous by the
fact that the literature contains even fewer instances of these mea-
sures. At least one sensitivity-like influence measure used for leader
selection that deserves mention is referred to as the ‘manipulability’
measure and is derived from earlier research on the sensitivity of
robotic arm manipulators. The manipulability of the ensemble in rela- manipulability

tion to a particular agent is defined as the ratio of the rate of change
of the ensemble mean to the rate of change of the agent state [71].

Limitations of prior work on agent selection

While several works presented in this section discuss consensus dy-
namics, pinning control, and the role of controllability-based metrics
for agent selection, they surprisingly do not do so in the context
of self-organizing systems. It is known that the dynamics of self-
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organizing systems tend to evolve on a low-dimensional manifold
as compared to the dimension of the networked multi-agent system
itself. Specifically, agent selection for self-organizing multi-agent sys-
tems should be performed keeping in mind the low-dimensional na-
ture of the dynamics that one desires to control or influence. Part
of the work in this dissertation aims at remedying these deficiencies.
Some of the early work on measuring controllability is also discussed
in greater detail in Chapter 6.

2.3 traffic flow theory

The dominant theme in this dissertation is to study the influence of
individual agent behaviors on ensemble dynamics. As mentioned ear-
lier, the choice to study traffic systems as a prototypical complex sys-
tem is not accidental. Traffic flow essentially generates a one-dimensio-
nal problem, significantly simplifying analysis of an otherwise com-
plex problem. Additionally, traffic flow dynamics have been studied
for a significant period of time and we possess a reasonable under-
standing of vehicular behavior. This section1 describes various re-
search efforts in the past that have been directed towards the study
of traffic flow. Its contents range from early works from the 1930’s to
model highway traffic – to attempts at modeling driver behavior in
the 1960s – to recent advances in driver assist technologies and their
effects on traffic flow. In addition, recent interest in treating traffic
flow as a complex system and analyzing self-organizing traffic jams
is also presented in this section. The aim of this section is to provide
an overview of past attempts at explaining how driver behavior influ-
ences macroscopic traffic flow. Eventually, in Parts I and II that follow,
different influence schemes that form the crux of this dissertation are
explained.

2.3.1 Traffic modeling

In the early years of the growth of the automobile industry, an in-
crease in vehicle population was counterbalanced by a corresponding
increase in new highway construction. However, it was soon realized
that highway construction could not keep pace with the growing so-
cietal demand for automotive transportation. In order to better un-
derstand methods for highway design, it was necessary to establish
a relationship between traffic demand and highway capacity. One of
the earliest recorded instances of traffic flow modeling can be traced
back to 1934, when Greenshields et al. used photographic measure-

1 author’s note This section borrows some content from the author’s M.S. thesis
titled ‘Impact of Adaptive Cruise Control on formation of self-organized traffic jams
on highways’ published in 2010 [74].
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ments to postulate a linear relationship between vehicle speed and
average traffic density [3].

Figure 2.6: Greenshields et al. postulated a linear relationship between ve-
hicle speed and average traffic density using photographic mea-
surements of traffic flow.

The next major thrust in the field of traffic flow modeling came
in the 1950s and 1960s, when on the one hand, researchers such as
Lighthill and Whitham, and Richards began modeling traffic flow us-
ing macroscopic variables such as flow and density [75][76], whereas
on the other, researchers such as Chandler et al. at General Motors
began to investigate the car-following behavior of drivers. Over the
years, several different modeling approaches developed. At this stage
in the development of traffic flow theory, a few distinct categories
have emerged into which these approaches can be classified. These
categories are discussed in the following subsections.

Macroscopic modeling

Macroscopic models treat traffic flow as a one-dimensional compress-
ible fluid and utilize bulk properties such as flow (q) and density (k)
to model the system. Specifically, the model uses the continuity equa-
tion to describe the system evolution as time progresses. Assuming
that the number of vehicles on a roadway is conserved, i.e. there are
no on- or off-ramps, the simplest version of the model [75][78] yields:

∂k(x, t)
∂x

+
∂q(x, t)

∂t
= 0 (2.31)

where q = kv represents the traffic flow, and v is referred to as the
space mean speed [79]. The continuity equation has been used across
the decades by relaxing the assumptions and making several modifi-
cations to model shock waves, nonlinear propagation and diffusion
in traffic flow [80][81]. While macroscopic models are well suited to
study the bulk behavior of traffic flow, they are typically not suited
for a study how driver algorithms influence such behavior. However,
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in certain simplistic scenarios, such as those presented in Chapter 5,
these models can be used to obtain some interesting results relevant
to agent influence on ensemble dynamics.

Mesoscopic modeling

Mesoscopic models originated in the kinetic theory of gases due to
work done by Prigogine and Andrews [4]. Mesoscopic models are
referred to as such because they address traffic flow at a scale that
lies in between macroscopic and microscopic modeling approaches
(‘mésos’ is Greek for ‘middle’). Recently, interest in modeling traffic
flow has revived due to the works of Mahnke and Kaupužs [38]. Their
work is discussed in the context of influencing traffic flow dynamics
in Chapter 3.

Mesoscopic models track the evolution of the probability distribu-
tion of a relevant traffic quantity. For example, Prigogine and An-
drews, and later Prigogine and Herman, modeled the traffic system
in a state space described by position and velocity. In the resulting
gas kinetic model, the evolution of the probability distribution of a
vehicle being in a particular state was studied. Specifically, the model
included:

• a ‘relaxation’ term, which modeled a vehicle accelerating to
achieve a desired velocity, and

• a ‘collision’ term, which modeled the deceleration of a vehicle
to avoid a collision.

Mathematically, the gas kinetic model can be represented as:

d f (x, v, t)
dt

= −
(

∂ f (x, v, t)
∂t

)
rel

+

(
∂ f (x, v, t)

∂t

)
col

(2.32)

In Equation 2.32, the relaxation and collision terms are defined as
follows:(

∂ f (x, v, t)
∂t

)
rel

=
1

τrel
( f (x, v, t)− k(x, t)Fdes(v)) (2.33)(

∂ f (x, v, t)
∂t

)
col

= (Γ+ − Γ−)(1− P) (2.34)

where,

f (x, v, t) = velocity distribution function for each vehicle

k(x, t)Fdes(v) = desired velocity distribution function

τrel = relaxation time

Γ+ = collision term adding vehicles to element dxdv

Γ− = collision term removing vehicles from element dxdv

P = probability of being unable to pass a vehicle
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The term f (x, v, t)dxdv represents the probability of a vehicle being
present in the element dxdv.The mesoscopic model as described by
Prigogine and Andrews can be better understood with the help of
a visual aid, as shown in Figure 2.7. As explained in the figure, the
relaxation term evolves via two processes, viz. the acceleration of a
vehicle in the element dxdv to leave the element, and the acceleration
of a vehicle initially outside dxdv to enter the element. In both these
processes a vehicle is attempting to reach the desired velocity distribu-
tion. Similarly, the collision term also evolves via two processes, viz.
the deceleration of a vehicle outside dxdv to enter the element, and
the deceleration of a vehicle inside dxdv to leave the element. In both
these processes, the vehicle is trying to avoid a collision with a pre-
ceding vehicle. The aggregation-based approach that uses the master
equation to model the evolution of vehicle clusters is also built on the
same fundamental principles [38], and is discussed in greater detail
in Chapter 3.

V
el

o
ci

ty
, v

Position, x

Leaving dxdv by accelerating 
to desired velocity

Entering dxdv by colliding 
with vehicles in dxdv

Leaving dxdv by colliding with 
slow vehicles outside dxdv

Entering dxdv by accelerating 
to desired velocity

dxdv
Entering dxdv by moving 

forward

Leaving dxdv by moving 
forward

Figure 2.7: State evolution in the gas kinetic model of traffic flow as de-
scribed by Prigogine and Andrews.

Microscopic modeling

Microscopic models of traffic flow track the evolution of the traffic sys-
tem at the scale of individual vehicles. These models can be grouped
into two categories, viz. car-following models and cellular automata
models and are discussed below.

car-following models Car-following models describe the evo-
lution of a specific vehicle by using the states of the vehicle, such as
position and velocity, as well as the states of neighboring vehicles to
evaluate trajectory information. These models typically use ordinary
differential equation, perhaps with time delays to model human reac-
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tion times, to model vehicle trajectories. A prototypical version of a
car-following model would take the following form:

d
dt

xj(t + τ) = v(xj−1(t)− xj(t)) (2.35)

where xj(t) denotes the position of the jth vehicle at time t, τ denotes
a response delay, and v(·) represents a desired velocity function that
is dependent on the states of the vehicle and its neighbors.

Early versions of car-following models were developed by Pipes,
Gazis et al., and Newell. While car-following models may describe the
trajectories of individual vehicles very well, extending such knowl-
edge to the macroscopic scale in order to evaluate the effects of indi-
vidual driver behavior on traffic flow dynamics remains an extremely
difficult enterprise. In this regard, analytical results are hard to come
by, and the limited success that has been had is due to comprehen-
sive numerical solutions [86]. However, car-following models are es-
pecially useful when designing cruise control algorithms and are dis-
cussed in more detail in Section 2.3.2.

cellular automata models Cellular automata (ca) and to-
tally asymmetric simple exclusion process (tasep) models significantly
simplify the car-following dynamics. Cellular automata are essen-
tially a class of ‘spatially and temporally discrete, deterministic math-
ematical systems characterized by local interaction and an inherently
parallel form of evolution’ [87]. In these models, the roadway is dis-
cretized into sites which usually are modeled to exist in one of two
states – they are either vacant or occupied by a vehicle. A discrete time
evolution rule governs the probability with which a vehicle jumps
or ‘hops’ from one site to another. The lineage of ca models can be
traced back to the works of Cremer and Ludwig [88], and Nagel and
Schreckenberg [13]. The simplicity and minimal computational ex-
pense of these models make them well suited for numerical simula-
tions. Unfortunately, their simplicity masks the relationship between
physical parameters and site transition probabilities resulting in a less
than useful experience for studying the influence that drivers have on
macroscopic traffic flow. Additional details about ca models of traffic
flow can be found in [74][78].

While traffic flow modeling is a vibrant field of research, the effect
that intelligent vehicles have on traffic flow dynamics is perhaps not
as well studied. The next subsection discusses previous works that
have attempted to establish the relationship between intelligent vehi-
cles and their effects on traffic flow.

2.3.2 Intelligent vehicle technologies

Recent advances in sensing and data fusion have allowed the automo-
tive research community to devise new technologies that make our
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vehicles ‘smarter’. For example, vehicles can now respond to their
immediate environments, as is the case with technologies such as
adaptive cruise control and lane departure warning systems. New
technologies can also enable vehicles to respond to environments not
in their immediate vicinity, as is the case with connected vehicles that
can take into account congested traffic conditions to suggest alterna-
tive routes. While these technologies benefit the individual by reduc-
ing driver effort and increasing passenger safety, their effects on the
larger scale traffic flow dynamics remain unknown. This subsection
discusses some relevant work in the field of intelligent vehicles tech-
nology and recent studies that have attempted to analyze their impact
on traffic flow.

Adaptive cruise control algorithms

The concept of controlling the speed of a vehicle dates back to 1788,
when James Watt and Matthew Boulton built the first centrifugal gov-
ernor to control the speed of a steam engine. One of the earliest cruise
control systems for automobiles was invented by Ralph Teetor in
1945. These early automotive cruise control technologies required the
driver to manually bring the vehicle to a desired speed, after which
the cruise control system would maintain the desired speed for the
driver.

Recent advances in technology have enabled the use of lidar- and
radar-based systems to gauge the distance between vehicles and use
these measurements to maintain a safe distance. Modern systems
are geared towards reducing driver effort and increasing passenger
safety by controlling vehicle acceleration using measurements such
as relative velocity and spacing between vehicles. These control al-
gorithms are modern versions of the car-following algorithms of the
1960s, where the human controller has been replaced by computer
algorithms.

The prototypical adaptive cruise control algorithm takes the follow-
ing form:

ẍ = f (λ, ∆x, v, ∆v) (2.36)

where, ẍ = vehicle acceleration (or cruise control response)

λ = control gain(s)

∆x = spacing between vehicles

v = velocity of the following vehicle

∆v = relative velocity between vehicles

Several control schemes can be designed to fit the prototypical model
for adaptive cruise control algorithm. Some of these schemes are dis-
cussed next.
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constant time headway policy This policy is suggested as a
common safe practice for human drivers and hence is a viable can-
didate for designing an adaptive cruise control algorithm [89]. The
policy simply states that a following vehicle must always maintain
a safe time headway (approximately 2 seconds) from the preceding
vehicle. The desired safe spacing between vehicles can then be calcu-
lated as:

s = d0 + Tv (2.37)

where s denotes the safe spacing, d0 denotes the minimum distance
between stationary vehicles, T denotes the constant time headway,
and v denotes the velocity of the following vehicle. An appropriate
acceleration (cruise control response) can be evaluated as a function
of the error in the headway.

general motors’ car-following models These models are
the result of extensive experimental work performed by researchers
at General Motors in the 1960s [90]. The underlying principle of these
models is that the response of a driver (or a cruise control algorithm)
is a function of the driver sensitivity and an exciting stimulus. The
most general form of these models is expressed as follows:

ẍn(t + τ) = α
[ẋn(t + τ)]l

[xn(t)− xn−1(t)]m
(ẋn(t)− ẋn−1(t)) (2.38)

where xn denotes the position of the following vehicle, xn−1 denotes
the position of the leading vehicle, α denotes the dimensionless sen-
sitivity coefficient of the driver of the following vehicle, and l and m
are constants. In Equation 2.38, α represents the sensitivity, while the
remaining terms correspond to the stimulus. For example, the vehi-
cle will decelerate for a large stimulus which could be provide by any
combination of large relative velocity, large velocity of following ve-
hicle, and small spacing between vehicles. The sensitivity α controls
the magnitude of the response in relation to the stimulus provided.

intelligent driver model The intelligent driver model (idm)
provides a more complicated car-following algorithm that guaran-
tees crash-free driving [91]. The cruise control effort generated by
the model is expressed as:

ẍn = α

{
1−

(
vn

v0

)4

−
(

s∗(vn, ∆vn)

sn

)2
}

(2.39)

where vn denotes the velocity of nth vehicle, v0 denotes the desired
velocity of the nth vehicle, sn denotes the spacing to the preceding
vehicle, and s∗(vn, ∆vn) denotes the desired minimum headway. The
control law for the idm can be thought as comprising a ‘relaxation’
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term given by (1− (vn/v0)4), which is dominant at large vehicle spac-
ings (i.e. low density). As the vehicle speed approaches the desired
speed v0, the acceleration effort tends to zero. The control law also
consists of an interaction term given by (s∗(vn, ∆vn)/sn)2, where the
desired minimum spacing is given by:

s∗(vn, ∆vn) = s0 + vT +
v∆v

2
√

ab
(2.40)

where s0 denotes the minimum spacing in jammed traffic conditions,
T denotes the safe time headway, a represents a constant acceleration
term, and b denotes the comfortable braking deceleration. The inter-
action term is dominant and leads to large deceleration if the vehicle’s
velocity or relative velocity is large, or is the actual headway sn is very
small.

Connected vehicles

The advent of connected vehicles technologies is a relatively recent
phenomenon and the research and automotive community has only
begun to scratch the surface of potential applications that such tech-
nologies could offer. As the research field is in its nascency, most
research capital has been expended towards implementation details
such as communication protocols and network topologies, rather than
towards the effect such technologies will have on traffic flow [92][93].
The work presented in this dissertation, especially in Chapter 5, seeks
to remedy this imbalance. Next, we discuss some studies that have at-
tempted to assess the impact of adaptive cruise control algorithms
on traffic flow. No such corresponding study could be found for con-
nected vehicles technology, though a few researchers have begun to
investigate related concepts [94][95].

Effect of intelligent vehicle behavior on traffic flow

Since the introduction of adaptive cruise control, numerous studies
have been conducted to ascertain its influence on traffic flow. These
studies can be considered to have been conducted in three different
stages, which progressed as automated vehicle guidance technologies
evolved [96]. The three stages are:

• Stage 1: Introduction of automated vehicles with acc in mixed
traffic

• Stage 2: Introduction of dedicated lanes for automated vehicles

• Stage 3: Introduction of intelligent infrastructure and communi-
cation networks

Each of these stages attempted to introduce technologies that would
help improve traffic flow. Analyses for each of the stages comprised a
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mixed approach of both simulation studies and real traffic data anal-
ysis. It may be observed that the infrastructure requirement for each
stage was higher than that for the previous one.

Results from the first stage were mixed, with some studies in-
dicating that addition of vehicles with adaptive cruise control re-
sulted in decreased flow [97], whereas others indicated an increase
in traffic flow [74]. One of the most prominent studies in this stage
was the prometheus program, which suggested that addition of acc

would not degrade highway efficiency, while simultaneously improv-
ing driver comfort [74].

Results from the second and third stages, which involved addi-
tional infrastructure deployments such as dedicated lanes for auto-
mated vehicles, and vehicle-to-vehicle and vehicle-to-infrastructure
communications, indicated a marked improvement in capacity. Many
of the studies conducted during these stages were initiated by the
National Automated Highway Systems Consortium (nahsc) in the
United States. Research indicated that formation of platoons of strings
of cars could greatly increase highway capacity [98]. The California
path program demonstrated the usage of such platoons. Other stud-
ies also indicated similarly impressive results of increased highway
capacities [99][100].

While recent studies on automated highway systems indicate re-
markable improvements in highway capacities, it remains a reality
that these systems require a massive infrastructure overhaul and in-
vestment. Bringing such systems into practice would require a paradi-
gm shift by both the industry and the average consumer. In the present
financial climate, this approach doesn’t seem feasible. Quite the con-
trary, the adaptive cruise control technologies already being intro-
duced into the market today indicate a shift to an approach similar to
the one that defined Stage 1. In other words, it is a more realistic goal
to expect that highways in the near future will be populated with a
mix of intelligent and human-driven vehicles. Further, as previously
mentioned, there is no clear mandate on how highway capacity is im-
pacted when human-driven and computer algorithm-driven vehicles
ae randomly interspersed on a highway. Thus an urgent need exists to
evaluate the effects of such mixed traffic flow on highway capacities
to design better algorithms that may help improve highway capac-
ity in mixed traffic and also help avoid highway capacity reduction
resulting from self-organizing traffic jams.

2.3.3 Self-organized traffic jams

The ensemble dynamics of interest in the current context are those re-
lated to the formation of self-organized vehicular clusters in highway
traffic. It is apparent that each vehicle on a highway is driven by a
driver who operates according to his or her own will. In other words,
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each vehicle on a highway may be considered an independent agent,
which operates without any influence of other vehicles. However, in
medium-to-high density traffic conditions, these vehicles are closely
spaced and can no longer operate without the influence of neighbor-
ing agents. Under such circumstances, the interactions between the
vehicles (or agents) result in a collective behavior that cannot be de-
rived from observing the behavior of a single agent. This behavior
usually takes the form of what is known as slinky waves or phantom
traffic jams or stop-and-go traffic. In other words, the interactions be-
tween individual vehicles results in a behavior that emerges when a
group of vehicles comes together.

Nagel and Schreckenberg were perhaps the first to reproduce the
phenomenon using a cellular automata model of traffic flow [13].
Later, Kerner and Konhäuser showed that given an ‘initially homo-
geneous traffic flow, regions of high density and low average ve-
locity can spontaneously appear, if the density of cars in the flow
exceeds some critical value’ [101]. Experimental verification of the
spontaneous formation of jams is provided by Sugiyama et al. [5]. As
has been previously mentioned, self-organization of vehicles in traf-
fic flow into traffic jams can be described as an aggregation or cluster
formation process. Mahnke and Kaupužs have studied the emergence
of traffic jams from a nucleation or aggregation perspective [38]. In
their paper, Mahnke and Kaupužs develop a deterministic analysis
technique for the stochastic process of cluster formation to determine
the time evolution of the average cluster size in a traffic jam.

Figure 2.8: Experimental study of self-organized traffic jams performed by
Sugiyama et al. [5]. A self-organized vehicle cluster can be seen
in the top-right section of the image
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Figure 2.9: Position data for vehicles in experiments performed by Sugiyama
et al. [5]. A vehicle cluster is formed and moves backward in
space as time progresses.

2.3.4 Limitations of prior work

While the prior work described in this section has provided signifi-
cant insight into the world of traffic flow modeling, several avenues
remain to be explored. The most significant amongst these unex-
plored avenues is the role of individual computer algorithm-driven
vehicles, either acc-enabled or connected, in influencing ensemble
dynamics, i.e. the traffic flow dynamics. In the following work, this
problem has been addressed from both analytical and numerical ap-
proaches, as well as two significantly different methodologies of in-
fluence as discussed in Parts I and II.

2.4 summary

This chapter covered a wide range of literature spanning several fields
of study that are relevant to study the ability to influence ensem-
ble dynamics in large-scale multi-agent systems such as traffic flow.
These fields of study include consensus dynamics, control theory, sta-
tistical mechanics, and traffic flow modeling. Each of these will be
used in the following chapters to assess the influence of individual
drivers on traffic flow dynamics, as well as for the development of
the general notion of influential subspaces. At this point, the author
would like to re-emphasize that the choice of traffic flow as a proto-
typical system for studying influence and self-organization is primar-
ily motivated due to its one-dimensional nature that greatly simplifies
analysis.
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Part I

I N F L U E N C E V I A P O P U L AT I O N
M O D I F I C AT I O N



I N F L U E N C E V I A P O P U L AT I O N M O D I F I C AT I O N

Part I of the dissertation deals with the ability to influence ensem-
ble dynamics by modifying the nature of the ensemble’s population.
Specifically, in this part, the changes in steady state ensemble be-
havior are evaluated as a function of the changes in the population
demographics of a two-species system. In Chapter 3, an analytical
relationship between the two-species population demographics and
steady state behavior of the ensemble is developed, where the two
species are human drivers and computer algorithms. The approach
presented in this chapter uses some approximations specific to a two-
species environment and cannot, in general, be extended to a multi-
species environment. On the other hand, in Chapter 4, a statistical
mechanics-based numerical analysis is performed as the population
demographics vary for a two-species environment, and this approach
can be extended to a multi-species population. Despite these different
approaches, the underlying principle in both chapters is the same –
ensemble dynamics are sought to be influenced by modifying the
population demographics.
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3
E F F E C T O F A C C P E N E T R AT I O N O N F O R M AT I O N
O F S E L F - O R G A N I Z E D T R A F F I C J A M S

author’s note This chapter borrows significant content from the
author’s publication titled “Analytical prediction of self-organized
traffic jams as a function of increasing acc penetration” published
in IEEE Transactions on Intelligent Transportation Systems in December
2012.

Traffic flow represents an excellent example of a system whose en-
semble dynamics, such as the dynamics of self-organized traffic jams,
can be influenced by driver behavior. Self-organizing traffic jams are
known to occur in medium-to-high density traffic flows, and it is sus-
pected that a change in the population demographics by means of
increased adaptive cruise control (acc) penetration may affect their
onset in mixed human-acc traffic.

Unfortunately, closed-form solutions that predict the occurrence of
these jams in mixed human-acc traffic do not exist. In this chapter,
both human and acc driving behaviors are modeled using the Gen-
eral Motors fourth car-following model and are distinguished by us-
ing different model parameter values. A key insight of this chapter is
the derivation of a closed-form solution that explains the influence of
acc penetration on congestion due to the formation of self-organized
traffic jams (or phantom jams) is presented. The solution approach pre-
sented in this chapter utilizes the master equation for modeling the
self-organizing behavior of traffic flow at a mesoscopic scale and the
General Motors fourth car-following model for describing the driver
behavior at the microscopic scale. It is found that, although the intro-
duction of acc-enabled vehicles into the traffic stream may produce
higher traffic flows, it also results in disproportionately higher sus-
ceptibility of the traffic flow to congestion.

3.1 introduction

The recent advent of Adaptive Cruise Control (acc) technologies in
mainstream vehicles holds the potential to significantly influence traf-
fic flow dynamics and affect the formation of traffic jams. This chap-
ter addresses the question of how an increase in penetration of acc-
enabled vehicles in highway traffic alters the dynamics of self-organiz-
ing traffic jams. Specifically, the effect of acc penetration rate on crit-
ical vehicle density is examined for traffic flow on a closed ring road.
The investigation of traffic flow on a closed ring road makes the anal-
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ysis amenable to the derivation of a closed-form analytical solution
by avoiding unwieldy open boundary conditions, such as on- and
off-ramps, encountered on typical roads. A closed-form analytical so-
lution helps simplify the study of the impact of increased acc pene-
tration on traffic flow and provides a much-needed analysis tool that
is well supplemented by existing approaches which utilize numerical
simulations or experimental data. The following sections discuss:

• the use of the master equation approach for modeling self-organi-
zed traffic jams developed by Mahnke et al. [7],

• the incorporation of adaptive cruise control algorithms into the
master equation-based analysis framework,

• the analytical results indicating the influence of different pene-
tration levels of acc-enabled vehicles on steady state traffic flow,
and

• the findings from numerical simulations which are used to val-
idate the analytical results.

3.2 prior work

As mentioned earlier in Chapter 2, the study of adaptive cruise con-
trol and car-following algorithms has been a field of active research
over the years [89][91][102][103][104] [105][106]. While some of these
works present analytical results, they are predominantly restricted to
single-species environments so the influence of changes in population
demographics cannot be ascertained. Others that do deal with multi-
species environments, such as the works of Ioannou and Chien, are
restricted to a limited number of scenarios, e.g. effect of lead vehicle
maneuvers on platoon stability dynamics. Moreover, these analyses
cannot be easily extended to situations where the different popula-
tions are randomly mixed in the ensemble, e.g. human-driven and
acc-enabled vehicles being randomly interspersed on the highway
[84][103][106]. Studies that do analyze effects of introduction of acc-
enabled vehicles in the traffic flow that are representative of real-life
situations are unfortunately restricted to numerical simulations [86].
Such studies do not yield analytical results that can provide a deeper
insight and understanding of the problem.

In Chapter 2, it was also mentioned that significant research ef-
fort has been directed towards understanding traffic flow dynamics
[78][79], and more specifically, towards modeling and simulation of
self-organized traffic jams [101][7][107]. These approaches primarily
use either macroscopic models, which are not conducive for model-
ing variations in population demographics, or microscopic models,
which rely on numerical simulations to obtain useful results. Further,
self-organized traffic jams form at a scale between the macroscopic
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and microscopic scales, so a mesoscopic approach is required for their
analysis. The following sections discuss the mesoscopic approach pro-
posed by Mahnke et al. that yields analytical results, and build upon
it to study how changes in vehicular population (i.e. varying acc pen-
etration levels) influence the dynamics of self-organized traffic jams.

3.3 master equation approach

Real-life traffic flows in the near future include acc-enabled and
human-driven vehicles. One would not wish to discover, after such
mixed vehicle environments emerge, that the interaction between hu-
man and automated driver behavior induces or magnifies congestion
effects. The fact that acc-enabled and human-driven vehicles will
most probably be randomly distributed in the traffic stream neces-
sitates a probabilistic approach for analyzing the impact of acc pene-
tration on traffic flow. The master equation, which describes the time
evolution of the probability distribution of system states, is a helpful
tool for performing such an analysis. This approach for analyzing the
dynamics of the size a vehicle cluster (or traffic jam) is described in
the following subsections.

3.3.1 Vehicular cluster (or traffic jam) dynamics

To simplify the study of highway traffic, the system is often ideal-
ized as a single lane road forming a closed ring of length L with N
vehicles on it [108] [7] as shown in Figure 3.1. The primary reason
in support of this idealization is that it helps avoid dealing with an
open system representation of a highway which may include on- and
off-ramps. The presence of ramps would require additional bound-
ary conditions and could potentially complicate the system analysis.
When the closed-road system is observed at the microscopic level,
each vehicle in the traffic flow can be in one of two states:

• the vehicle is in free flow, i.e. it moves independently of any
other vehicles on the road, or

• the vehicle is stuck in a cluster or traffic jam.

A consequence of this definition of the state is that at the microscopic
level, the total number of possible states is 2N . However, when study-
ing the system at a mesoscopic scale, the state of choice is the cluster
size (r(t)), which denotes the aggregate number of vehicles stuck in
a cluster at time t. At the mesoscopic scale, the total number of states
is N, which is a more manageable number to deal with during the
modeling process.

Mahnke et al. model the formation of clusters, or self-organized
traffic jams, using the mesoscopic definition of the system state. Specif-
ically, the dynamics of the system in [7] are modeled as a stochastic
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Figure 3.1: Single-lane closed road system under consideration showing (a)
vehicles in free flow, (b) vehicles transitioning from free flow to
jammed state (joining a cluster), (c) vehicles stuck inside a traffic
jam (cluster), and (d) vehicles transitioning from jammed state to
free flow.

process in terms of the probability distribution of the states, using a master equation

master equation as follows:

d
dt

P(r, t) = ∑
r′ 6=r

{
w(r′, r)P(r′, t)− w(r, r′)P(r, t)

}
(3.1)

where w(r′, r) denotes the transition probability rate of going from
state r′ to state r , i.e. the cluster size changes from r′ to r, P(r′, t)
denotes the probability that r′ vehicles are stuck in a cluster at time t,
w(r, r′) denotes the transition probability rate of going from state r to
state r′, and P(r, t) denotes the probability that r vehicles are stuck in
a cluster at time t. Under the assumption that only one vehicle may
join or leave the traffic jam at any time instant t, i.e. the state r can
only transition to neighboring states (r − 1, r, or r + 1), the master
equation reduces to:

d
dt

P(r, t) = w(r− 1, r)P(r− 1, t) + w(r + 1, r)P(r + 1, t)

−{w(r, r + 1) + w(r, r− 1)} P(r, t)
(3.2)

Mahnke et al. further develop the master equation approach to
study the dynamics of the expected cluster size 〈r〉, which is given
by:

〈r〉 = ∑
r

rP(r, t) (3.3)
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Through simple algebraic operation on Equation 3.2, the following
equation for the dynamics of the expected cluster size 〈r〉 is obtained:

d
dt
〈r〉 = d

dt ∑
r

rP(r, t)

=∑
r

r
[
w+(r− 1)P(r− 1, t) + w−(r + 1)P(r + 1, t)

− {w+(r) + w−(r)} P(r, t)
]

(3.4)

where w+(r) denotes the transition probability rate of a vehicle join-
ing a cluster of size r from free flow and creating a cluster of size
(r + 1), w−(r) denotes the transition probability rate of a vehicle leav-
ing a cluster of size r and creating a cluster of size (r − 1), and 〈·〉
denotes the expectation operator. Further expanding the expression
under the summation sign in Equation 3.4 and using the boundary
conditions:

d
dt

P(0, t) = w−(1)P(1, t)− w+(0)P(0, t)

d
dt

P(N, t) = w+(N − 1)P(N − 1, t)− w−(N)P(N, t)
(3.5)

the dynamics of the expected cluster size are obtained to be:

d
dt
〈r〉 = 〈w+(r)〉 − 〈w−(r)〉 (3.6)

Further simplification of Equation 3.6 can only be performed by
making some additional assumptions. Specifically, the mean-field ap- mean-field

approximationproximation is applied to the expected value of the transition proba-
bility rates at a given cluster size r, such that 〈w(r)〉 ≈ w(〈r〉). As a
result, the dynamics of the expected cluster size can be written as:

d
dt
〈r〉 = w+〈r〉 − w−〈r〉 (3.7)

3.3.2 Transition probability rates

In order to completely describe the vehicle cluster dynamics, it is
necessary to known the functional form of the transition probability
rates used in Equation 3.7. The transition probability rate w+(r) of a
vehicle joining a cluster of size r is defined as the inverse of the time
taken for a vehicle in free flow to join a cluster. Further, the time taken
for a vehicle to join a cluster (tjoin) is dependent of the car-following
or adaptive cruise control algorithm employed, as well as the initial
spacing in free flow. Since typical vehicle spacings in a traffic jam are
of the order of 1 to 2 m, a following vehicle is said to have ‘joined’ a
cluster when it attains this spacing value [109]. Similarly, the transi-
tion probability rate w−(r) of a vehicle leaving a cluster of size r is
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defined as the inverse of the time taken to accelerate out of a cluster
into free flow traffic. Further, this time taken for a vehicle to leave
a cluster (tleave) is determined using a simple constant acceleration
model as described in [110][111], and is assumed to be constant for
both human-driven and acc-enabled vehicles.

Mahnke and Pieret present an expression for w+〈r〉 by assuming
that vehicle join the cluster by moving at constant speed and ‘col-
liding’ with the cluster, irrespective of the driver’s efforts to main-
tain a safe velocity and distance from the preceding vehicle during
the ‘collision’ process [109]. This simple approximation, while a good
first step towards modeling self-organizing traffic jams, does not re-
flect the true driver behavior while approaching a cluster. Instead, as
shown in the next section, new transition probability rates are deter-
mined based on car-following or acc algorithms to more accurately
describe driver behavior.

3.4 new transition probability rates

In the presented master equation approach, new transition rates are
derived based on car-following models to accurately represent driver
behavior. While the presented analysis uses a specific car-following
algorithm, in general one could use any algorithm for which the ana-
lytical expressions for w+(r) and w−(r) can be evaluated. Though the
list of such car-following algorithms is probably limited in number,
the analytical procedure presented here does provide deeper insight
into the effects of acc penetration on the formation of self-organized
traffic jams. Consequently, it is a potentially useful tool for studying
how increasing acc penetration influences the ensemble dynamics of
traffic jams. The following subsections discuss the car-following al-
gorithm employed, the procedure for calculating the new transition
probability rates, and the associated assumptions.

3.4.1 General Motors’ car-following model

One of the popular, validated and intuitively simple car-following al-
gorithms is the General Motors’ (gm) fourth model proposed by the
General Motors Research Group around 1960 [84][90]. The model de-
termines the acceleration control effort to be applied to the vehicle by
using three variables: the headway to the leading vehicle, the relative
velocity between the following vehicle and the leading vehicle, and
the absolute velocity of the following vehicle. Specifically,

ẍj(t + τ) = α
ẋj(t)− ẋj−1(t)
xj(t)− xj−1(t)

ẋj(t + τ) (3.8)

where xj(t) denotes the position of the following vehicle entering the
cluster, xj−1(t) denotes the position of the leading vehicle (i.e. the ve-
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hicle at the tail-end of the cluster), α denotes the sensitivity of the
driver of the vehicle entering the cluster, and τ denotes the reaction
time of the driver. For the sake of brevity, the spacing between ve-
hicles xj(t)− xj−1(t) is represented by h(t) in the remainder of this
chapter. Figure 3.2 depicts the different variables that will be used in
the development of the analytical framework.

Figure 3.2: Description of variables used in analysis. (a) Vehicles in free flow
(h f ree = free flow headway, v f ree = free flow velocity; (b) Vehicles
transitioning from free flow to jammed state (joining a cluster):
h(t) = headway as a function of time, v(t) = velocity as a function
of time; (c) Vehicles stuck inside a traffic jam (cluster): hcluster =
headway inside a cluster, vcluster = velocity inside a cluster.

The driver sensitivity (α) is typically indicative of the alertness of driver sensitivity

the driver while following a preceding vehicle. Low driver sensitivity
might represent a ‘sleepy’ driver who takes longer to react to maneu-
vers, such as braking, performed by the leading vehicle. On the other
hand, high driver sensitivity might represent an ‘alert’ driver, who
is cognizant of any maneuvers performed by the leading vehicle and
tends to take any necessary action well in advance. When consider-
ing the scenario of a vehicle entering a cluster, the range of admissible
driver sensitivities is determined using typical traffic conditions and
comfortable deceleration standards set by the American Association
of State Highway and Transportation Officials (aashto). The typical aashto

traffic flow is assumed to have free flow velocity of about 25 m/s
(about 55 miles/hour), free flow headway of about 100 m, and cluster
velocity of about 0 to 2 m/s. Further, the maximum permissible de-
celeration is limited to 3.4 m/s2, according to aashto standards. The
admissible driver sensitivities that may be used with the gm fourth
model under such constraints are determined by simulating the pro-
cess of entering a cluster for vehicles with varying driver sensitivi-
ties. Figure 3.3 depicts the acceleration profile for a vehicle entering
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a cluster while using the gm fourth model as the acc algorithm. The
acceleration profiles suggest that the algorithms with low driver sen-
sitivity react much later than algorithms with high driver sensitivity.
Only those driver sensitivities for which maximum deceleration dur-
ing the process of entering the cluster is within the range of values
suggested by the aashto roadway usage standard are considered for
further analysis. The simulations were repeated for different values
of driver sensitivity and the maximum deceleration observed during
each simulation was recorded.

Figure 3.3: Acceleration profiles for a vehicle entering a cluster with the gm

fourth model serving as the acc algorithm with varying driver
sensitivities. A driver model with low driver sensitivity (α = 0.3)
reacts later than a driver with high driver sensitivity (α = 0.7).

Figure 3.4 shows the maximum deceleration observed during the
process of entering a cluster for vehicles with various driver sensitiv-
ities. Driver sensitivities that lie approximately in the range [0.4, 0.6]
are admissible values for use in the GM fourth model because they
approximately agree with the aashto recommended maximum de-
celeration limit of -3.4 m/s2. With this insight, the GM car-following
model can now be used to determine the transition probability rates
associated with it.

3.4.2 Derivation of new transition probability rates

Section 3.3 discussed that the transition probability rate for a vehicle
joining a cluster may be defined as the inverse of the time taken to join
a cluster. Since all parameters relevant to the gm fourth car-following
model have been specified, Equation 3.8, which is the nonlinear ordi-
nary differential equation describing the applied acceleration effort,
can now be solved for the time taken for a vehicle to join a cluster,
using the initial and boundary conditions specified by typical traf-
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Figure 3.4: Maximum observed deceleration during simulation of a vehicle
joining a cluster in typical traffic conditions, with varying driver
sensitivities. The range of admissible driver sensitivities is ap-
proximately [0.4, 0.6].

fic flow conditions. Rewriting Equation 3.8 in terms of the headway
h(t) = xj(t)− xj−1(t) and neglecting the reaction time τ, we get:

hḧ = α(ḣ− vc)ḣ (3.9)

where vc denotes the velocity of the leading vehicle. In the specific
case of a vehicle entering a traffic jam, the leading vehicle is the one
at the tail-end of a vehicle cluster and its velocity vc is assumed to be
constant. Equation 3.9 may be re-written as follows:

ḧ
ḣ
= α

ḣ− vc

h
(3.10)

which after some simplification results in:

d
dh

(
h
)
= α

ḣ− vc

h
(3.11)

or,
dḣ

(ḣ− vc)
= α

dh
h

(3.12)

Integrating both sides of 3.12 yields:

ln(ḣ− vc) = α ln(h) + ln(c) (3.13)

or, ḣ− vc = chα (3.14)

Using boundary conditions corresponding to typical free flow traf-
fic, i.e. free flow velocity v f ree and free flow headway h f ree, the con-
stant c is calculated to be c = −k = −v f ree/hα

f ree. Substituting the
value of c back into Equation 3.14 and rearranging the terms, we get:

dt =
dh

vc − khα
(3.15)
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In order to determine the transition probability rate (w+(r)) of join-
ing a traffic jam with r vehicles in it, the time taken to join a vehicle
cluster from free flow needs to be derived. The derivation for time
taken to reach the tail end of an existing vehicle cluster, starting from
free flow headway, is included below. Integrating both sides of Equa-
tion 3.15, we get:

t∫
0

dt =

h(t)∫
h f ree

hα
f ree

vchα
f ree − v f reehα

dh (3.16)

or, t =
1
vc

h(t)∫
h f ree

{
1 +

v f reehα

vchα
f ree − v f reehα

}
dh (3.17)

or, t =
h(t)− h f ree

vc
− 1

vc

h(t)∫
h f ree


(

1−
vchα

f ree

v f reehα

)−1
 dh (3.18)

Now realizing that as the vehicle approaches a traffic jam, its head-
way decreases with time, I.e. ḣ < 0, one can deduce the following
from Equation 3.15:

ḣ = vc −
v f reehα

hα
f ree

< 0 (3.19)

or,
vchα

f ree

v f reehα
< 1 (3.20)

Using the Maclaurin series expansion of (1− x)−1 for |x| < 1, i.e.

1
1− x

= 1 + x + x2 + x3 + · · · (3.21)

the expression in Equation 3.18 can be operated upon to get:

t =
h(t)− h f ree

vc
−

h(t)∫
h f ree

1
vc

{
1 +

(
vchα

f ree

v f reehα

)
+

(
vchα

f ree

v f reehα

)2

+

(
vchα

f ree

v f reehα

)m

+ · · ·
}

dh

(3.22)

or,

t =
h(t)− h f ree

vc
− 1

vc

{
1 +

(
vchα

f ree

v f ree

)
h1−α

1− α

+

(
vchα

f ree

v f ree

)2
h1−2α

1− 2α
+ · · ·

}h=h(t)

h=h f ree

(3.23)
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Equation 3.23 holds true for all mα 6= 1(m ∈ Z+). However, in
case mα = 1, the integral of the corresponding mth term can be modi-
fied accordingly to yield an expression in terms of ln(h). Simplifying
Equation 3.23 and using the limits of integration corresponding to
headway in free flow traffic (h f ree) and headway inside a vehicle clus-
ter (h(t)), the following expression is obtained:

tjoin =
1
vc

∞

∑
m=1

{
1

1−mα

(vc

κ

)m (
h1−mα

f ree − h1−mα
c

)}
(3.24)

where tjoin denotes the time taken to join a cluster, vc denotes the
velocity of the vehicle at the tail-end in the cluster (also the leading
vehicle for the vehicle joining the cluster), m refers to the mth term in
the series expansion, α denotes the driver sensitivity in the gm fourth
car following model, κ = v f ree/hα

f ree denotes a driver dependent con-
stant, and hc denotes the headway inside a cluster and is known to
be approximately constant at about 1 meter through experimental ob-
servations [79][109].

Unfortunately, the expression for tjoin is a hypergeometric series
with no closed-form solution. However, it is observed that as an in-
creasing number of terms are used to evaluate tjoin, i.e. the series is
truncated at higher orders of m, the hypergeometric series quickly
converges to the true solution obtained from numerical simulation.
Figure 3.5 depicts the convergence of the hypergeometric series to
the exact solution. As can be observed, the approximate solution is
comparable to the exact solution for even as few as two terms.

Figure 3.5: Time taken to join a cluster (tjoin) using the expression derived
from the gm fourth model nonlinear ode. The truncated hyper-
geometric series quickly converges to the exact solution as more
terms are included.

An additional key insight of this work is to recognize that the hy-
pergeometric series is constrained by the range of admissible driver
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sensitivities. Considering the range of admissible driver sensitivities,
it is observed that a closed-form exact solution of the hypergeometric
series tjoin can be approximated by using the first term of the series
(t1) and an appropriate truncation ratio (ζ), such that tjoin = ζt1. Fig-
ure 3.6 depicts the variation in the truncation ratio, which is the ratio
of the exact solution obtained from numerical solution (using up to
40 terms in the hypergeometric series) and the approximate solution
obtained using only the first term of the series, as a function of driver
sensitivity (α). Thus, when the driver sensitivity of the car following
algorithm is known, Figure 3.6 may be used to determine the correct
truncation ratio and, consequently, the approximate time (tjoin) taken
to join the vehicle cluster.

Figure 3.6: Range of admissible driver sensitivities limits the variation of the
truncation ratio, ζ = tjoin/t1. Based on the driver sensitivity α of
the car-following algorithm, an appropriate value of ζ(α) can be
used to approximate the time taken to join a cluster.

As mentioned earlier, the transition probability rate is defined as
the inverse of the time taken to join a cluster. Thus, the new transition
probability rate for a vehicle joining a cluster is given by:

w+(r) =
1

tjoin
=

1
ζt1

=
κ(1− α)

ζ

(
1

h1−α
f ree − h1−α

c

)
(3.25)

The transition probability rate for leaving a cluster is determined
using a constant acceleration model and is assumed to be constant
for both acc-enabled and human-driven vehicles. The acceleration
of a vehicle starting out of a cluster and moving into free flow is
determined by modeling it as a vehicle starting from rest. From ex-
perimental observations of traffic [111], this acceleration is found to
be 2.5 m/s2 on an average and the corresponding time taken to leave
the cluster based on typical traffic conditions is 7.5 to 10 seconds. As
a result, w−〈r〉 is approximately equal to 0.1 s-1. Thus, new transition
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probability rates that better describe actual driver behavior have been
obtained and further analysis based on the vehicle cluster dynamics
as described by Equation 3.6 can be performed.

3.5 steady-state analysis

The vehicle cluster dynamics discussed in Section 3.3 may be used
to perform a steady-state analysis to determine the expected size of a
stable cluster or traffic jam. This section will discuss how the expected
cluster size varies as a function of traffic density in steady-state con-
ditions, for both single species and multi-species environments.

3.5.1 Steady-state analysis for single species environments

As is evident from Equation 3.6, the steady-state condition for a sta-
ble cluster size is w+〈r〉 = w−〈r〉. Since w+〈r〉 is a function of the free
flow headway (h f ree), as derived from thegm fourth model and de-
scribed in Equation 3.25, and w−〈r〉 has been assumed to be constant,
the steady-state condition can be used to determine an expression of
h f ree as follows:

[
h f ree

]
ss =

{
h1−α

c +
tleaveκ(1− α)

ζ

}1/(1−α)

(3.26)

Additionally, physical constraints such as the finite length of the
closed road and finite vehicle length can also be used to determine
the free headway. These two expressions for free flow headway, one
obtained from the steady-state condition and the other from physical
constraints, can then be equated as follows:

[
h f ree

]
ss =

L− Nl − (〈r〉 − 1)hc

N − 〈r〉+ 1
(3.27)

where l denotes the length of a vehicle. Further, assuming that the ex-
pected cluster size is large, so that 〈r〉 − 1 ≈ 〈r〉, dividing the numera-
tor and denominator on the right hand side by L, and with some rear-
rangement, the following expression that relates the expected cluster
size to the traffic density is obtained:

〈r〉∗ =
k∗
([

h f ree
]

ss + l
)
− l[

h f ree
]

ss − hc
(3.28)

where 〈r〉∗ = 〈r〉l/L denotes the normalized expected cluster size,
and k∗ = Nl/L denotes the dimensionless traffic density on the
closed ring road. Equation 3.28 indicates that the relationship be-
tween stable cluster size and the dimensionless traffic density is lin-
ear in nature. Further, since the cluster size cannot be less than zero,
Equation 3.28 also indicates that there exists a critical density kc at
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which vehicle clusters or self-organized vehicle clusters first begin to
appear. Substituting 〈r〉∗ = 0 in Equation 3.28 yields an expression
for dimensionless critical density for traffic flow:

k∗c =
l[

h f ree
]

ss + l
(3.29)

Figure 3.7 shows the steady-state phase plot of the normalized sta-
ble cluster size plotted against the dimensionless density for a traffic
flow consisting of a single species, i.e. a single type of driver model
(gm fourth model with driver sensitivity α = 0.4). The solid line de-
picts the stable cluster size for a given density. It is observed that
in this scenario, the analytical results predict that the dimensionless
critical density, or the density at which vehicle clusters begin to form
spontaneously, is approximately k∗c = 0.1. It is argued that this value
of the driver sensitivity is reasonably representative of human drivers
since experimental data from German highways (shown in Figure 3.8)
also indicates that the dimensionless critical density for humans, as
observed from the fundamental diagram of traffic flow, is approxi-
mately 0.1. In the next subsection we discuss the selection of the ap-
propriate driver sensitivity for acc-enabled vehicles and the method-
ology for introducing acc-enabled vehicles in the analysis framework.
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Figure 3.7: Steady-state phase portrait of normalized cluster size versus di-
mensionless density consisting of a single driver species based
on gm fourth model with α = 0.4. The solid line indicates the
stable cluster sizes or traffic jams. Clusters or traffic jams first be-
gin to appear when the dimensionless density reaches a critical
value of k∗c ≈ 0.1.

3.5.2 Introduction of acc-enabled vehicles into traffic flow

The single-lane closed ring system is now considered with traffic
consisting of a mixture of acc-enabled and human-driven vehicles.
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Figure 3.8: Experimental data for traffic flow consisting solely of human
drivers on German highways. Dots indicate experimental obser-
vations [6]. The observed dimensionless critical density is close
to 0.1 [7].

Let the fraction of acc-enabled vehicles on the closed road be p. As-
suming that the population of vehicles on the closed road is large
enough, such that the proportion of acc-enabled and human-driven
vehicles outside the cluster remains constant, then the effective tran-
sition probability rates are given by:

weff

+ (r) = (1− p)wh

+(r) + pwacc

+ (r) (3.30)

weff

− =
1

tleave
(3.31)

where wh

+(r) denotes the transition probability rate of joining a clus-
ter for a human-driven vehicle with αh = 0.4, and wacc

+ (r) denotes
the transition probability rate of joining a cluster for an acc-enabled
vehicle with αacc = 0.7. The rationale behind picking the driver sen-
sitivity value for human drivers has already been presented in the
previous subsection.

In contrast, the choice of driver sensitivity for acc-enabled vehicles
is motivated in part by the reasoning that, whereas human drivers are
typically performing multiple tasks while driving and may be less
alert to sudden changes in the traffic stream, acc algorithms are per-
forming the sole task of driving and continually monitoring the road
ahead. acc algorithms are expected to be more sensitive and alert to
changes in the traffic stream and thus are assigned a higher driver
sensitivity value. Another motivating factor for choosing αacc = 0.7
is the desire to obtain a closed-form solution for the expected vehicle
cluster size. This is discussed in the next subsection in relation to the
steady-state analysis for mixed traffic
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3.5.3 Steady-state analysis for multi-species environment

The sensitivity value for acc-enabled vehicles is determined from
the necessity of obtaining a closed-form solution for the analysis.
When the expressions for individual transition probabilities wh

+(r)
and wacc

+ (r) are substituted in the effective transition probability rate
weff

+ (r), and the steady-state condition weff

+ (r) = weff

− (r) is consid-
ered, the following equation is obtained:

h1−αh

f ree h1−αacc

f ree − a2h1−αh

f ree − a1h1−αacc

f ree + a0 = 0 (3.32)

where the coefficients are functions of hc, tleave, p, αacc, and αh and
are given by:

a2 = h1−αacc

c + (1− αacc)ptleaveκh/ζ(αacc) (3.33)

a1 = h1−αh

c + (1− αh)(1− p)tleaveκacc/ζ(αh) (3.34)

a0 = h1−αh

c h1−αacc

c + (1− αh)(1− p)tleaveκhh1−αacc

c /ζ(αh)

+ (1− αacc)ptleaveκacch1−αh

c /ζ(αacc)
(3.35)

where ζ(·) and κ are functions of driver sensitivity, α, as discussed
earlier.

In the depicted general form, Equation 3.32 is a transcendental
equation and can only be solved using numerical or graphical meth-
ods. In order to obtain an analytical solution for the steady-state free
headway, the transcendental equation is reduced to an algebraic equa-
tion (quadratic, cubic or bi- quadratic) by enforcing a constraining
relation on the values that αh and αacc may simultaneously assume.
One such relation that reduces Equation 3.32 into a cubic equation
and thus allows a closed-form solution is (1− αh) = 2(1− αacc) i.e.
αacc = 0.5(1 + αh). It may be observed that, once this substitution
is made, arbitrary choices of driver sensitivities cannot be made in
further analysis. This is due to the fact that the choices are restricted
by two constraints, viz. the maximum acceptable deceleration, and
a constraining relation between αacc and αh which is a consequence
of the need to obtain a closed-form solution. A number of values of
driver sensitivities (αh, αacc) such as (0.35, 0.675), (0.4, 0.7) etc. which
satisfy the relation αacc = 0.5(1 + αh) also lie approximately in the
range defined by maximum acceptable deceleration based on aashto

standards.
Thus, the relation αacc = 0.5(1 + αh) may be used as an approx-

imation, together with this restricted set of values, to reduce Equa-
tion 3.32 into a cubic form as follows:(

h1−αacc

f ree

)3
− a2

(
h1−αacc

f ree

)2
− a1

(
h1−αacc

f ree

)
+ a0 = 0 (3.36)

The expression for steady-state free headway
[
h f ree

]
ss in a multi-

species environment is obtained by solving the cubic Equation 3.36.
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Next, the steady-state free headway expression is substituted into
Equation 3.28 to obtain a relationship between expected cluster size
and traffic density in a multi-species environment. The implications
of the above analysis in both single species and multi-species traf-
fic environments are discussed in the next section, along with some
experimental results from mesoscopic simulations of traffic flow.

3.6 results and mesoscopic simulations

This section discusses the obtained analytical results for both sin-
gle species and multi-species environments, and their interpretations
with respect to real-life traffic flows. Additionally, mesoscopic simu-
lations of vehicle cluster dynamics are presented and are shown to
validate the obtained analytical results.

3.6.1 Results for single species traffic flow

In the previous section it was mentioned that the expression for steady-
state free headway obtained from Equation 3.36 may be substituted
in Equation 3.28 to obtain the relationship between expected normal-
ized cluster size and dimensionless density in a multi-species environ-
ment. The resulting relationship may be plotted as a phase portrait to
illustrate the cluster dynamics as a function of the proportion of acc-
enabled vehicles on the closed road. Figure 3.9 shows the steady-state
phase portraits for two special cases: (i) when the vehicle population
consists of only human-driven vehicles (p = 0.0, α = 0.4), and (ii)
when the vehicle population consists of only acc-enabled vehicles
(p = 1.0, α = 0.7). The figure suggests that the traffic operates at
higher critical densities, and consequently higher traffic flows, when
it consists of only acc-enabled vehicles as compared to when it con-
sists of only human-driven vehicles. The relationship between cluster
size and density in a single-species environment is validated by per-
forming a Monte Carlo simulation using the mesoscopic level defini-
tion and dynamics of the system state. Specifically, the cluster forma-
tion process is modeled as a one-dimensional random walk where the
cluster size grows or shrinks based on the new transition probabilities
derived in Section 3.4.

Figure 3.10 shows that the mesoscopic simulation matches the ana-
lytical results but is valid only up to dimensionless density k∗ = 0.8.
This can be explained by studying the method for calculating free
headway from physical constraints, as described in Equation 3.27. It
is evident that as N → L/l, the numerator on the right-hand side of
Equation 3.27 becomes smaller, and represents the limit of bumper-
to-bumper traffic. Any further subtraction due to the presence of the
cluster headway term, (〈r〉 − 1)hcluster, will cause the free headway to
become negative. Thus, the simulation indicates that present form of
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Figure 3.9: Steady-state phase portrait describing analytical results for spe-
cial cases of mixed traffic. Traffic consists of (i) human-driven
vehicles only (p = 0.0), and (ii) acc-enabled vehicles only
(p = 1.0).
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Figure 3.10: Monte Carlo simulation validates the analytical results obtained
for the relationship between normalized cluster size and dimen-
sionless density, for a single species environment. Thick dashed
line denotes analytical solution. Solid dots indicate the mean
steady-state cluster sizes obtained from he simulation.

the analysis may not be applicable for extremely high density traffic.
However, it may be realized that situations in which the traffic flow
reaches extremely high densities are not expected to be observed too
often. The analysis is largely supported by the simulations in the re-
maining scenarios, especially for determining the critical density at
which vehicle clusters (or traffic jams) first appear.
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3.6.2 Results for multi-species or mixed traffic flow

In a multi-species environment, it is of greater interest to observe
the trends in critical density as a function of the proportion of acc-
enabled vehicles in the mixed traffic flow. Figure 3.11 shows these
trends as obtained from the analytical results. It is observed that as
the proportion of acc-enabled vehicles on the road is increased, the
critical density increases and this increase is not uniform. Specifically,
as the proportion of acc-enabled vehicles in the traffic flow increases,
the traffic flow becomes increasingly sensitive to changes in vehicle
population proportions.

For example, consider the two scenarios in Figure 3.11 that depict
the traffic system operating at the same threshold (∆k) away from the
critical density, but in two very different regimes. In predominantly
human driver traffic in the jam-free regime (operating point a), a
small change in vehicle proportion (∆p) does not change the state of
the traffic flow, which continues to operate in the jam-free regime. On
the other hand, if the same change of vehicle proportion is introduced
in predominantly acc traffic in the jam-free regime (operating point
b), it causes the traffic flow to change from a jam-free state to a self-
organized jam or congested state.

Δ𝑘

Figure 3.11: Increased acc penetration results in an increase in the critical
density at which traffic jams first appear. Points a and b operate
at the same threshold (∆k) away from the critical density line.
Identical changes in vehicle proportion (∆p) produce different
results at the operating points.
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The same trend can be observed by studying the sensitivity of the
the critical density to the proportion of acc-enabled vehicles, which
is defined as follows:

Sensitivity, s(p0) =

(
dk∗c
dp

)
p=p0

(3.37)

Figure 3.12: Sensitivity of critical density to acc penetration. Traffic flows
with high acc penetration are up to 10 times more susceptible
to the formation of self-organized traffic jams, as compared to
traffic flows with low acc penetration.

Figure 3.12 indicates that for roadways operating at or near peak
flow capacity, traffic systems with very high acc penetration are up to
10 times more susceptible to congestion caused by self-organized traf-
fic jams as compared to traffic systems with very low acc penetration.
In other words, in medium-to-high density traffic, the introduction of
a small percentage of human-driven vehicles into a predominantly
acc-enabled vehicle population is more likely to cause a phantom traf-
fic jam as compared to the introduction of the same percentage of
human-driven vehicles in an already predominantly human-driven
population.

In the previous subsection, it was shown that the analytical results
for critical density are well supported by the mesoscopic simulations.
Extending the analysis to multi-species systems, Monte Carlo simu-
lations are used to determine the normalized critical density as the
proportion of acc-enabled vehicles on the road increases. Figure 3.13

shows the Monte Carlo simulation results with 1000 iterations and
varying percentage of acc-enabled vehicles in the traffic stream. The
isolines on the contour map indicate the number of iterations (out
of a total 1000 iterations) in which a vehicular cluster was observed.
The simulations indicate that the lower bound of the contour map
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appears to agree very well with the analytical result for normalized
critical density, which is depicted using the dashed line in Figure 3.13.

Figure 3.13: Results from the Monte Carlo simulation for mixed traffic flow
appear to agree with the analytical results. Isolines indicate
number of simulation (out of 1000 total iterations) that resulted
in a vehicular cluster (self-organized traffic jam). Dashed line
indicates normalized critical density from analytical results.

3.7 conclusions , contributions and broader impacts

In this chapter, a master equation-based analytical methodology was
developed to study the influence of varying vehicular population de-
mographics on the ensemble dynamics. Specifically, the goal of the
study was to assess the impact of introduction of acc-enabled ve-
hicles on the dynamics of self-organized traffic jams. Figure 3.13 in-
dicates that, as the percentage of acc-enabled vehicles in the traffic
stream is increased, the critical density also increases correspondingly.
In other words, as more acc-enabled vehicles join the traffic stream,
the density at which vehicle clusters begin to spontaneously appear
increases. This indicates that the traffic flow can operate at higher
densities and consequently higher flow rates. Additionally, the study
also found that while increased acc penetration may allow the traffic
system to operate at increased densities and flows, it comes at a cost.
As acc penetration increases, a small increase in the percentage of
human drivers may be enough to cause congestion. In other words,
in a predominantly acc traffic system, introduction of human-driven
vehicles may cause a rapid reduction of critical density, resulting in a
self-organized traffic jam.
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The key contribution of the work presented in this chapter is that
it enables the development of a closed-form solution that directly re-
lates the penetration of acc-enabled vehicles on the critical density at
which self-organized traffic jams first begin to appear. The develop-
ment of an analytical solution reduces reliance on simulation-based
approaches, which, though useful, do not provide as significant an
insight as analytical solutions. From a broader perspective, the knowl-
edge gleaned from the analysis presented in this chapter may be used
to improve upon and design better acc algorithms that take into ac-
count the functional relationship between acc penetration and traffic
jam dynamics. This knowledge could mitigate the environmental, fi-
nancial and productivity losses arising due to self-organized traffic
jams.
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4
G E N E R A L I Z E D I S I N G M O D E L T O S T U D Y E F F E C T S
O F D R I V E R A L G O R I T H M S O N V E H I C L E C L U S T E R
D I S T R I B U T I O N

author’s note This chapter borrows significant content from the
author’s publication titled “Statistical mechanics-inspired framework
for the study of mixed traffic flows on highway congestion” pub-
lished in Proceedings of the American Control Conference, 2014 held in
Portland, Oregon.

In Chapter 3, the discussion primarily revolved around the steady-
state behavior of the vehicular cluster as a function of acc penetration
rate. One of the key assumptions made in this study was that only a
single cluster is formed on the closed ring-road environment. In many
situations, this may not be the case, and since the absence of large
clusters could be offset by the presence of several smaller clusters,
knowledge of the distribution of cluster sizes can be as important as
that of the presence or absence of clusters.

In this chapter, a new microscopic modeling technique inspired
by principles from the field of statistical mechanics is used to ob-
tain the distribution of vehicle cluster sizes. Specifically, the general-
ized Ising model is used to simulate the traffic flow at a microscopic
scale. The simulation results indicate that traffic systems dominated
by acc-enabled vehicles exhibit a higher probability of formation of
moderately-sized clusters as compared to traffic systems dominated
by human-driven vehicles. However, the trend is reversed for forma-
tion of large-sized clusters, i.e. traffic systems dominated by human-
driven vehicles display a higher propensity of large cluster formation
as opposed to acc-dominated traffic systems. These qualitative re-
sults hold significance for algorithm design and traffic control, since
it may be easier to predict and take countermeasures for large lo-
calized clusters as opposed to several smaller clusters spread across
various locations on a highway.

4.1 introduction

As mentioned earlier in Chapter 2, the formation of self-organized
clusters is of interest not only in the transportation research commu-
nity, but also in several other domains. Self-organized cluster forma-
tion is a fairly common phenomenon which occurs across a wide
range of fields, including nucleation in binary alloys, herding behav-
ior of organisms (such as in a school of fish), and transport of granu-
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lar media [12]. Intelligent vehicles have the potential not only to affect
the steady state cluster sizes, as discussed in Chapter 3, but also to
affect the cluster size distributions, as will be shown in the following
work.

Traditionally, microscopic numerical simulations have served well
to provide some insight into self-organized traffic dynamics as a func-
tion of driver behaviors [86]. These simulation approaches utilize
models that represent the driving behavior of humans to varying de-
grees of accuracy. However, some approaches, such as the cellular
automata (ca) [13][107] or totally asymmetric simple exclusion pro-
cess (tasep) models, significantly simplify the driver behavior to rules
that are independent of physical interpretation of model parameters.
Other approaches, such as those that use detailed car-following mod-
els (e.g. General Motors [90] or optimal velocity models [112]), may
cause the simulations to be computationally expensive and memory
intensive. Consequently, it is desirable to have a simulation approach
that is more detailed than ca or tasep models and builds upon physi-
cal principles, while simultaneously being computationally amenable
to parametric studies. The generalized Ising model provides such an
approach. The included study builds upon work presented in [39]
[113] and utilizes the simple, yet immensely popular Ising model and
its generalized forms, to study traffic flow and vehicle cluster dynam-
ics as a function of acc penetration.

The remaining sections of this chapter discuss the following:

• the problem with known parameters values typically used to
represent the state of highway traffic flow,

• the generalized Ising model of traffic flow, wherein self-organized
traffic jams manifest as a result of a non-equilibrium process in
the presence of an external field with repulsive interactions be-
tween vehicles, and

• the Monte-Carlo simulations as well as the calibration of the
generalized Ising model.

In the remainder of this work, the term ‘acc-enabled’ and ‘computer
algorithm-driven’ will be used interchangeably.

4.2 prior work

While the study of traffic flow dynamics is a rich and vibrant field,
statistical mechanics-based approaches to address the problem have
received less attention than others. In the following subsections, sta-
tistical mechanics-based techniques to study traffic flow dynamics are
discussed briefly.
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4.2.1 Statistical mechanics-based techniques

One of the earliest attempts to use statistical mechanics to study traf-
fic flow dynamics dates back to the work of Prigogine and Andrews
in 1960, who modeled traffic flow using the kinetic theory of gases [4].
For a long period after their work, statistical mechanics was not used
within the transportation research community, but recently these ap-
proaches have witnessed a resurgence [38][39][114][115]. However, in
the context of analyzing changes in traffic flow dynamics as a conse-
quence of driver behavior, these techniques have primarily been lim-
ited to single species environments [116][113]. The work presented
here extends the statistical mechanics-based approach to a multi-species
environment that can model both human-driven and acc-enabled ve-
hicles via the use of the generalized Ising model (or the Potts model).
The generalized Ising model presented here is able to provide bet-
ter simulation fidelity (as compared to ca or tasep models), while
operating with reduced computational complexity (as compared to
numerical simulations with car-following models).

4.2.2 Limitations of the Ising model

The statistical mechanics-based approach proposed by Sopasakis and
his colleagues models traffic flow using the Ising model, and as such
is limited in its predictive capacity by the limitations of the Ising
model itself [39]. Specifically, the possible states σ that a site in the
Ising model can assume is limited to two. In other words, in an Ising
model formulation, a site on a road can either be empty (σ = 0) or
be occupied by a vehicle (σ = 1). However, if additional states are
required, such as when studying traffic systems with more than one
type of driver algorithm, the Ising model needs to be extended for the
analysis. Fortunately, there exist extensions of the Ising model – such
as the generalized Ising model in which a site can assume any integer
number of states – which can be used to model mixed traffic systems.
Details about the two-state Ising model are provided in Appendix A.

4.3 problem setup

This section discusses the problem setup, which is essentially an exer-
cise in establishing variables that describe the physical system, i.e.
traffic, and relating them to model parameters of the generalized
Ising model. The following subsections first describe an idealized traf-
fic system selected for study, followed by the model structure that will
be used for simulation-based numerical analysis.

65



4.3.1 Traffic system description

In order to study the effects of driver algorithms on vehicle cluster
formation, a traffic system is often idealized as a single-lane closed
ring-road without on- or off-ramps. While a road with open bound-
ary conditions, i.e. with on- and off- ramps, may better represent re-
ality, the closed ring-road idealization of the traffic system enforces
periodic boundary conditions and greatly simplifies the ensuing anal-
ysis and simulations [114]. The closed ring-road is assumed to be of
length L and is occupied by M vehicles. The vehicles are assumed
to be physically identical with length of dv = 5.5 m, which may be
considered the upper limit for the overall length of passenger cars
and vans. Additionally, the vehicles are assumed to maintain a safe
spacing of d0 = 2.5 m when stationary, which may be evaluated from
the typical jam density of approximately 125 vehicles/km in highway
traffic [79]. Consequently, the spatial extent occupied by each vehicle
when it is stationary is given by ds = dv + d0 = 8 m. Later, some of
these vehicles will be modeled as being driven by humans, whereas
other will be modeled as being driven by computer algorithms.

Next, the typical traffic system is described quantitatively by some
commonly observed traffic parameters, which are known to be rep-
resentative of single-lane highways [79]. The free flow velocity (v f ),
which is the speed of vehicles at low densities, is assumed to be 25

m/s (or 90 km/h). The maximum flow of vehicles in the lane, or lane
capacity, (qmax) is assumed to be 1800 veh/h. The backward wave
speed (u) represents the speed at which a wave propagates back-
wards in the traffic stream and is assumed to be −6 m/s (or −19.6
km/h). The next subsection discusses the specific prerequisites and
model structure needed to analyze the system using the generalized
Ising model.

4.3.2 Space partitioning and lattice structure of traffic system

As a first step towards modeling the system, the roadway is parti-
tioned into individual non-overlapping sites, so that the sites span
the entire length L of the roadway. This process is known as space
partitioning and results in the partition S = {s1, s2, ..., sN} of the road space partition

such that:

N⋃
i=1

si = S and si
⋂
i 6=j

sj = φ (4.1)

where si denotes the ith site on the road, and φ denotes the empty
set. In the presented work, the length of each site is assumed to be
ds (= dv + d0), i.e. the space occupied by a vehicle when it is station-
ary. Thus, if the roadway is occupied at maximum density, it would
result in stationary vehicles parked a distance d0 away from each
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other, and occupying a total space of N(dv + d0) = L. The maximum
density is referred to as jam density (k jam) in the traffic flow literature
[79]. Other values for the length of an individual site are also possi-
ble, but the current value (ds = 8 m) is chosen since it makes physical
sense and also corresponds directly to the jam density (k jam = 1/ds),
a physically observable quantity. The collection of sites that repre-
sents the ring road forms a one-dimensional lattice, and the setup is
referred to as the lattice structure of the system. The terminology is
borrowed from physical systems such as lattice gases, whose analysis
often relies on statistical mechanics techniques [117].

The next step in the problem setup addresses a framework for as-
signing the system microstate, so that its evolution can be tracked dur- system microstate

ing numerical simulations. Specifically, this requires assigning a state
σi to each individual site si ∈ S. Since the goal of this work is to ana-
lyze mixed traffic flow, a specific site si can be in one of three states,
i.e. σi ∈ Σ = {0, 1, 2}, where the set Σ is referred to as the alphabet of
the system. It is assumed that σi = 0 represents a site that is vacant,
σi = 1 represents a site that is occupied by a human-driven vehicle,
and σi = 2 represents a site that is occupied by an acc-enabled vehicle
[116]. A schematic representation of the partitioning of the ring road
is included in Figure 4.1. In this discretized version of the road, white
sites indicate that no vehicle is present, filled sites (gray) indicate that
a human-driven vehicle currently occupies that site, and filled sites
(black) indicate that an acc-enabled vehicle currently occupies that
site.

The system microstate then encapsulates the state information of all
N sites as a vector σ = {σ1, σ2, ..., σN}. Given the space partition S =

{s1, s2, ..., sN} of the system and the set of states Σ = {0, 1, 2} that each
individual site can assume, the total number of possible microstates
of the traffic system is given by |Σ||S| = 3N . The microstate contains
complete information of the entire system at any given instant of
time. The next section builds upon the microstate and lattice structure
discussed here to create a framework for simulating the traffic system.

4.4 generalized ising model formulation

In this section, a simulation framework that can mimic the dynamics
of a single-lane closed ring-road system is developed. As mentioned
earlier in Section 4.2.2, while the Ising model allows for a statistical
mechanics-based treatment of the formation of traffic jams, it does
not allow for distinguishing between different driver behaviors. In the
following work, the use of the generalized Ising model removes this
limitation and allows us to conduct a numerical analysis of the effects
of different driver behaviors on the formation of self-organized vehi-
cle clusters, or traffic jams. In the following subsections, the model
parameters that help distinguish between driver algorithms, as well
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TRAFFIC SYSTEM

Number of Sites = N
Number of vehicles = M

0 1 2Empty site
Occupied  site 
(Human-driven)

Occupied  site
(ACC-enabled)

Site 𝑠𝑖−1

Site 𝑠𝑖

Site 𝑠𝑖+1

Figure 4.1: Discretized version of traffic system for statistical mechanics-
based numerical analysis. Arrow indicates direction of travel. Ve-
hicles travel in direction of reducing site number. Three states,
σi ∈ Σ = {0, 1, 2}, are possible for each site in accordance with
the generalized Ising model approach.

as the means to simulate the system microstate dynamics, will be
discussed in detail.

One of the foundational constructs of the generalized Ising model,
and statistical mechanics in general, is the idea of the Hamiltonian. Hamiltonian

The Hamiltonian represents the energy of the system in any given
microstate, and consequently can be used to determine system dy-
namics, if the energy evolution scheme within a system is known.
The expression for the Hamiltonian is given by:

H(σ) = −B
N

∑
i=1

σi − ∑
{i,j}

Jijσiσj (4.2)

where j 6= i and i, j ∈ {1, 2, ..., N}. In the expression, B represents
an external field that is acting on the entire system, Jij represents the
interaction strength between sites i and j, and {i, j} represents a pair
of neighboring sites.

Now, in a traffic system, drivers do not typically interact with ev-
ery other driver on the road. Drivers, either human or computer algo-
rithms, are often privy to only local information up to a certain ‘look-
ahead’ distance (dl) downstream of their location. In the current con-
text of analyzing traffic flow dynamics, this implies that interactions
between sites on the road are restricted to a few downstream sites
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within a defined neighborhood. Mathematically, the forward-looking
neighborhood N (si) can be expressed as:

N (si) = {sj : d(si, sj) ≤ dl , j < i} (4.3)

where d(si, sj) = |(i− j)ds| denotes the distance between sites si and
sj, and ds is the size of an individual site. Note that the neighborhood
N (si) does not include sites upstream from the site si, i.e. sites for
which j > i. Also note that due to the closed ring structure, the neigh-
borhood for numbered sites such as s1 is appropriately re-defined to
include forward-looking sites such as sN , sN−1, sN−2, and so on.

As a consequence of the local nature of driver response, the for-
ward motion of a vehicle from a site si to the adjacent downstream
site si−1 should only depend on the states of the sites in the neighbor-
hood N (si), rather than the entire microstate σ. To reflect this under-
standing, the Hamiltonian can be re-framed for the current context to
read as:

H(si) = −Bσi − ∑
sj∈N (si)

Jijσiσj (4.4)

where H(si) denotes the energy associated with a particular site si
and is a function of the state of the neighboring sites only. The site-
based Hamiltonian H(si) governs the probability of a vehicle moving
from one site to another. A key differentiating feature between the
tasep models mentioned in Section 4.1 and the statistical mechanics-
inspired model presented here is that the latter uses a site-based
Hamiltonian determine the system evolution. Specifically, the com-
ponents of the Hamiltonian such as the external field and interaction
strength can be related to physical processes, which helps provide
meaning to the probability with which a vehicle moves forward. This
is quite unlike the tasep models which, though simple and useful,
make it relatively difficult to relate hopping probabilities to physical
processes. The next few subsections discuss explain details about the
Hamiltonian, its individual components, and how it can be used to
determine system dynamics.

4.4.1 External field

The role of the external field in traffic flow dynamics can be under-
stood by drawing parallels between Prigogine’s original interpreta-
tion of traffic flow based on the kinetic theory of gases and the ex-
pression presented in Equation 4.4. In Prigogine’s gas kinetic theory
of traffic flow, competing forces are at play that push and repel ve-
hicles [4]. The external field corresponds to Prigogine’s ‘relaxation’
term and is the driving force that ‘pushes’ vehicles forward. The
stronger the external field, the greater the tendency of the vehicles
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to keep moving forward. The external field acts equally on all vehi-
cles, irrespective of whether they are driven by humans or computer
algorithms (i.e. acc enabled). However, the states of sites occupied by
human-driven vehicles (σi = 1) and those occupied by acc-enabled
vehicles (σi = 2) are different by design. Thus, the expression for the
field may be altered slightly as follows:

B =

{
B0, if σi = 1

B0/2, if σi = 2
(4.5)

so that the field component of the Hamiltonian is equal in both cases,
i.e. Bσi = B0 > 0, irrespective of the state σi of the site si. Here, the
parameter B0 can be related to the speed limit of the roadway. From a
physical perspective, a high value of the external field parameter B0

corresponds to a larger driving force acting on the system which, in
turn, can be said to correspond to a higher speed limit. This relation
is made evident when the model is calibrated in Section 4.5.1.

4.4.2 Interaction strength

The role of the interaction strength on traffic flow dynamics can also
be understood by reviewing Prigogine’s gas kinetic theory of traffic
flow. Specifically, the interaction strength Jij is representative of the
‘collision’ term in Prigogine’s work and is a measure of ‘repulsion’
faced by vehicles as they approach another vehicle [4]. The greater the
magnitude of the interaction term between a vehicle and a preceding
vehicle, the slower it will approach that preceding vehicle. To produce
a repulsive effect with downstream vehicles, the interaction strength
must be negative, i.e. Jij < 0, for j < i. As interaction with upstream
vehicles is not considered, so Jij = 0 for j > i. The precise nature of
the interactions is assumed to follow an inverse-square law as follows:

Jij =


J0

(d(si, sj))2 , if sj ∈ N (si)

0, otherwise

(4.6)

where the interaction coefficient J0 is a constant, and d(si, sj) repre-
sents the distance between sites as discussed earlier in Section 4.4.
The inverse-square law representation for the interaction strength cho-
sen here is in accordance with prior work [118], which has shown
that such interactions produce long range order via a continuous
phase transition in the one-dimensional Potts model, similar to the
phase transitions observed in traffic flow [74]. Other interaction laws,
such as where the interaction strength is inversely proportional to the
distance between the sites, yield discontinuous (or first-order) phase
transitions, which are uncharacteristic of traffic flow [118][119].
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From a physical perspective, the interaction coefficient J0 can be
related to driver sensitivity or alertness. An alert driver, such as a
computer algorithm, may respond sooner to the presence of a cluster
downstream, and may correspondingly have a higher magnitude of
the interaction coefficient as compared to an inattentive driver, such
as a distracted human. In the next subsection, the use of interaction
strength to model driver behaviors and algorithms is discussed in
more detail.

4.4.3 Modeling driver behavior via interactions

It is known that the behaviors of vehicles when they are accelerating
from rest [111] or decelerating to a stop [120] are quite different. Con-
sequently, the interaction coefficients for vehicles entering or exiting
a cluster are designed to be different as well, and are postulated to
be:

J0 =

{
Jin, if ki − kl < 0

Jout, if ki − kl > 0
(4.7)

where Jin < 0 represents the interaction coefficient for vehicles enter-
ing a region of higher local density, Jout < 0 represents the interaction
coefficient for vehicles exiting a region of higher local density, sl is the
nearest occupied site within the neighborhood N (si), i.e. σl 6= 0, and
ki denotes the dimensionless local density at site si, and is defined as:

ki =
1

|N (si)| ∑
sj∈N (si)

1N (si)(sj) (4.8)

where |N (si)| = N represents the cardinality of the neighborhood
set, and 1A(·) represents the indicator function for elements belong-
ing to the set A. The use of the local density to determine the inter-
action coefficient can be better understood by using Figure 4.2 as an
aid. The dimensionless local density represents the density of vehi-
cles present in the neighborhood of a particular site. In the scenario
where the local density kl at site sl is neither greater nor less than the
local density ki at site si, the interaction coefficient is chosen randomly
with uniform distribution.

Now, the key innovation of the presented work is the ability to
model various driver algorithms and behavior, and observe their ef-
fects on the formation of vehicle clusters, within a statistical mechan-
ics framework. Different driver behaviors are implemented by chang-
ing the manner in which vehicles interact with one another. Consider
that a computer algorithm is designed so that it attempts to avoid con-
tributing to the growth of self-organized vehicle clusters whenever
possible. Let the interaction coefficient associated with this algorithm
be denoted by Jacc

0 , whereas the interaction coefficient associated with
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Site 𝒔𝒊 Site 𝒔𝒍

Site 𝒔𝒊 Site 𝒔𝒍

Figure 4.2: Interaction coefficients for vehicles determined using differences
in local density. Dashed box denotes the neighborhood for the
respective vehicles. (a) Difference in local density is negative for a
vehicle (circled) entering a cluster. (b) Difference in local density
is positive for a vehicle (circled) exiting a cluster.

a human-driven vehicle be denoted by Jh

0 . An appropriately modeled
qualitative difference between the coefficients Jh

0 and Jacc

0 can result
in reduced congestion incidents due to formation of self-organized
vehicle clusters. For example, an acc-enabled vehicle approaching
a vehicular cluster will attempt to avoid contributing to the cluster
growth. In the context of the current model, this behavior may be as-
sociated with the acc-enabled vehicles experiencing greater repulsion
near the cluster, as compared to human-driven vehicles. Mathemati-
cally, the behavior can be realized by the following relation between
the interaction coefficients:

|Jacc

in | > |J
h

in| (4.9)

where Jacc

in and Jh

in denote the interaction coefficient while entering a
cluster for an acc-enabled and a human-driven vehicle, respectively.
Similarly, an acc-enabled vehicle exiting a vehicular cluster will at-
tempt to leave it as quickly as possible so as not to contribute to
the cluster growth. In the context of the current model, this behavior
may be associated with the acc-enabled vehicles experiencing less
repulsion from vehicles downstream of the cluster, as compared to
human-driven vehicles. Mathematically, the behavior can be realized
by the following relation between the interaction coefficients:

|Jacc

out | < |Jh

out| (4.10)

where Jacc

out and Jh

out denote the interaction coefficient while exiting
a cluster for an acc-enabled and human-driven vehicle, respectively.
The next subsection describes how the Hamiltonian can be used to
study the evolution of the traffic system.
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4.4.4 Exchange dynamics

One of the first steps while studying the evolution of the traffic sys-
tem is to identify the type of dynamics that will govern this evolu-
tion. In the statistical mechanics literature, two types of dynamics are
popular, viz. the spin flip dynamics and the spin exchange dynam-
ics [121]. In spin flip dynamics, a particular site flips from one state spin flip dynamics

to another, without affecting the remainder of the system. Spin flip
dynamics may be useful when modeling vehicles that are entering or
leaving the system, such as at on- or off-ramps. For example, the state
at the last site on the edge of the system may flip from σN = 1 at time
t to σN = 0 at time t + 1, to indicate that a vehicle has left the system.
However, in the current context, it is evident that the total number of
vehicles is conserved on the closed ring-road, i.e. no vehicles are leav-
ing the system. As a result, the sites can only exchange their states
to model the forward motion of vehicles, so exchange dynamics are exchange dynamics

chosen to model system evolution. Specifically, exchange dynamics
imply that if a vehicle moves from site si at time t to si−1 at time t + 1,
then the states of these sites are exchanged. For example, if at time t
the states are given by {σi, σi−1}t = {1, 0}, then at time t+ 1 the states
will be {σi, σi−1}t+1 = {0, 1}, i.e. the states have exchanged and the
vehicle has moved forward. Further, the current implementation of
exchange dynamics stipulate that state exchange may only take place
with an adjacent and vacant downstream site, i.e. the exchange may
occur if:

σi 6= 0 and σi−1 = 0 (4.11)

With knowledge of the exchange dynamics, the only missing com-
ponent to begin a study of the system evolution is the rate at which
these exchanges take place. The next subsection discusses the devel-
opment of transition probability rates and their significance in re-
lation to the modeling of non-equilibrium (or far-from equilibrium)
processes.

4.4.5 Transition probability rates

Parallels can be drawn between the problem of modeling of traffic
dynamics using the Potts model, and the study of driven Ising lattice
gases [107][117]. System that are driven by external fields, such as
a temperature or concentration gradient, typically operate far-from-
equilibrium. Such systems can exhibit steady-state behavior, though
such a state may be one of continuous flux. Mathematically, such sys-
tems cannot be described by a stationary probability distribution. It
is immediately evident that certain traffic behavior, such as formation
of self-organized vehicle clusters or ‘stop-and-go’ waves, belong to a
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class of far-from-equilibrium systems because their microstate proba-
bility distributions are non-stationary.

The non-stationary nature of the probability distributions of far-
from-equilibrium systems has a direct impact on how the transition far-from-equilibrium

systemsprobability rates are determined. Far-from-equilibrium systems do
not necessarily obey the condition of detailed balance [74]. Conse- detailed balance

quently, the transition probability rates have to be determined on the
basis of observations of specific physical phenomena occurring in the
system. For example, since vehicles are not expected to move back-
ward in a traffic system, the associated transition probability rate of
a vehicle moving to an adjacent and vacant upstream site is assumed
to be zero. Such observations allow reasoned estimates to be made
about potential transition probability rates. Mathematically, the tran-
sition probability rate (w) in this scenario is given by:

w(σ → σ′) = 0

where, σ = {σ1, σ2, ..., σi−1, 1, 0, σi+2, ..., σN}

σ′ = {σ1, σ2, ..., σi−1, 0, 1, σi+2, ..., σN}

(4.12)

i.e. σ′ represents a microstate where the vehicle at site si has moved
to the upstream site si+1, while the states {σ1, σ2, ..., σi−1, σi+2, ..., σN}
remain unchanged. On the other hand, the microstate transition prob-
ability rate for the scenario where a vehicle at site si (denoted by site
state σi = 1) moves to the adjacent and vacant downstream site si−1

(denoted by the site state σi−1 = 0) is given by:

w(σ → σ′) = c0 · exp(−βH(si))

= c0 · exp

βBσi + β ∑
sj∈N (si)

Jijσiσj

 (4.13)

where, σ = {σ1, σ2, ..., σi−2, 0, 1, σi+1, ..., σN},

σ′ = {σ1, σ2, ..., σi−2, 1, 0, σi+1, ..., σN},

c0 = pre-exponential factor, and

β = ki

The expression in Equation 4.13 is similar to the reaction rate pos-
tulated for Arrhenius dynamics [39]. The parameter β is assumed to
be proportional to the local density and is conceptually analogous to
its interpretation in other physical systems. For example, in a ferro-
magnet, β ∝ 1/T, where T denotes the temperature. Consequently, a
high value of β corresponds to a low temperature T, in which case
the magnetic moments are forced to align with their neighboring mo-
ments. Similarly, in a traffic system, a high value of β corresponds to
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a high value of local density ki, in which case the vehicles are not free
to move and are forced to ‘align’ with the slow-moving or stationary
states of their neighbors.

Now the expression for the transition probability rates can be used
to determine the probability with which a randomly selected vehicle
will transition from site si to the site si−1:

P(σt+1 = σ′|σt = σ) = min{1, w(σ → σ′)} (4.14)

which is similar to the expression for the acceptance probability em-
ployed in the Metropolis-Hastings algorithm [122]. The following sec-
tions use the statistical-mechanics inspired framework built here to
numerically simulate and analyze the effects of driver algorithms of
formation of self-organized vehicular clusters.

4.5 monte carlo simulations

In order for the developed framework to accurately reflect the evo-
lution of self-organized vehicular clusters, the values of the model
parameters must be chosen carefully. The following subsection dis-
cusses the model calibration procedure.

4.5.1 Calibration of parameters

The calibration procedure of the presented model is performed in a
traffic scenario whose evolution is theoretically and empirically well
known. The traffic system, i.e. the closed ring-road, is populated with
human-driven vehicles so that they form a queue, such as one that
may form at a signalized intersection, to yield a moderate-density sce-
nario with a normalized density k∗ = k/k jam. At time t = 0, the queue
is allowed to dissipate and the system evolution is compared with
known results from the Lighthill-Whitham-Richards (lwr) model of
traffic flow [75][76] as well as the representative traffic parameters
described in Section 4.3.1. Specifically, as the vehicles begin to exit
a queue, they discharge at maximum capacity (qmax) and attain free
flow velocity (v f ). At the same time, a backward wave moving with
speed u can be seen to develop, both at the beginning of the queue
(due to vehicles leaving the cluster) and at the end of the queue (due
to vehicles entering the cluster after traversing the ring-road). The
model parameters c0, B, Jh

in, and Jh

out should be such that the simula-
tion behavior matches these known representative values of the traffic
parameters.

The calibration procedure is performed in two steps. In the first Potts model
calibration - first
step

step, the parameters c0 and B are calibrated to yield the free flow ve-
locity calculated via the speed of the first vehicle exiting the queue.
The queued traffic system is simulated several times for different val-
ues of c0 and B and the free flow velocities obtained by exiting ve-
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hicles are shown in Figure 4.3. Assuming that vehicles are nearly
stationary (v ≈ 0.5 m/s) when the external driving field is absent
(B = 0), and using the representative value of free flow velocity v f =

25 m/s for highways, the calibrated parameters for the traffic system
are found to be c0 = 0.05 and B = 125. Vehicles cannot be assumed to
be completely stationary when the external field is absent because in
that scenario c0 evaluates to zero, implying that the transition prob-
ability rate is identically zero. Other alternative choices for the pa-
rameter calibration, such as c0 = 0.1 and B = 100, also appear to be
valid candidates. However, the minimum speed that can be modeled
with this set of parameters is v f = 1 m/s. Consequently, the choice of
parameters relies in part on the trade-off one is willing to accept be-
tween the ability to model low free flow speeds, and the sensitivity of
the free flow speed to changes in the external field parameter (which
is higher in the range B ∈ [0, 150] as compared to B ∈ [150, ∞)).
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Figure 4.3: Calibration of generalized Ising model parameters B and c0 to
match free flow speed on a highway (v f = 25 m/s). Contours
indicate free flow speeds (m/s) obtained with corresponding set
of model parameters. The values are chosen to be B = 125 and
c0 = 0.05.

In the second step of the calibration procedure, the calibrated val- Potts model
calibration - second
step

ues of B and c0 are used to evaluate the appropriate values of Jh

in and
Jh

out. The queued traffic system is simulated for a range of interac-
tion coefficients and the resulting backward wave speeds are plotted
as shown in Figure 4.4. The contours in this figure indicate specific
values of backward wave speed that are observed in simulation for
various pairs of values of the interaction coefficients Jh

in and Jh

out. The
backward wave speeds are then compared for both scenarios, when a
vehicle is exiting a cluster (uout) (Figure 4.4(a)), and when it is enter-
ing a cluster (uin) (Figure 4.4(b)). According to the lwr theory, for a
queued traffic system on a closed ring-road populated with human-
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driven vehicles, the values of (uout) and (uin) should be identical
and equal to −6 m/s. Point H in Figure 4.4 indicates the parameter
values (Jh

in = −0.325 × 104 m2, Jh

out = −1.395 × 105 m2) for which
the backward wave speeds ((uin) and (uout)) match empirically ob-
served speeds of −6 m/s in real-world traffic systems, as discussed in
Section 4.3.1.

Finally, the interaction coefficients for acc-enabled vehicles can
also be hypothesized from Figure 4.4. As discussed in Section 4.4.3,
acc-enabled vehicles with appropriately designed algorithms are ex-
pected to exit clusters faster so as to avoid contributing to the growth
of self-organized clusters. If such vehicles exit the cluster faster, the
backward wave speed (uout) will have a larger magnitude, implying
a higher cluster dissipation rate. Similarly, such vehicles are also ex-
pected to enter clusters at a slower rate to avoid increasing cluster size.
As a result, the backward wave speed (uin) will have a smaller magni-
tude, implying a higher cluster dissipation rate. Using the second step
of the calibration procedure already performed for human-driven ve-
hicles, and the qualitative relationships described in Equation 4.9
and Equation 4.10, the values of the backward wave speeds for a
traffic system comprising only acc-enabled vehicles are assumed to
be uout = −7 m/s and uin = −5 m/s. Point A in Figure 4.4 indi-
cates the calibrated parameter values (Jacc

in = −1.85× 104 m2, Jacc

out =

−1.002× 105 m2) for the associated backward wave speeds.
These parameters enable us to carry out the Monte Carlo simula-

tions to mimic traffic flow dynamics in a mixed traffic flow. A simu-
lation of the queued traffic system with the calibrated model parame-
ters is shown in Figure 4.5. It must be noted that these parameter val-
ues for the acc-enabled vehicles provide us with only a qualitative
assessment of the effects of increased acc penetration. The pseudo-
code for the Monte Carlo algorithm used in the study is included in
Algorithm 1.

4.5.2 Simulation results

With the appropriate model parameters, and the transition probabil-
ity rates developed in Section 4.4.5, the traffic system was simulated
as a closed-ring road with N = 500 sites. The number of vehicles
populating the ring-road were varied to create scenarios where the
normalized density k∗ = k/k jam varies from 0.1 to 0.9 in steps of 0.1.
Additionally, the levels of penetration for acc-enabled vehicles were
varied from 0% to 100%, in steps of 10%. The simulation was run for
a real-time equivalent of one hour to allow for transients to die off, so
that steady state cluster distribution could be observed. The system
was updated in a random-parallel fashion, i.e. all sites were updated
at each time step, but the order within each time step update was
chosen randomly.
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Algorithm 1 simulating traffic flow dynamics with markov

chain monte carlo algorithm

1: Uniformly distribute M vehicles across N available sites to set up
initial microstate σ

2: while time ≤ endtime do
3: for all sites si ∈ S do
4: if σi 6= 0 and σi+1 = 0 then
5: calculate the site-based Hamiltonian H(si)
6: calculate transition probability rate w = exp(−βH(si))
7: select a random number r ∼ U(0, 1)
8: if r < min(1, w) then
9: exchange states σi and σi+1

10: accept new microstate
11: end if
12: end if
13: end for
14: time← time + 1

15: end while

The Monte Carlo simulations yield a probability mass function
fR(r) which denotes the probability that a vehicle cluster of size R = r
exists in the traffic system in steady state. Then, the joint probabil-
ity mass function fVR(v, r) which denotes the probability that a ran-
domly selected vehicle V = v is in a vehicular cluster of size R = r
can be expressed as follows:

fVR(v, r) = fV|R(V = v|R = r) fR(r) (4.15)
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where fV|R(V = v|R = r) denotes the probability of selecting a vehi-
cle V that lies in a cluster, given that a cluster of size R exists in the
traffic system. The conditional probability is found to be:

fV|R(V = v|R = r) =
r
M

= r∗ (4.16)

where M is the total vehicular population on the closed ring-road,
and r∗ denotes the normalized cluster size. The associated random
variable R∗ may be expressed in terms of the random variable R
as R∗ = R/M. The resulting joint probability distribution fVR(v, r)
is plotted for varying values of density for which the Monte Carlo
simulations were performed. Extremely high values of density (k∗ ∈
[0.6, 1.0]) are not usually observed in traffic, and no significant clus-
ter formation trends were observed in the simulations for low val-
ues of density (k∗ ∈ [0.1, 0.3]). Consequently, the probability distribu-
tion fVR(v, r) is plotted in Figure 4.6 for the range of density values
k∗ ∈ [0.4, 0.6], where significant cluster distribution trends were ob-
served as a function of acc penetration. The figure does not included
‘clusters’ of size r∗ = 1/M, since they correspond to individual vehi-
cles that are not part of a larger cluster, and which skew the results
disproportionately. The implications of these results and the conclu-
sions that can be drawn from them are discussed in the next section.

4.6 results

The simulation results included in Figure 4.6 describe the probability
of a randomly selected vehicle being present in a cluster of a partic-
ular size. The trends observable in these results, while not definitive,
can still be used to draw qualitative conclusions pertaining to the
effect of acc penetration of the formation of clusters and cluster dis-
tributions. One trend that is immediately evident is that cluster distri-
butions for predominantly human-driven traffic systems are skewed
to the right (towards large-sized clusters), whereas those for predom-
inantly acc-populated traffic systems are skewed to the left (towards
moderately-sized clusters), across all densities shown in the figure.
For example, in the plot corresponding to k∗ = 0.6 in Figure 4.6 con-
sider the dotted line, which represents 100% acc penetration, and the
thick solid line, which represents a population of 100% human-driven
vehicles. It is evident that there exists a noticeable right-leaning skew
in the human-driven vehicle population indicating a propensity to-
wards formation of larger clusters. On the other hand, the dotted line
on the same figure, a noticeable skew towards the left is seen, in-
dicating a propensity towards formation of smaller clusters for acc-
dominated vehicular populations. Thus, the probability that a ran-
domly selected vehicle is present in a large-sized cluster is higher for
traffic systems consisting predominantly of human-driven vehicles
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as opposed to acc-enabled vehicles. Similarly, the probability that a
randomly selected vehicle is present in a moderately-sized cluster is
higher for traffic systems consisting predominantly of acc-enabled
vehicles.

4.6.1 Conclusions and broader impacts

These qualitative results may have significant implications for au-
tonomous vehicle design, traffic control and guiding policy decision-
making. Specifically, from a traffic control perspective, it is easier
to design and manage highway elements to counter localized bot-
tlenecks that could result in large clusters. On the other hand, hav-
ing several moderately-sized clusters that may appear at random
across a large swathe of highway may require the development of
more elaborate traffic control techniques. However, these findings
are only applicable to traffic systems operating at moderate densities
(k∗ ∈ [0.4, 0.6]). In contrast, our previous research has indicated that
acc penetration is quite advantageous at lower densities (k∗ ∈ [0, 0.3])
since it raises the critical density at which jams first begin to appear
and enables higher flows [114].

In addition, the inclusion of acc-enabled vehicles in traffic sys-
tems operating at moderate densities might increase the risk of colli-
sions. Specifically, the presence of several smaller self-organized vehi-
cle clusters in predominantly acc-enabled traffic flow may lead to an
increase in ‘stop-and-go’ behavior. Each such stopping maneuver car-
ries with it the risk of collision or disruption of traffic flow, especially
from human drivers. Further, increased numbers of acceleration and
deceleration cycles may also lead to an increase in the release of green-
house gases and other harmful emissions, though such an impact has
not been quantified here. In conclusion, it was found that the gener-
alized Ising model could satisfactorily simulate the traffic dynamics
of mixed traffic flows, and that these simulation reveal interesting ef-
fects of driver algorithms on the formation of self-organized vehicular
clusters.
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Part II

I N F L U E N C E V I A S U B S PA C E S E L E C T I O N



I N F L U E N C E V I A S U B S PA C E S E L E C T I O N

In Part I of this dissertation, the underlying scheme adopted to influ-
ence ensemble dynamics was the modification of population demo-
graphics. While such an approach for influencing self-organizing sys-
tems is extremely useful from the perspective of analyzing dynamics,
it is quite impractical if the goal is to control the ensemble dynamics
or guide them along a desired trajectory. In Part II of this disserta-
tion, an alternative approach will be considered which requires only
a small number of agents to influence the ensemble. Specifically, this
part deals with the selection of appropriate regions of the state space
within which to initiate a control effort so as to influence the ensem-
ble dynamics/mesostate. These regions are closely related to control-
lable sets discussed in Section 2.2.2 and are referred to as influential
subspaces in this dissertation. In Chapter 5, results from the kinematic
wave theory are used to determine analytical expression for the ex-
tent of the influential subspaces of connected vehicles in the traffic
flow, given a specific set of admissible control policies. In Chapter 6,
a more formal control-theoretic approach is adopted to identify the
influential subspaces via a combinatorial search. In either case, the
underlying principle is the identification of a novel agent-specific
influential subspace where control actions can influence the ensem-
ble dynamics.
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5
I N F L U E N T I A L S U B S PA C E S O F C O N N E C T E D
V E H I C L E S

author’s note This chapter borrows significant content from the
author’s publication titled “Event horizons and influential subspaces
of connected vehicles” submitted to IEEE Transactions on Intelligent
Transportation Systems in June 2014.

Work presented in Part I focused on the ability to influence ensem-
ble dynamics via population modification. This chapter focuses on
an alternative approach to studying influence. In this chapter, a pre-
liminary introduction to the novel concepts of influential subspaces
and event horizons is provided. These concepts are then applied to
highway traffic containing connected vehicles. Herein, an influential
subspace of a connected vehicle is defined as the region of a highway
where the vehicle has the ability to influence the macroscopic traffic
flow so as to drive it to a pre-determined macrostate within a speci-
fied time. The event horizon marks the spatial extent of the influential
subspace, beyond which vehicles cannot escape or avoid a traffic jam.
Analytical expressions for the influential subspace and event horizon
are derived using the Lighthill-Whitham-Richards theory of traffic
flow. Included results describe the extent of the influential subspace
as a function of traffic flow conditions and for pre-specified driving
algorithms of the connected vehicles. The analysis of the results in-
cludes several key takeaways that may be helpful for guiding policy
decisions related to connected vehicle technology.

5.1 introduction

Recent years have witnessed significant attention directed towards
technologies that allow vehicle-to-vehicle (v2v) and infrastructure-to-
vehicle (i2v) communication. While v2v technologies hold the poten-
tial to improve passenger safety (by detecting imminent collisions)
and reduce driver effort (by using cooperative adaptive cruise control
algorithms), and i2v technologies could increase the efficiency of the
traffic system, there are some key questions related to these develop-
ments that remain unanswered. Given the increasing ability to inform
drivers about nearby traffic conditions, it becomes natural to ask the
following questions: can an individual driver use such information to
positively affect traffic flow? And which drivers in a traffic network
have the most influence on traffic flow, i.e. where and to whom should
this information be delivered?
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It is these questions that have led the authors to introduce a new
concept with regards to connected vehicles in highway traffic – the
influential subspace – and the related notion of event horizons on the
roadway. The influential subspace of a connected vehicle is defined as Influential subspace

the region of a highway where the vehicle has the ability to influ-
ence the macroscopic traffic flow so as to drive it to a pre-determined
macrostate within a specified time interval. The problem of individ-
ual agents acting locally to affect global (or macroscopic) behavior
is not restricted to traffic systems alone – it is applicable to several
engineered, physical, social, and biological systems – and a general
formulation will be presented in the next chapter. For now, attention
is focused on applying this novel concept to the problem of connected
vehicles approaching self-organized jams in highway traffic.

5.2 prior work

Current research in connected vehicles focuses on issues such as com-
munication protocols and vehicular network topologies [123][124],
and their role in the reliable and continuous dissemination of infor-
mation across a vehicular ad hoc network (vanet) [125] [126]. More
specific to the current context, several researchers have focused on
message propagation and the probability of receiving a message from
a connected vehicle as a function of distance [126][127]. However, very
little emphasis has been placed on the regions of the highway where
the transmitted information may actually be useful. While the afore-
mentioned research is extremely important from an implementation
viewpoint, understanding how connected vehicles can use informa-
tion to impact traffic flow is also essential to help fully realize the
technology’s potential. The present work hopes to correct this im-
balance by addressing the problem of identifying the regions of the
highway where the transmitted information is of use.

Significant research effort has also been directed towards under-
standing the impact that driving algorithms and strategies have on
traffic flow. For example, as shown in Chapter 3, the impact of in-
creasing penetration rates of adaptive cruise control-enabled vehicles
on traffic flow has been analytically predicted [114]. Shladover et al.
have experimentally studied the behavior of a platoon of connected
vehicles equipped with cooperative adaptive cruise control (cacc) al-
gorithms [128], and Monteil et al. have performed the stability anal-
ysis of cooperative highway traffic [129]. More recently, Nishi et al.
have studied the effect of individual driving strategies on traffic flow,
and specifically on jam absorption [94]. Each of these studies briefly
touches upon various aspects of how individuals might affect macro-
scopic traffic flow dynamics. However, these research efforts do not
address the problem of identifying spatial regions of the roadway
where such driving algorithms could actually influence the macro-
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scopic traffic flow. The following section presents a simple thought
experiment and the framework within which the concept of influen-
tial subspaces will be introduced.

5.3 influential subspaces and event horizons

Some basic knowledge of an agent and a macrostate, in the context of
multi-agent systems, is a prerequisite for understanding the concepts
of the influential subspace and event horizon. An agent represents an
independent entity capable of controlling its own behavior, though
such behavior may be influenced by neighboring agents that are part
of the multi-agent system. The macrostate is a reduced-order quanti-
tative representation of the multi-agent system that takes into account
all agents that constitute the system.

5.3.1 Notion of agents and macrostate in a traffic system

To better understand these concepts when the multi-agent system
under consideration is traffic flow, consider the following example
with reference to Figure 5.1. In this scenario, each vehicle is an agent
that is controlled either by a human or a computer algorithm, such
as adaptive cruise control (acc). The macrostate may be chosen in a
manner that ‘best’ represents the state of the system. The discussion
on macrostate selection is a matter for another place and time, but
some insights can be gained from [21]. For now, it suffices to say that
the macrostate ψ is defined herein as the number of vehicles that are
not in free flow, i.e. the number of vehicles that are not moving at free
flow velocity v f . Mathematically, this may be expressed as:

ψ = ∑
a∈A

1a (5.1)

where a represents an individual agent (i.e. an individual vehicle), A
represents the set of all agents (i.e. the entire vehicular population),
and 1a represents the indicator function defined as follows:

1a =

{
1, v(a) 6= v f

0, v(a) = v f
(5.2)

where v(a) denotes the velocity of agent a. Traditionally, since the
quantity ψ is observed at the scale at which vehicle clusters form, it
is referred to as the mesostate rather than the macrostate [114]. This is
done to avoid confusion with existing notions of macroscopic traffic
flow variables such as flow (q) and density (k), which are observed at
an even coarser scale. However, in this chapter, the variables ψ, q, and
k are all referred to as macroscopic variables, since the scale-based
distinction between them does not serve a significant purpose here.
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5.3.2 A thought experiment

With the prerequisites in place, we can begin a thought experiment,
using Figure 5.1 as a reference. The roadway in the figure represents
a single-lane highway segment in which vehicles move left to right
and no passing is allowed. The speed limit on the highway is the free
flow velocity v f , and no vehicle travels faster than this speed. In this
work, the only admissible control policy (or driver algorithm) for a
connected vehicle is assumed to be slowing down for a short period
upon receiving information of a downstream jam, and then speeding
up again. Specific details pertaining to when the vehicle slows down
and speeds up, and which speed it slows down to, will be discussed
in Section 5.4.

It is assumed that a self-organized traffic jam has formed on one
section, so that vehicles in this region are in a jammed state J and are
not moving at the free flow velocity v f . In other words, the macrostate
of the traffic system at this instant of time is given by ψ(t) = ψ0 6= 0.
It is generally desirable that all vehicles move at free flow velocity so
that passengers can reach their destination in the least amount of time,
which implies that the desired macrostate is ψ(t) = ψd = 0. Now,
consider the impact that a connected vehicle receiving information
on downstream traffic conditions could have on the self-organized
traffic jam, and by extension the macrostate ψ(t), for each of the four
regions outlined in Figure 5.1.

𝒂 ↛ 𝑴,𝑴 ↛ 𝒂
Agent actions do not 

affect macrostate, and 
macroscopic dynamics 

do not affect agents
𝒂 → 𝑴,𝑴 → 𝒂

Agent actions affect 
macrostate, and macroscopic 

dynamics affect agents

𝒂 ↛ 𝑴,𝑴 → 𝒂
Agent actions do not affect 

macrostate, but 
macroscopic dynamics 

affect agents

𝒂 → 𝑴,𝑴 ↛ 𝒂
Agent actions affect 

macrostate, but macroscopic
dynamics do not  affect agents

INFLUENTIAL SUBSPACE
INFLUENTIAL 

SUBSPACE

1

2

3

4

JAMMED STATE (J)

EVENT HORIZONNULL HORIZON

Figure 5.1: Thought experiment for understanding the concept of influential
subspaces of connected vehicles, and event horizons in highway
traffic. White arrow indicates direction of travel. The letter M
relates to the macrostate, whereas a relates to individual agents.

In region 1 of Figure 5.1, a connected vehicle (acv) is situated well
upstream of the traffic jam. At this location, even if this connected
vehicle receives information pertaining to the jam, its driving algo-
rithm, which may include slowing down to a pre-specified speed vs
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(< v f ) to avoid the jam, it will not be able to positively effect the
jammed state – the jam would have dissipated by the time the con-
nected vehicle moves downstream. In other words, the actions of the
agent acv in region 1 have no beneficial impact on the dynamics of
the macrostate ψ. Region 1 is said to extend up to the null horizon,
which is a location on the roadway upstream of which the admissible
driving algorithm of the connected vehicle has no positive effect on
the dynamics of the macrostate ψ. Transmitting traffic information to
connected vehicles in this region serves no useful purpose in terms
of improving the macroscopic dynamics, i.e. dissipating the jam and
driving the macrostate to ψd = 0.

definition A null horizon represents a spatial location upstream Null horizon

of the traffic jam on a highway, upstream of which a connected vehi-
cle cannot use its admissible driving algorithm (or control policy) to
positively influence the macroscopic traffic flow dynamics, i.e. drive
the macrostate to the pre-determined state ψd.

In region 2, a connected vehicle acv is situated upstream of the traf-
fic jam, but downstream of the null horizon. If this connected vehi-
cle receives traffic information, it may modify its driving behavior
and choose an admissible control policy that helps mitigate the jam
growth. For example, in the current discussion, an admissible control
policy allows the connected vehicle to slow down for a short period
before speeding up again. In this scenario, fewer vehicles would en-
ter the jammed state, resulting in faster jam dissipation, and the con-
nected vehicle may manage to avoid the traffic jam altogether. Thus,
transmitting traffic information to connected vehicles in this region
does serve a useful purpose as it may help drive the macrostate to
ψd = 0 within a specified time td. Thus, region 2 represents the influ-
ential subspace.

definition The influential subspace of a connected vehicle is de- Influential subspace

fined as the region of a highway where the vehicle has the ability to
positively influence the macroscopic traffic flow so as to drive the traf-
fic macrostate (ψ(t)) to a pre-determined improved state (ψd) within
a specified time (td), with the given set of admissible control policies.

Seasoned control theorists may notice a similarity between the defi-
nition of the influential subspace and a controllable set [47]. However,
these concepts are distinct and a mathematically rigorous definition
will appear in Chapter 6. In the meanwhile, it should be noted that
the influential subspace is defined for an individual agent, and is a func-
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tion of the current macrostate (ψ(t)), the pre-determined macrostate
that we desire to reach (ψd), and the specified time within which to
reach it (td). It is also expected that not all locations within the in-
fluential subspace have equal influence on the macrostate, and there
may exist some specified times td for which an influential subspace
does not exist. Specifically, the locations that are close to the bound-
ary of the influential subspace, e.g. near the null horizon, may have
less influence on the macroscopic dynamics. Similarly, connected ve-
hicles located in close proximity to the traffic jam may also have very
little influence. For example, consider connected vehicles in region 3,
which is immediately upstream of the traffic jam. Even if these vehi-
cles receive advance warning of the jammed state that exists down-
stream, they are incapable of avoiding and contributing to the growth
of the jam. Thus, vehicles in this region have no positive influence on
the macrostate ψ, i.e they cannot drive the system to the macrostate
ψd = 0 within a specified time td. Transmitting traffic information to
them serves no useful purpose as well, unless, of course, they act as
routers for propagating the message further upstream to connected
vehicles inside the influential subspace. It is instructive to note that
not all vehicles in region 3 are in the jammed state yet.

The boundary between regions 2 and 3 proves to be quite interest-
ing. It represents the demarcation point on the roadway between loca-
tions where connected vehicles can influence the macrostate, and lo-
cations where they cannot. Specifically, once a connected vehicle is in
a region inside the demarcation point, it cannot influence the macro-
scopic dynamics. Additionally, it can also not escape the traffic jam by
using its driving algorithm, i.e. it helplessly ‘falls into’ the traffic jam.
By drawing a weak analogy between traffic jams and high density
astronomical regions in time-space, i.e. black holes, which possess a
boundary beyond which light cannot escape and ‘falls into’ the black
hole, the authors decided to christen this demarcation point as the
‘event horizon’. Event horizons on the highway are situated upstream
of the traffic jam and indicate the location beyond which transmitted
traffic information may become useful for connected vehicles to af-
fect the macrostate ψ. The event horizon, along with the null horizon,
marks the spatial extent of the largest influential subspace for any
possible specified time td.

definition An event horizon represents a spatial location upstream Event horizon

of the traffic jam on a highway, downstream of which a connected vehi-
cle cannot use its admissible driving algorithm (or control policy) to
positively influence the macroscopic traffic flow dynamics, i.e. drive
the macrostate to the pre-determined state ψd.

90



Finally, region 4 is also of interest. If a vehicle in region 4 decides
to exit the traffic jam slower than at the free flow velocity, then it may
influence the macroscopic dynamics as well. For example, if the ex-
iting vehicle decides to stop completely, the traffic jam will continue
to grow (as passing is not allowed). However, it is not influential in
the sense that a vehicle in this region cannot drive the macrostate to
the pre-determined state ψd = 0. However, if the pre-determined state
had been ψd > ψ0, then this region would be considered as an influen-
tial subspace. In practice, it may be important to identify such ‘influ-
ential’ subspaces as well, so that connected vehicles in these regions
may be informed not to execute maneuvers that drive the system to
an undesirable macrostate. Regions upstream of region 4 belong in
the same category as region 1; they cannot influence the macroscopic
dynamics, i.e. their driving algorithms cannot drive the system to the
pre-determined macrostate ψd = 0 in the specified time td.

This concludes the thought experiment. The concepts of influential
subspace and event horizon have been established by means of a sim-
ple example. The next section discusses the problem setup and some
basic postulates of the Lighthill-Whitham-Richards (lwr) model of
traffic flow [75][76] that will be used to later develop analytical solu-
tions for the influential subspace and event horizon.

5.4 problem setup

The problem is set up as a single-lane highway where no passing
is allowed. A triangular relationship between flow and density is as-
sumed, and representative values of traffic flow parameters such as
maximum flow (qmax = 1800 veh/hr), jam density (k J = 110 veh/km),
and free flow velocity (v f = 90 km/hr) are used to construct the
fundamental diagram of traffic flow (Figure 5.2). A self-organized or
spontaneous traffic jam is assumed to form on the highway and ve-
hicles upstream of the jam approach it at a free flow velocity. The
state of the traffic flow (A) upstream of the jam is defined by flow qA
and density kA; additional traffic states, such as capacity flow (C) and
jammed state (J), are indicated on the fundamental diagram in Fig-
ure 5.3. The analysis uses standard results of the Lighthill-Whitham-
Richards (lwr) model by drawing time-space diagrams to identify the
time taken for the traffic flow to reach the pre-determined macrostate
ψd = 0, i.e. the state when all vehicles are moving in free flow.

The connected vehicles are assumed to possess an event-triggered
control policy or driving algorithm. For example, the event of receiv-
ing traffic information pertaining to a downstream traffic jam triggers
a control action that causes the connected vehicle to slow down to a
velocity vS. The state of traffic flow (S) associated with the velocity vS
is given by flow qS and density kS, and is also shown in Figure 5.3. To
keep the analysis simple, only two connected vehicles are considered
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Figure 5.2: Fundamental diagram of traffic flow for single species traffic.
State of traffic flow is defined using macroscopic variables such
as flow (q) and density (k). Traffic states C and J are depicted
as the critical and jammed states in the diagram, respectively.
Slopes in the figure indicate speeds. Slope of segment OC is vf,
the free flow speed.
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Figure 5.3: Fundamental diagram of traffic flow for slow and fast moving
traffic. Traffic states A and S are depicted on the free flow and
congested flow branches of the diagram, respectively. Slopes in
the figure indicate speeds. Slope of segment OA is vf, the free
flow speed. Slope of segment OS is vs, the reduced speed at
which the connected vehicle drives to avoid the jam. vas denotes
the interface speed between states A and S which may co-exist
on neighboring regions of the highway.

in the presented work. Without loss of generality, let us assume that at
time t = 0, the first connected vehicle (cv1) enters the jam and sends
an alert signal indicating a jammed state to the connected vehicle cv2

situated upstream, which receives the signal instantaneously.
The admissible control policy (or driving algorithm) of the con-

nected vehicle cv2 is defined as follows: the reception of the alert
signal from cv1 causes an event-triggered control action in the sec-
ond connected vehicle (cv2), which slows down to a pre-determined
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speed vs as selected by the driver or dictated by an inbuilt cruise
control algorithm. When cv1 exits the traffic jam at time t = texit,
it sends another alert signal upstream. This alert results in a second
event-triggered control action in cv2 due to which it speeds up to
free flow velocity v f . Depending on the location of the second con-
nected vehicle cv2, the combined event-triggered control actions of
slowing down and speeding up may or may not have an effect on the
macrostate ψ. The next section discusses several explanatory cases
similar to the ones described in Figure 5.1, as well as analytical solu-
tions for the influential subspace and event horizon.

5.5 analytical solution of influential subspaces of con-
nected vehicles

For the following discussion, the traffic system is assumed to be op-
erating at traffic state A given by qA = 900 veh/hr and kA = 10

veh/km. It is assumed that the first connected vehicle cv1 enters the
spontaneous traffic jam of initial length xq = 500 m at time t = 0, and
immediately sends an alert signal to upstream vehicles. Upon receiv-
ing the signal, the second connected vehicle cv2 is assumed to slow
down to a predetermined speed vs = 10 km/hr in order to avoid the
traffic jam. This results in a slow-moving state S given by qS ≈ 733

veh/hr and kS ≈ 73 veh/km. Space-time diagrams based on the kine-
matic wave theory of the lwr traffic flow model are drawn for four
scenarios where the vehicles cv1 and cv2 are separated by different
distances, as shown in Figure 5.5, and the diagram elements are ex-
plained in Figure 5.4. These diagrams are discussed in detail in the
following subsection.

5.5.1 Interpretation of time-space diagrams

The time-space diagram shown in Figure 5.4 represents different states
of the traffic system as it evolves over time. Dashed lines in the dia-
grams represent traffic jam evolution in the absence of any connected
vehicles. These dashed lines extend up to the time t = t0, indicating
the duration of the self-organized traffic jam in the absence of con-
nected vehicles. Additionally, at time t = 0, the system macrostate,
i.e. the number of vehicles not in free flow, can be evaluated using
the density k J of jammed state J, and the initial length xq of the traffic
jam, as follows:

ψ(t = 0) = k J xq (5.3)

If necessary, the above expression can be extended to incorporate
additional congested states, such as S, when they appear in the traffic
system. However, the elegant framework of the time-space diagrams
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eliminates the need for an elaborate analysis in favor of a geometric
treatment of the diagrams, as discussed later in Section 5.5.2.

The time-space diagrams can be closely related to the regions dis-
cussed with reference to Figure 5.1. Specifically, the cases (a) and (b)
in Figure 5.5 correspond to region 3 that was discussed in the thought
experiment. In these cases, where the vehicle cv2 is in very close prox-
imity to the jammed state, its control actions have no effect on the
time it takes to reach the desired macrostate ψd = 0. In other words,
the time tJ taken for the system to reach the state ψd = 0 remains
unchanged despite of the presence of connected vehicles, as evinced
by the overlap of the dashed and solid lines in Figure 5.5(a-b).

Figure 5.5(c) corresponds to region 2 in Figure 5.1, where the ac-
tions of vehicle cv2 cause the traffic system to reach the desired
macrostate ψd earlier as compared to cases (a) and (b). Specifically,
the slow-moving state S vanishes at time tS, whereas the jammed
state J vanishes at time tJ < tS, implying that all vehicles in the sys-
tem are in free flow by time tS. Thus, there is a net reduction in the
time taken for the traffic flow to reach the desired macrostate ψd, as
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Figure 5.5: Space-time diagram for connected vehicles separated by (a) 200

m, (b) 350 m, (c) 700 m, and (d) 5000 m, for vs = 10 km/hr and
xq = 500 m. Figure(c) shows the time saved with this control
policy.
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compared to cases (a) and (b). Finally, Figure 5.5(d) corresponds to re-
gion 1 of Figure 5.1, where the actions of vehicle cv2 have no impact
on the time taken to reach the macrostate ψd = 0, since the jammed
state J dissipates and all vehicles return to free flow condition of their
own accord.

5.5.2 Analytical solution of influential subspaces

Mathematically, the time taken for the traffic system to reach the pre-
determined macrostate ψd = 0, where all vehicles are in free flow, is
given by:

tψ = max{tJ , tS} (5.4)

where tJ denotes the time taken for the jammed state J to dissipate,
and tS represents the time taken for the slow-moving traffic state S
to vanish. In other words, the time taken to reach the pre-determined
macrostate ψd is governed by which of state J or S persists for a longer
period of time. The underlying mechanism to evaluate the times tJ

and tS relies on the interface speeds (slopes in the time-space dia-
gram) and the intersection points between the different traffic states.
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Figure 5.6: Evaluation of dissipation time t0 in a simple jam dissipation sce-
nario.

For example, consider the scenario where a pre-existing traffic jam
dissipates of its own accord. In this case, the time-space diagram will
take the form as shown in Figure 5.6. Consequently, the time t0 taken
for the jammed state J to dissipate may be evaluated using the loca-
tion of the dissipation point where the interfaces between states A
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and J, and states J and C meet. The location xd of the dissipation
point D using the interface between states J and C is given by:

xd = xjc = −w · t0 (5.5)

Similarly, the location of the dissipation point from the A− J interface
is given by:

xd = xaj = −xq − vaj · t0 (5.6)

But xd = xjc = xaj, so the dissipation time t0 is evaluated to be:

t0 =
xq

w− vaj

(5.7)

In a very similar fashion, the analytical expressions for tJ and tS
can be calculated from geometric considerations of Figure 5.5, as dis-
cussed below.

Expression for dissipation time of jammed state J

First, consider the evaluation of tJ with reference to Figure 5.7 (or
Figure 5.5(c)). In this scenario, the time taken for the jammed state
J to dissipate is a function of the original queue length xq at time
t = 0, the distance xd between the connected vehicles at time t = 0,
and the traffic state A that exists upstream of the jammed state J. The
expression for tJ in Figure 5.7 is given by:

tJ =
xq + xn

w
(5.8)

where xn is the length of the roadway occupied by the vehicles be-
tween the two connected vehicles at the jam density, and w is the
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backward wave speed obtained from the triangular fundamental dia-
gram. The quantity xn is determined by assuming that the number of
vehicles is conserved on the roadway. Specifically, under this assump-
tion, the number of vehicles between the two connected vehicles cv1

and cv2 can be calculated to be:

Number of vehicles between cv1 and cv2 = xdkA

= xnk J (5.9)

so that xn is given by:

xn = xd
kA

k J
(5.10)

where xd is the distance between the connected vehicles cv1 and cv2

at time t = 0. Consequently, the expression in Equation 5.8 can be
expanded to yield:

tJ =
xq + xdkA/k J

w
(5.11)

However, this expression is correct only for a specific region of the
roadway, for which analytical expressions can be found by analyz-
ing Figure 5.7. Note that the expression for tJ in Equation 5.8 first
becomes valid in a situation similar to Figure 5.7, i.e. when the sec-
ond connected vehicle just manages to avoid the jammed state J. As
the location of the second connected vehicle is pushed further up-
stream, the expression stays valid till a situation somewhat similar
to Figure 5.5(d) occurs. In this situation, the last vehicle ahead of the
vehicle cv2 just manages to avoid the jammed state J, and the expres-
sion Equation 5.8 is no longer valid. These two situations essentially
correspond to event and null horizons, respectively, and yield the
maximum possible spatial extent of the influential subspace. To eval-
uate the lower spatial limit, i.e. in the case when cv2 just manages to
avoid the jammed state J (Figure 5.7), the expressions Equation 5.8 or
Equation 5.11 first become valid if:

xd − xn ≥ vstexit + v f (tJ − texit) (5.12)

where texit(= xq/w) represents the time at which the first connected
vehicle cv1 exits the jammed state J. The expression in Equation 5.12

may be expressed in terms of roadway characteristics as follows:

xd − xn ≥ vs
xq

w
+ v f

(
xq + xdkA/k J

w
−

xq

w

)
(5.13)

or, xd − xn ≥ vs
xq

w
+ v f

(
xdkA/k J

w

)
(5.14)

where ξe corresponds to the lower spatial limit for the validity of
expression Equation 5.11. In relation to the terminology developed
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in the thought experiment, this lower spatial limit corresponds to the
event horizon. For xd ≤ ξe, the connected vehicle cannot impact the
dynamics of macrostate ψ.

result The event horizon ξe represents the location after which Analytical
expression for event
horizon

downstream connected vehicles cannot affect the dynamics of the
macrostate ψ. The event horizon can be calculated as follows:

ξe =

{
1−

(
1 +

v f

w

)
kA

k J

}−1 {
vs

xq

w

}
(5.15)

The upper spatial limit for the validity of expression Equation 5.11

is evaluated in the scenario when the second connected vehicle cv2 is
sufficiently upstream so that last vehicle just ahead of it reaches the
jammed state at time t0, i.e. when the jam is just about to dissipate
of its own accord. Thus, the upper spatial limit can be evaluated by a
simple condition given by:

xq + xn ≤ wt0 (5.16)

or,
kA

k J
xd ≤ wt0 − xq (5.17)

or, xd ≤
k J

kA
(wt0 − xq) = ξn (5.18)

where ξn corresponds to the upper spatial limit for the validity of
expression Equation 5.11. In relation to the terminology developed in
the thought experiment, this upper spatial limit corresponds to the
null horizon. For xd ≥ ξn, the connected vehicle cannot impact the
dynamics of macrostate ψ.

result The null horizon ξn represents the location after which up- Analytical
expression for null
horizon

stream connected vehicles cannot affect the dynamics of the macrostate
ψ. The null horizon can be calculated as follows:

ξn =
k J

kA
(wt0 − xq) (5.19)

On the other hand, in Figure 5.5(a), (b), and (d), the expression for
tJ is obtained quite simply from the original jam dissipation time t0

evaluated in the absence of any connected vehicles. The jam evolution
trajectory is indicated using dashed lines in Figure 5.5 and Figure 5.7.

99



TimeI(hr)

D
is

ta
nc

eI
(k

m
)

0 0.01 0.02 0.03 0.04 0.05 0.06

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

vAS

wvS

tStHIT tEXIT

xq

xdxn
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In these scenarios, the jam dissipation time tJ = t0, and is found as
follows:

Distance traveled = wt0 = xq + vAJt0

=⇒ t0 =
xq

(w− vAJ)
(5.20)

where vAJ represents the interface speed between traffic states A
and J. Consequently, the expression for time taken for dissipation
of the jammed state J is given by combining the expressions in Equa-
tion 5.11, Equation 5.14, Equation 5.18, and Equation 5.20 to yield:

tJ =


1
w

(
xq + xd

kA
k J

)
, if ξe ≤ xd ≤ ξn

xq/(w− vAJ), else

(5.21)

Expression for dissipation time of slow-moving state S

Similar geometric arguments can be used to determine the expres-
sion for the time taken for the slow-moving traffic state S to dissipate.
Specifically, consider Figure 5.8 (or Figure 5.5(a)) in order to ascer-
tain the analytical expressions. If the second connected vehicle cv2

is too close to cv1, as depicted in the Figure 5.8, it enters the jam
and the dissipation time for state S is governed by the initial separa-
tion between cv1 and cv2. In alternative scenarios, when the vehicle
cv2 is further upstream, the dissipation time is constant, as evinced
by Figure 5.5(b), (c), and (d). In Figure 5.8, the dissipation time of
the slow-moving state can be evaluated by geometric calculations as
follows:
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Distance = vSthit − w(tS − thit) = vAStS

=⇒ tS =

(
vS + w

vAS + w

)
thit (5.22)

where thit is the time at which the vehicle cv2 first enters the jammed
state J, and vAS is the interface speed between the states A and S. The
expression for thit can be found using geometric considerations to be:

thit =
xd − xn

vS

=
xd

vS

(
1− kA

k J

)
(5.23)

so that the dissipation time tS of state S when cv2 is in close proximity
to the jam is given by:

tS =

(
vS + w

vAS + w

)(
1− kA

k J

)
xd

vS
(5.24)

On the other hand, in Figure 5.5(b), (c), and (d), where the vehicle
cv2 is further upstream, the dissipation time for the state S can be
calculated similarly as follows:

Distance = vStexit − w(tS − texit) = vAStS

=⇒ tS =

(
vS + w

vAS + w

)
texit (5.25)

where texit is the time at which the first connected vehicle cv1 exits
the jammed state J, and which can be found using geometric consid-
erations to be:

texit =
xq

w
(5.26)

so that the dissipation time of state S when cv2 is further away from
the jam is given by:

tS =

(
vS + w

vAS + w

)
xq

w
(5.27)

Consequently, by observing the nature of tS across the various parts
of Figure 5.5, it is realized that the value of tS increases as the distance
between the connected vehicles increases (case (a)), but saturates at
a constant value in cases (b-d). Thus, the general expression for the
dissipation time for the slow-moving state S is simply the minimum
of expressions in Equation 5.24 and Equation 5.27, given by:

tS =

(
vS + w

vAS + w

)
min

{(
1− kA

k J

)
xd

vS
,

xq

w

}
(5.28)

To recapitulate the analysis, the time taken for the traffic system to
reach the desired macrostate ψd = 0, is given by:

tψ = max{tJ , tS} (5.29)
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where the expressions for tJ and tS are provided in Equation 5.21

and Equation 5.28, respectively. This result is used next to determine
the influential subspace of the connected vehicle cv2, given the pre-
determined macrostate ψd = 0 and a specified time td within which
ψd must be attained.

5.6 results

While the concepts of the event and null horizon are important, they
alone cannot help determine the influential subspace of a connected
vehicle. Recall that the definition of the influential subspace requires
the vehicle control action or algorithm to drive the system to a pre-
determined macrostate ψd within a specified time td. If the macrostate
ψd cannot be achieved within time td, then the connected vehicle can-
not be said to be in its influential subspace. In the ongoing example,
Equation 5.29 is used to calculate the time taken for the traffic system
to reach the macrostate ψd = 0 for varying distances xd between the
connected vehicles cv1 and cv2. The result is indicated by the solid
blue line in Figure 5.9.

Now, consider the following three scenarios. In the first scenario,
it is desired that the traffic system be driven to the pre-determined
macrostate ψd = 0 in time t ≤ td1 = 153 s. However, as shown in
Figure 5.9, there is no spatial location of the second connected vehi-
cle cv2 that satisfies this requirement, so an influential subspace does
not exist. It is simply not possible to achieve the desired macrostate
within the given time. In the second scenario, it is desired that the
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system be driven to ψd = 0 in time t ≤ td2 . Since t = td2 = 160 s
intersects tψ, this requirement can be satisfied and a solution exits.
In this case, if the vehicle cv2 is present approximately between 0.5
km and 4.2 km of the first connected vehicle cv1, the system can be
driven to the desired macrostate ψd in time t ≤ td2 . The third scenario
represents a degenerate case, where the system will always reach the
pre-determined macrostate ψd within time td3 = 165 s, irrespective
of the spatial location of the vehicle cv2, as long as the set of admis-
sible control actions remains unchanged. However, other scenarios
may exist where this degenerate case is not observed, such as when
a self-organized traffic jam is growing in size, or if additional control
policies (or driving algorithms) for the connected vehicle are avail-
able.

In Figure 5.9, the influential subspace for the vehicle cv2 is deter-
mined for very specific values of the variables vs (slower speed of
connected vehicle), xq (initial jam length), kA (density of upstream
traffic) and td (specified time within which to reach pre-determined
macrostate ψd). However, the analytical solutions developed in Sec-
tion 5.5.2 allow us to observe more general patterns in the extent of
the influential subspace as variables such as vs, xq and kA change.

5.6.1 Dependence on reduced speed vs

The spatial extent of the influential subspace bears a strong depen-
dence on the control policy (or driving algorithm) adopted by the
connected vehicles. Specifically, the slower speed vS assumed by the
vehicle cv2 when it receives an alert signal from a downstream vehicle
has a significant effect on the influential subspace, as depicted in Fig-
ure 5.10. The figure can be understood as follows: if a connected ve-
hicle desires to drive the traffic macrostate to ψd = 0 in time td = 133
s (say; reading contour values), and the admissible driving algorithm
is restricted to small range of speeds, say approximately between 40

and 50 km/hr (reading y-axis values), then this goal is achievable
only if the connected vehicle cv2 is in its influential subspace, i.e. be-
tween 2 and 2.6 km (reading x-axis values) upstream of the vehicle
cv1 (i.e. the location of the back of the jam at time t = 0). If the time
restriction is relaxed so that it is now desired to reach the macrostate
ψd within time td = 145 s (say), but no change is made to the admis-
sible driving algorithm, then the influential subspace is also relaxed
to approximately between 2 and 3.3 km upstream of the vehicle cv1.
Note that these values hold when the other parameters xq and kA are
held constant at the indicated levels.

From a broader perspective, understanding of this dependence of
the influential subspace on the control policy, i.e. the driver algorithm,
of the connected vehicle may be helpful in dynamically establishing
speed limits in specific regions of the highway. Such dynamic speed
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Figure 5.10: Influential subspace contracts as reduced speed vs of connected
vehicle is raised, and vanishes at the free flow speed v f = 90

km/hr. Other system parameters are held constant: xq = 500 m,
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to reach the pre-determined macrostate ψd = 0. The range of
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limits could potentially help increase the impact of connected vehicles
technology in early stages of deployment. More importantly though,
it must be realized that v2x technologies being currently designed
and evaluated do not take into consideration direct or reliable com-
munication across these vast spatial ranges.

5.6.2 Dependence on initial jam length xq

It is obvious that the influential subspace depends on the size of the
traffic jam at the time when the first connected vehicle cv1 enters it.
Figure 5.11 depicts this dependence as a function of changing initial
jam length, xq. the figure can be understood as follows: if it is desired
to drive the traffic flow to the macrostate ψd within time td = 327 s
(say; reading contour values), and the initial jam length is approxi-
mately 1.2 km (reading y-axis values), then the connected vehicle cv2

can help achieve this goal if it is in its influential subspace, i.e. be-
tween approximately 3.5 and 7 km (reading x-axis values) upstream
of the vehicle cv1 (i.e. the location of the back of the jam at time t = 0).
Now, if the initial jam length is shorter, say xq = 1 km, then the in-
fluential subspace expands. In this case, the same goal of reaching
ψd = 0 within time td = 327 s can be achieved if the vehicle cv2 is
between 3 and 9 km upstream of the first connected vehicle. Note that
these values hold when the other parameters vS and kA are held con-
stant at the indicated levels. Also note that as the initial jam length
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increases, the influential subspace, i.e. the region between the event
and null horizons, is pushed further away from the start of the jam.

Clearly, the parameter xq, the length of the self-organized traffic
jam, is not under our control like the parameter vS. However, from a
broader perspective, the knowledge of this dependence on xq is still
useful for implementation of connected vehicles technology. Specifi-
cally, if the initial jam length can be estimated by infrastructure ele-
ments or by the connected vehicle entering the jam, then this infor-
mation can be transmitted to only those connected vehicles that are
in their influential subspace, allowing for reduction in bandwidth re-
quirements.

5.6.3 Dependence on upstream traffic density kA

The upstream traffic state directly impacts the location of the influen-
tial subspace, as indicated in Figure 5.12, where the y-axis has been
normalized to show the magnitude of kA in relation to the critical
density kC. The figure can be understood as follows: if it is desired to
drive the traffic flow to the macrostate ψd = 0 within time td = 316

s (say; reading contour values), and the normalized upstream traffic
density is 0.75 (reading y-axis values), then the influential subspace
of the connected vehicle cv2 extends from approximately 1.5 to 9 km
(reading x-axis values) upstream of the vehicle cv1 (i.e. the location of
the back of the jam at time t = 0). Note that these values hold when
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the other parameters vS and xq are held constant at the indicated
levels.
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Figure 5.12: Influential subspace vanishes and the event horizon tends to in-
finity (ξe → ∞), as upstream free-flowing traffic state kA nears
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In this scenario, it is observed that as the upstream traffic density
approaches the critical density, the event horizon tends to infinity.
When the upstream traffic is near this critical state, cv2’s control pol-
icy, i.e. slowing down to vS when cv1 enters the jam and speeding
up to v f when cv1 exits the jam, has no effect on the macroscopic
dynamics, irrespective of the spatial location or the reduced speed
of cv2. However, this result is expected to change for systems with
more than two connected vehicles, wherein each vehicle may be able
to enact a control policy whose cumulative effect across a large set of
connected vehicles may be beneficial.

Interestingly, this analysis also highlights certain message hopping
requirements for connected vehicles technology to be able to effec-
tively mitigate traffic jams and control macroscopic traffic flow. Specif-
ically, connected vehicles downstream of the event horizon must be
able to communicate with at least one connected vehicle upstream
of the event horizon, in order to control macrostate dynamics. Let us
assume a conservative estimate of the communication range capabil-
ities of Dedicated Short-Range Communications (dsrc) to be about
800 m [130]. Considering traffic flow at the density kA = 16 veh/km
(i.e. normalized density of 0.75), the event horizon lies at a distance
of 1.2 km from the back of the jam at time t = 0 (when cv1 reaches
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the jam). Thus, at least two message hops are required across two
connected vehicles so that at least one connected vehicle lies beyond
the event horizon. As is evident from Figure 5.12, as the event hori-
zon is pushed further back with increasing density, more stringent
message hopping requirements are necessary for connected vehicles
with given admissible control policies to be able to affect macroscopic
traffic flow dynamics.

5.7 conclusions , contributions and broader impacts

Knowledge of the influential subspace is a critical element for the ef-
ficient implementation of connected vehicles technology. Implemen-
tation of this technology will have to deal with, among other things,
issues such as bandwidth limitations and packet transmission ranges.
Consequently, knowledge of the influential subspace can help ensure
that bandwidth is not wasted by transmitting packets to vehicles that
are not in their influential subspaces. Additionally, the same knowl-
edge can help optimally route packets to vehicles within the influ-
ential subspaces and reduce power requirements for transmission
equipment. Further, future policy decisions on connected vehicles
technology, such as setting dynamic speed limits and understanding
message hopping requirements, could be guided by the results dis-
cussed in reference to Figure 5.10, Figure 5.11 and Figure 5.12. Other
potential applications that may utilize the concept of influential sub-
spaces and event horizons include cooperative adaptive cruise con-
trol, where the location of platoon formation, merging, and splitting
may be constrained by where such maneuvers influence the traffic
macrostate.
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6
S PAT I A L D E P E N D E N C E O F A G E N T I N F L U E N C E I N
S E L F - O R G A N I Z I N G S Y S T E M S

author’s note This chapter borrows significant content from the
author’s publication titled “Identification of locally influential agents
in self-organizing multi-agent systems” submitted to the American
Control Conference (acc) 2015 in September 2014.

In the Chapter 5, a thought experiment pertaining to the notion of
an influential subspace was presented. Further analysis showed that
such influential subspaces could be found in the context of connected
vehicles in a highway system where a self-organized traffic jams has
formed. More importantly, the work in the previous chapter hinted
that, in large-scale multi agent systems (mas), agent influence on self-
organized dynamics may be spatially dependent. In this chapter, such
spatial dependence of agent influence on self-organized dynamics is
studied in a more formal, control-theoretic perspective.

Current research methods directed towards measuring the influ-
ence of specific agents on the dynamics of a large-scale mas rely
largely on the notion of controllability of the full-order system, or
on the comparison of agent dynamics with a user-defined macro-
scopic system property. They, however, do not utilize the information
that such systems tend to self-organize, and that their dynamics of-
ten reside on a low-dimensional manifold. The proposed framework
uses this fact to measure an agent’s influence on the macroscopic dy-
namics. First, the minimum embedding dimension that can encapsu-
late the low-dimensional manifold associated with the self-organized
dynamics is identified using a modification of the method of false
neighbors. Second, the minimum embedding dimension is used to
guide the Krylov subspace-based model order reduction of the sys-
tem dynamics. Finally, an existing controllability-based metric is ap-
plied to the local reduced-order representation to measure an agent’s
influence on the self-organized dynamics. The proposed technique is
demonstrated by applying it to the problem of vehicle cluster forma-
tion in traffic, a prototypical self-organizing system. With this tech-
nique, one can identify regions of the state space where an agent has
significant local influence on the dynamics of the self-organizing mas.

6.1 introduction

In recent years, there has been significant interest in the self-organized
behavior exhibited by large-scale mas. However, as discussed ear-
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lier, it is difficult to control the global (or macroscopic) behavior of
self-organizing mas because (i) an external centralized mechanism
to control the macroscopic dynamics of such a large-scale system
would likely require significant control effort, and (ii) alternative de-
centralized approaches would require controlling each agent in a
large-scale mas, which is often not a feasible option. However, macro-
scopic behavior of self-organizing systems may be influenced by con-
trolling a small subset of agents. Such a phenomenon can already be
seen at play in several natural-engineered systems, where the self-
organizing behavior of a naturally existing large-scale multi-agent
system is affected by introduction of a ‘small’ set of artificially-enginee-
red agents [114][131]. Within a mas, not all agents have the same in-
fluence on the system’s macroscopic dynamics. The following work
presents a methodology to choose the set of most influential agents
with respect to the macroscopic behavior of the naturally existing
large-scale mas. Self-organized vehicle cluster formation is used as a
prototypical example to demonstrate this methodology.

6.2 prior work

Prior work pertaining to subspace selection and agent selection was
reviewed in Section 2.2.2 and Section 2.2.3, respectively. Many such
approaches use a combinatorial search strategy to determine the set
of agents that maximize an output-based measure, i.e. a pre-specified
macroscopic quantity of the network. Within the framework of pin-
ning control [61], Porfiri and di Bernardo have proposed a technique
to identify a set of pinned nodes or agents that lead to higher net-
work synchronization strength [60]. Similarly, Patterson et al. have
suggested the use of network coherence as the macroscopic quantity
to optimize during the combinatorial search [69]. Recent works have
also studied the influence of individual agents on macroscopic prop-
erties by drawing inspiration from other fields, such as the manip-
ulability measure of influence proposed by Kawashima et al., which
draws inspiration from sensitivity-like measures developed for robotic
arms [71]. Often, the optimized macroscopic quantity (or output-based
measure) is selected based on the user’s understanding of the sys-
tem dynamics (such as studying synchronization strength in coupled
oscillators, or network coherence in consensus problems). However,
in systems where the underlying self-organized dynamics are not
well understood, approaches that rely on output-based measures may
have limited applicability.

Other researchers have approached the problem more directly by
attempting to develop measures of influence for individual agents.
The influence metrics developed in recent times have largely relied
on controllability-based approaches, such as using the determinant,
minimum eigenvalue, or other properties of the controllability gram-
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mian [67][68][73]. These works follow the rich tradition of some ear-
lier research on measures of controllability from the 1980s [132] [133]
[134], which attempted top measure the controllability of linear time-
invariant systems of the form:

ẋ = Ax + Bu (6.1)

where x ∈ RN represents the state of the system, u is a scalar in-
put provided to the system, A ∈ RN×N , and B ∈ RN×1. These early
works were based on carrying out a comparison between controllable
and uncontrollable systems. In the following decades, these works
were built upon to propose measures of modal controllability [135],
for input and output selection [136], as well as actuator and sensor
placement on large-scale systems [8][57][137]. More recently, with in-
creasing attention being placed on complex networked systems, the
idea of selecting leaders in a multi-agent system using controllability
measures has been pursued by researchers [60][138][139]. The under-
lying commonality between these approaches is the use of eigenval-
ues or singular values of combinations of the system matrices A and
B to develop controllability measures, some of which are discussed measures of

controllabilitybelow.

6.2.1 Eising’s measure of controllability

In 1984, Eising proposed a measure of controllability (µE) based on a
distance metric between a controllable system (A, B) and the set Sunc

of uncontrollable systems given as [132]:

µE = d((A, B), Sunc) = min
s∈C
{σmin[sI − A, B]} (6.2)

where σmin represents the smallest singular value, s ∈ C represents a
point in the complex plane, and [sI − A, B] represents an augmented
matrix based on the Hautus test for controllability. As the metric
d((A, B), Sunc) becomes smaller, it becomes harder to control the sys-
tem (A, B). This measure may be evaluated numerically, but poses
some challenges since numerical methods may lead to a local mini-
mum and yield an incorrect measure of controllability [140].

6.2.2 Hamdan’s geometric measure of modal controllability

In 1988, Hamdan and Elabdalla proposed a geometric measure of
modal controllability (µH), which has its foundations in the Popov-
Belevitch-Hautus (PBH) eigenvalue test for modal controllability [135].
Let the left eigenvectors for the single input linear time-invariant sys-
tem given by Equation 6.1 be denoted by qi such that:

Aqi = λiqi (6.3)
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and bj represent the jth column of B. If qi and bj are orthogonal,
then the ith mode of the system (A, B) is not controllable from its jth

input. Hamdan and Elabdalla extended this idea to develop a geo-
metric measure of modal controllability based on the angle between
the two one-dimensional subspaces spanned by the vectors qi and bj.
Mathematically, the measure may be written as [135]:

µH = cos(θ(qi, bj)) =
|qT

i bj|
‖qi‖‖bj‖

(6.4)

A single input system may be re-written as an N input system, i.e.
each agent has a distinct controller so that B is a diagonal matrix, in
order to make use of this measure for the agent selection problem.

6.2.3 Degree of controllability

In 1984, Viswanathan, Longman, and Likins proposed a measure re-
ferred to as the degree of controllability [8]. Today, we would recog-
nize this definition in terms of the controllable set of a system. The
original definition makes use of the concept of a recovery region, which
is defined for time t f as [8]:

R = {x(0) : ∃u(t), t ∈ [0, t f ], |ui(t)| ≤ 1 (i = 1, 2, ..., M)

such that x(t f ) = 0} (6.5)

i.e., the set of all initial conditions x(0) such that an admissible con-
trol effort can drive the system state to 0 in time t f . The degree of
controllability (µD) is then defined as:

µD = ρ = inf ‖x(0)‖ ∀x(0) /∈ R (6.6)

In [8], Viswanathan et al. suggest an algorithm for approximating
the recovery region/controllable set, followed by using Equation 6.6
to determine the degree of controllability. The algorithm forms the ba-
sis of polyhedra-based approaches for determining controllable sets.

6.2.4 Limitations of prior work

These prior works share a common limitation: they do not address
the need for a methodology to assess agent influence in self-organizing
systems. The following work describes such a systematic methodol-
ogy while incorporating topological considerations arising from the
self-organizing nature of the system dynamics. In this work, Eising’s
measure of controllability is used to assess agent influence due to its
ease of use. The entire process is explained through the use of vehicle
cluster formation as a prototypical example of self-organization.
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Figure 6.1: The degree of controllability indicates how easy it is control the
system. As ρ tends to zero, the system becomes less controllable.
At ρ = 0 the system is uncontrollable. ρ̄ represents the approxi-
mate degree of controllability based on a parallelopiped approx-
imation of the recovery region [8].

6.3 a prototypical self-organizing system

For this study, vehicle clusters will be generated by simulating driver
behavior via the intelligent driver model (idm) [91]. The primary rea-
son for this choice is that the idm is one of the few models that can
mimic car-following dynamics without requiring an explicit delay
term. The absence of an explicit delay term is advantageous because it
helps avoid modeling the system via delay differential equations and
significantly simplifies the ensuing controllability-based analysis.

6.3.1 Intelligent driver model

As discussed earlier in Section 2.3, the intelligent driver model is ex-
pressed as:

ẋi(t) = vi (6.7)

ẍi(t) = f (xi, xi−1, ẋi, ẋi−1, ai, bi)

= ai

{
1−

(
vi

v0

)δ

−
(

s(vi, ∆vi)

si

)2
}

(6.8)

where, si = xi − xi−1 denotes the spacing between the following and
followed vehicles, ∆vi = vi − vi−1 = ẋi − ẋi−1 denotes the relative
velocity between the following and followed vehicles, s(vi, ∆vi) =

s0 + viT + vi∆vi/(2
√

aibi), ai denotes the maximum acceleration of
the following vehicle, v0 denotes the maximum vehicle velocity in
free flow traffic, s0 represents the minimum spacing between two sta-
tionary vehicles, T denotes the desired time headway maintained by
the following vehicle, bi denotes the comfortable braking decelera-
tion of the following vehicle, and the exponent δ is usually assumed
to have a value of 4 [91].
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δẋ3


︸ ︷︷ ︸

x

+



0 0 0 0 0 0
β
(1)
a β

(1)
b 0 0 0 0

0 0 0 0 0 0
0 0 β

(2)
a β

(2)
b 0 0

0 0 0 0 0 0
0 0 0 0 β

(3)
a β

(3)
b


︸ ︷︷ ︸

B



δa1

δb1

δa2

δb2

δa3

δb3


︸ ︷︷ ︸

u

(6.9)

6.3.2 System dynamics

The self-organized vehicle cluster formation is replicated as a sys-
tem of M vehicles on a closed ring-road of length L in this work.
The closed ring-road environment simplifies the problem by avoid-
ing open boundary conditions due to vehicles entering or exiting
the system. For the purposes of this work, the system under con-
sideration is restricted to M = 3 vehicles on a closed ring road of
length L = 60 m. This simple construction allows for easier visu-
alization of the system dynamics as compared to a large-scale mas,
while still retaining the ability to demonstrate the proposed frame-
work for identifying locally influential agents. For this system, our
interest lies in the evolution of the system state described by the state
vector x = [x1, ẋ1, x2, ẋ2, x3, ẋ3]T ∈ R6.

The local controllability of the system can be determined by lineariz- local controllability

ing the system about a current operating point (x0), and studying the
rank of the controllability matrix. It is assumed that each vehicle has
the ability to change its acceleration-related parameters, i.e. ai (the
maximum acceleration) and bi (the comfortable braking deceleration).
By controlling such acceleration-related parameters, the agents can
potentially influence the self-organized vehicle cluster formation as
seen in [114]. Now, the linearization of the 3-vehicle system yields the
local evolution equations given by Equation 6.9. In this equation, α

(i)
j

represents the partial derivative of the acceleration of the ith vehicle
with respect to the state variable j at the operating point x0, where the
acceleration is given by the car-following model in Equation 6.8. For
example, α

(1)
xi represents ∂ f /∂xi evaluated for the first vehicle at the

operating point x0, α
(2)
ẋi−1

represents ∂ f /∂ẋi−1 evaluated for the second

vehicle at the operating point x0, and so on. Similarly, β
(i)
k represents

the partial derivative of the acceleration of the ith vehicle with respect
to the input k, evaluated at the operating point x0. For example, β

(1)
a

represents ∂ f /∂a evaluated for the first vehicle at the operating point
x0.
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6.3.3 Studying agent influence

Agent influence can be determined by studying the minimum singu-
lar value of the augmented matrix [sI − A, B] (s ∈ C), as proposed
by Eising in [132]. To study the influence of a specific agent on the
system dynamics, the B matrix can be modified appropriately, so that
only the specific agent can provide control inputs to the system. For
example, in order to measure the influence of vehicle 1 on the system
dynamics, one can set β

(2)
a = β

(2)
b = β

(3)
a = β

(3)
b = 0, so that the B

matrix reads as:

B = B1 =



0 0 0 0 0 0

β
(1)
a β

(1)
b 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(6.10)

In this scenario, only the first agent (or vehicle) may influence the sys-
tem dynamics via its control actions (or acceleration and deceleration
maneuvers). Now, the minimum singular value σ1 of the augmented
matrix [sI − A, B1] yields a measure of influence of agent 1 on the
full-order system dynamics. Comparing the minimum singular value
σ1 with the minimum singular values σ2 and σ3 obtained from the
corresponding augmented matrices [sI − A, B2] and [sI − A, B3] re-
spectively, one can identify the locally most influential agent in the
system.

However, the methodology presented up to this point is applica-
ble to all systems, and does not leverage the fact that several multi-
agent system exhibit self-organized behavior. Before modifying the
presented methodology, we first study the self-organizing behavior
of the prototypical system, i.e. self-organized vehicle cluster forma-
tion on the closed ring-road. The 3-vehicle system was simulated
with model parameters values typically used in the idm model to
model traffic behavior, such as a = 1 m/s2, b = 3.4 m/s2, T = 2.5
s, s0 = 2 m, and v0 = 15 m/s [91]. The maximum free flow velocity
takes into account the sharp turning radius of the ring road. The re-
sults of the simulation are included in Figure 6.2, which offers offers
some evidence that spatio-temporal patterns may be present in the
system as it evolves over time. This hypothesis is further strength-
ened when the phase portrait of the system is observed. However,
since the system evolves in R6, we can only visualize the phase por-
trait via projections onto lower-dimensional spaces. For such a vi-
sualization, the phase portrait is projected into two R3 spaces, one
given by the spacing of the vehicles in the system, i.e. [s1, s2, s3]T =

[x1 − x2, x2 − x3, x3 − x1]
T ∈ R3, and the other given by the velocities
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of the vehicles in the system, i.e. [v1, v2, v3]T ∈ R3. These projections
are shown in Figure 6.3 and Figure 6.4 and they exhibit behavior sim-
ilar to limit cycles, which indicates the presence of an attractor or
low-dimensional manifold on which the self-organized dynamics of
the system evolve. Since the goal of this study is to identify the agents
that have most significant influence on the self-organized dynamics,
the next step involves determination of the minimum embedding di-
mension of the low-dimensional manifold on which these dynamics
reside.
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Figure 6.2: Three vehicle system on a ring road with dynamics manifesting
as self-organized stop-and-go waves.

Figure 6.3: Behavior similar to a limit cycle observed in the R3 projection
given by vehicle spacings [s1, s2, s3]

T . Arrow indicates the direc-
tion of system evolution. The shaded region indicates the plane
in which the limit cycle resides.
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Figure 6.4: Behavior similar to a limit cycle observed in the R3 projection
given by vehicle velocities [v1, v2, v3]

T . Arrow indicates the direc-
tion of system evolution.

6.4 minimum embedding dimension of low-dimensional

manifold

The evidence presented in Figure 6.3 and Figure 6.4 indicates that the
self-organized dynamics of the multi-agent system may evolve on a
low-dimensional manifold in RM, where M � N. Knowledge of the
dimension of this manifold can assist with the model order reduction
of the linearized system equations presented in Equation 6.9, result-
ing in a more accurate estimation of the locally influential agents.
The use of a reduced-order model also has significant computational
advantages for extremely large-scale multi-agent system whose self-
organized dynamics may evolve on a manifold of very small dimen-
sion.

The dimension of the attractor or low-dimensional manifold can be
determined by several methods. While the Hausdorff dimension, or
its more practical counterpart, the box dimension, may yield accurate
estimates of the attractor dimension, these methods require signifi-
cant computational resources [141]. Moreover, since the ultimate goal
is to determine the dimension for a reduced-order model, an upper
bound of the attractor dimension serves our purpose equally as well
as the exact attractor dimension. Fortunately, there exist methods to
determine the upper bound of the attractor dimension that are com-
putationally inexpensive. One such technique is the method of false
neighbors developed by Kennel et al. [142]. A modification of this
method by Cao is utilized in this work and is explained in the follow-
ing subsection.
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6.4.1 Method of false neighbors

The underlying premise of the method of false neighbors is that,
when a trajectory residing on an attractor is projected onto an even
lower-dimensional manifold, certain points on the trajectory end up
closer to each other as a result of geometric constraints rather than dy-
namics [142]. Such points that are ‘close’ to each other because they
have been forced into a lower dimension are known as false neighbors.
As the dimension of the lower-dimensional manifold is increased,
fewer trajectory points are neighbors due to geometry rather than
dynamics. In other words, as the dimension of the lower-dimensional
manifold increases, the percentage of false neighbors decreases. The
dimension at which the percentage of false neighbors drops to zero
indicates the minimum embedding dimension d0, i.e. the attractor can
be embedded in a state space whose dimension is at least d0. Thus, the
minimum embedding dimension can serve as a guide for the reduced-
order modeling of large-scale multi-agent systems.

The concept is very intuitive and easier to understand with visual
aids. For example, consider the Hénon map, which is a dynamical Hénon map

system described by the following equations:

xk+1 = 1− ax2
k + yk (6.11)

yk+1 = bxk (6.12)

where a and b are constants. The attractor for this dynamical system
exists in a 2-dimensional space, as is evident from Figure 6.5. Now
consider Figure 6.5(b) where the attractor is observed in 1-dimensional
space. In this space, both points B and C appear to be neighbors of
point A. However, when the attractor is observed (or embedded) in 2-
dimensional pace, it is immediately apparent that the point C is a
false neighbor, and appears to be close to point A only due to the
geometric constraints forced on the state space. On the other hand,
point B is close to point A due to the dynamics of the system, and is
referred to as a true neighbor.

Evaluation of the minimum embedding dimension requires scalar
time series data of the state trajectory x(t) = [x1, ẋ1, x2, ẋ2, x3, ẋ3]T.
The scalar time series data can be generated from the state trajectory
as follows:

χ(t) = c1x1 + c2 ẋ1 + c3x2 + c4 ẋ2 + c5x3 + c6 ẋ3 (6.13)

where ci ∈ R \ {0}. Without loss of generality, we may assume that
ci = 1 ∀ i ∈ {1, 2, ..., 6}, since, in principle, this choice does not af-
fect the evaluation of the minimum embedding dimension. Using
the seminal work of Takens for state space reconstruction [143], one state space

reconstructioncan generate state trajectories of increasingly higher dimensions until
the percentage of false neighbors falls to zero. Specifically, the recon-
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Figure 6.5: False neighbors (e.g. point C) exist when the Hénon map is ob-
served in 1-dimensional space. System was simulated with pa-
rameters a = 1.4 and b = 0.3.

structed state space is developed in the form of multivariate vectors
in d-dimensional space as follows:

ys(d) = [χ(s), χ(s + τ), ..., χ(s + (d− 1)τ)]T (6.14)

(s = 1, 2, ..., S− (d− 1)τ)

where ys(d) represents a d-dimensional reconstructed vector gener-
ated at time s, τ is the time delay used in the reconstruction (whose
choice depends on the system dynamics [144]), and S represents the
length of the scalar time series data set. For example, using d = 2, one
can generate a two-dimensional time series y(s) = [χ(s), χ(s+ τ)]T. If
the dimension of the attractor or low-dimensional manifold is d0 = 2,
then all reconstructed vectors of dimension d > 2 will ideally have no
false neighbors. This is exactly what was observed when the dimen-
sion of the embedding state space was increased from d = 1 to d = 2
in the Hénon map example.

However, the method of false neighbors, as originally proposed by
Kennel et al., has a few limitations in the form of heuristic choices
of thresholds pertaining to what constitutes a ‘close’ neighbor. Conse-
quently, a modification of the method of false neighbors, as proposed
by Cao, is used in the following work [145].

6.4.2 Minimum embedding dimension via Cao’s methodology

Cao presented two metrics that draw inspiration from the method of
false neighbors, while simultaneously avoiding its limitations [145].
Specifically, a measure of the change in distance between two neigh-
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boring points, when the state space is reconstructed using a higher
embedding dimension, is evaluated as follows:

a(s, d) =
||ys(d + 1)− yn(d + 1)||
||ys(d)− yn(d)||

(6.15)

where ||ys(d)− yn(d)|| represents the Euclidean distance between the
d-dimensional reconstructed vector ys and its neighbor yn at time
s, and ||ys(d + 1) − yn(d + 1)|| represents the distance between the
same points when reconstructed using a (d + 1)-dimensional space.
The value of a(s, d) is large for a specific set of false neighbors that are
geometrically close in dimension d, but not in dimension d + 1. The
mean value of a(s, d) over the entire time series data set is evaluated
as:

E(d) =
1

S− dτ

S−dτ

∑
s=1

a(s, d) (6.16)

Realizing that various a(s, d) ceases to vary for d ≥ d0, where d0

represents the minimum embedding dimension, it is observed that
E(d) also does not vary for dimensions beyond d0. Cao defines the E1

metric is defined as follows:

E1(d) =
E(d + 1)

E(d)
(6.17)

From evaluating the E1 metric for known attractors of dynamical sys-
tems such as the Hénon map, it is observed that the metric tends to
unity beyond the minimum embedding dimension d0. Similarly, Cao
also defines an E2 metric to distinguish between deterministic and
stochastic signals. Specifically, Cao first defines E∗ as follows:

E∗(d) =
1

S− dτ

S−dτ

∑
s=1
|xi+dτ − xn+dτ| (6.18)

where xn+dτ represents the last entry in the reconstructed state vec-
tor yn(d + 1) which is the neighbor of the reconstructed state vector
ys(d + 1). The E2 metric is then defined as follows:

E2(d) =
E∗(d + 1)

E∗(d)
(6.19)

The behavior of the E2(d) metric is similar to that of the E1(d) metric,
i.e. it approaches unity as d → d0, where d0 is the minimum embed-
ding dimension. However, the E2 metric was primarily designed to
identify the minimum embedding dimension for stochastic signals.
Cao recommends using both metrics to determine the minimum em-
bedding dimension d0.

The minimum embedding dimension is evaluated for the self-organ-
ized dynamics of the 3-vehicle system on a closed ring-road. Fig-
ure 6.6 indicates the variation in the E1 and E2 metrics for recon-
structed vectors ys(d) of increasingly higher dimensions. It is found
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Figure 6.6: Minimum embedding dimension for the self-organized dynam-
ics of the 3-vehicle system is found to be d0 = 2. The minimum
embedding dimension is determined via Cao’s method as the
dimension at which E1 and E2 approach unity.

that both metrics approach unity at d = 2, which implies that the
self-organized dynamics of the 3-vehicle system can be completely
embedded in a low-dimensional manifold of dimension d0 = 2. The
next section discussed how this information can be used in the model
order reduction of the linearized system (Equation 6.9).

6.5 identification of influential agents

As discussed earlier, the goal of this study is to identify the agents
that have the ability to influence the self-organized dynamics of the
multi-agent system. In Section 6.3, we discussed a scheme for evalu-
ating agent influence for the full-order linearized system. Since the
self-organized dynamics evolve on a low-dimensional manifold, the
logical next step is to reduce the full-order linearized system and
identify the agent influence in the reduced-order model. The mini-
mum embedding dimension determined in the previous section indi-
cates that the state vector of the reduced-order model should have a
dimension d0 = 2.

6.5.1 Model order reduction via Krylov subspaces

Over the years, several methods have been proposed for the model
order reduction of large-scale linear and nonlinear systems, such as
balanced truncation and Krylov subspace-based methods, to name a
few [146]. Balanced truncation reduces the model order by retaining
only the controllable and observable states of the system. While this
approach is beneficial in many scenarios, we do not know a priori
if the controllable states will generate a reduced-order model whose
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dynamics evolve on the desired low-dimensional manifold. In other
words, the relationship between self-organization and controllability
is currently unknown and remains an open problem for the research
community.

On the other hand, the analytical structure provided by Krylov
subspace-based methods can leverage some topological information
to obtain a local approximation of the low-dimensional manifold and
a reduced-order linearized model. A d-dimensional Krylov subspace Krylov subspace

for a system such as in Equation 6.9 is defined as follows:

Kd(A, b0) = span{b0, Ab0, ..., Ad−1b0} (6.20)

where A ∈ RN×N represents the system matrix of the multi-agent
system linearized about the current operating point x0, and b0 ∈
RN×1 represents a starting vector used to generate the Krylov sub-
space [147][148]. The choice of the starting vector is critical in generat- starting vector

ing a reduced-order model that accurately depicts the system dynam-
ics. Ideally, the starting vector should lie in the invariant subspace in
which the dynamics evolve, so that the Krylov subspace can capture
the system behavior. Typically, this information is not available, but
the current context presents insights which can guide the selection of
the starting vector. Specifically, the tangent to the steady-state system
trajectory is expected to lie in the local low-dimensional manifold of
the system equations. This tangent vector, defined as:

b0 =

[
∂ f (1)

∂xn
,

∂ f (1)

∂ẋn
,

∂ f (2)

∂xn
,

∂ f (2)

∂ẋn
,

∂ f (3)

∂xn
,

∂ f (3)

∂ẋn

]T

(6.21)

can be evaluated at each time instant t at the current operating point
x0 on the system trajectory. The tangent vector can then serve as the
starting vector of the Krylov subspace for model order reduction at
each time instant as we traverse over the system trajectory.

An orthonormal basis of the Krylov subspace Kd(A, b0) may be
used as a projection operator U = [u1, u2, ..., ud] (ui ∈ RN) to project
the dynamics of the full-order system onto the local low-dimensional
manifold. In the current context, since the minimum embedding di-
mension is d0 = 2, the associated projection operator U ∈ R6×2 ob-
tained by Arnoldi’s process is given by:

U =

[
b0

||b0||
,

b1

||b1||

]
(6.22)

with b1 = Ab0 −
〈b0, Ab0〉
〈b0, b0〉

b0 (6.23)

where 〈·, ·〉 denotes the inner product. The next subsection discusses
how this information may be used to identify agents that can influ-
ence the self-organized dynamics of the 3-vehicle system.
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6.5.2 Influential agents in 3-vehicle system

The reduced-order model of the system described in Equation 6.9
may be obtained through the operations Ar = UT AU and Br = UTBi,
so that the reduced-order linearized system equations are:

ψ̇ = Arψ + Bru (6.24)

where ψ represents a low-order state such that x = Uψ, and Bi ∈
{B1, B2, B3} depending on the agent i whose influence on the self-
organizing dynamics is being assessed. The minimum singular value
is evaluated at the current operating point x0 over the system trajec-
tory for the three different augmented matrices [sI − Ar, UTB1], [sI −
Ar, UTB2], and [sI − Ar, UTB3], corresponding to control inputs pro-
vided only by vehicle 1, vehicle 2, or vehicle 3, respectively. Figure 6.7
describes the state trajectories as well as the trends in the minimum
singular value for each system configuration. The linearized reduced-
order system that has the largest minimum singular value helps iden-
tify the agent that exerts the most influence on the macroscopic dy-
namics at a particular instant of time.

Analysis of Figure 6.7 yields some interesting insights that agree
strongly with intuition about the 3-vehicle system, and about self-
organized traffic jams in general. For example, it is observed that vehi-
cles with large spacings, which represent vehicles in free flow, do not
have significant influence on the self-organized dynamics. Addition-
ally, it is also observed that vehicles that are about to enter a cluster
(i.e. vehicles whose spacing is decreasing with time), have significant
influence over the self-organized dynamics. These results indicate a
strong spatial dependence of agent influence and agree with intuition
as well as similar results from previous related research on connected
vehicles [116].

6.6 conclusions , contributions and broader impacts

In this chapter, a methodology for assessing the influence of specific
agents on the self-organized dynamics of a large-scale multi-agent
system was proposed. The methodology made use of existing knowl-
edge of controllability metrics and model order reduction, and cou-
pled it with the novel application of the minimum embedding di-
mension to identify agent influence on self-organized dynamics. Ap-
proaching the problem from a topological perspective also provided
a solution to the selection of an appropriate starting vector for the
Krylov subspace-based model order reduction process.

The methodology presented here is general enough to be applied
to any self-organizing system. The technique was applied to a known
prototypical problem of self-organizing multi-agent systems, i.e. the
self-organized vehicle cluster formation on closed ring roads. The ob-
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Figure 6.7: State trajectories for the 3-vehicle system. For configurations
where different vehicles are designated as controllers, the min-
imum singular values help identify influential agents. Shaded
yellow regions indicate the spatial locations where a particu-
lar agent (or vehicle) has the most local influence on the self-
organized dynamics of the system.

tained results which identify the most influential agents at any in-
stance of time were found to agree with intuition as well as related
previous studies. Specifically, it was found that vehicles in free flow
have little influence on the self-organized dynamics, whereas vehi-
cles approaching a cluster are quite influential in this regard. The
generality of the proposed approach hopes to propel further research
directed towards assessing the role of agent influence in guiding self-
organizing behavior.
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7
F U T U R E D I R E C T I O N S

In this final chapter, the approaches presented in Chapter 3 through
Chapter 6 are summarized and their key insights are outlined. This
chapter also contains details about some unsuccessful, but potential
avenues for research, as well as some advice for new researchers in
this field. This advice is a result of lessons learnt the hard way, so the
author hopes that the researchers who follow find it useful. Finally,
this chapter also includes some short-term and long-term potential
directions on future work.

7.1 summary of work

In this dissertation, the problem of influence in self-organizing sys-
tems was handled from two fundamentally different approaches, thou-
gh each used self-organizing traffic jams as the underlying example.
In the first approach, encapsulated in Part I, the goal of influencing
self-organized behavior of the large-scale mas, i.e. the traffic jams,
was achieved by modifying the natural agent population by introduc-
ing artificially engineered agents, i.e. cruise controlled vehicles, into
the mix. As the proportion of the cruise controlled vehicles in traffic
increased, the self-organizing behavior was affected. Realizing that
such an approach does not result in a satisfactory control technique (it
is infeasible to control population demographics of large-scale mas),
the same goal was approached from a different perspective in Part
II. In Part II, a novel concept of influential subspaces was introduced,
which essentially described the spatial dependence of an agent’s in-
fluence on self-organizing dynamics of a large-scale mas. This idea
was discussed in the context of both, connected vehicles and adap-
tive cruise controlled (acc) vehicles, and it was found to be a valid
technique to control the self-organized dynamics of vehicular clus-
ter formation. The key insights from this work are presented in the
following subsection.

7.1.1 Key insights

The key insights obtained from the works discussed in the previous
chapters are discussed in this subsection. The reader is requested to
take note that the use of the terminology ‘acc’ and ‘human’ is meant
to distinguish between good and bad driving behavior, respectively.
Specifically, the ‘acc’ algorithms used in this work are not fully rep-
resentative of the current state-of-the-art cruise control algorithms,
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but have been modeled to represent our understanding of what good
driving or car-following behavior should look like.

At low densities, increased ACC penetration results in higher traffic
flows without self-organizing traffic jams

The study has shown that as the percentage of acc-enabled vehicles
in the traffic system is increased the critical density also increases cor-
respondingly. The increase in critical density implies that the density
at which vehicle clusters begin to appear is increased. This indicates
that the traffic flow can operate at higher densities and consequently
higher flow rates, since it is known from the fundamental diagram
of traffic flow that, in the free flow regime, the flow increases as the
density increases [74].

At low densities, increased ACC penetration results in the traffic
system being more susceptible to formation of self-organizing traf-
fic jams

While increased acc penetration may allow the traffic system to oper-
ate at increased densities and flows, it comes at a cost. As acc pene-
tration increases, a small percentage of drivers with low sensitivities
are enough to cause a self-organized traffic jam. In other words, in
a predominantly acc traffic system, introduction of a small percent-
age of human drivers may cause a rapid reduction of critical density,
resulting in a self-organized traffic jam [114].

At moderate densities, higher ACC penetration may complicate traf-
fic control and highway design processes

Numerical simulations indicate that a randomly selected vehicle is
more likely to be stuck in a moderately-sized cluster given a predom-
inantly acc-enabled traffic system, while it is more likely to be stuck
in a large-sized cluster given a predominantly human-driven traffic
system. These insights hold significance for traffic control engineers,
as it is easier to design and handle highway elements to counter large
localized bottlenecks rather than moderately-sized clusters that may
appear at random across a large swathe of highway [116].

At moderate densities, higher ACC penetration may adversely impact
the environment and traffic safety

Numerical simulations indicate the formation of several moderately-
sized clusters for higher acc penetration. Such cluster formation may
lead to an increase in acceleration and deceleration cycles as vehicles
frequently enter and exit several clusters. Consequently, emissions
may rise and the propensity for collisions, especially from human
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drivers, may increase. However, a detailed study of these effects has
not yet been performed [116].

Influential subspaces of connected vehicles can help improve band-
width utilization and guide policy decision making

Knowledge of the influential subspace of connected vehicles can sig-
nificantly improve connected vehicles technology. Bandwidth limita-
tions can be overcome by transmitting information to only those ve-
hicles that are currently in their influential subspace. Moreover, fu-
ture policy decisions on connected vehicles technology, such as set-
ting dynamic speed limits and message hopping requirements, could
be guided by knowledge of the influential subspaces [149].

Vehicles entering a cluster have more influence on the self-organized
dynamics of cluster formation than vehicles exiting it

A methodology to assess the spatial dependence of agent influence on
the self-organized dynamics of large-scale multi-agent systems was
developed that leveraged the presence of a low-dimensional manifold
in these dynamics. The results indicate that the most influential agent
in the system at a given time is usually the vehicle that is about to
enter the cluster [150].

7.1.2 Unsuccessful avenues and some general advice to new researchers in
this field

This subsection is devoted to describing some of the alternative re-
search routes undertaken during the course of this dissertation and
the lessons learnt from them. These routes cover various research ap-
proaches that did not yield successful results, but some of them hold
significant potential and can be used to develop a comprehensive
theory of influence and self-organizing systems. These few are also
mentioned in the long-term potential future directions in Section 7.2.
While some of the issues discussed here may be a reflection of per-
sonal characteristics, I nevertheless believe that researchers following
up on this research should be aware of them.

Some existing literature on emergence should be taken with a grain of salt

The notion of emergence is extremely ill-defined in the literature. While
this situation raises several interesting questions – How does one
define emergence? What are some potential metrics for emergence?
Can emergence be compared across two different systems? Are self-
organization and emergence related? – there are very few existing
research works to build upon. Further, while several researchers have
valiantly attempted to formalize the notion of emergence, and per-
haps a larger number have attempted to approach it from a philo-
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sophical viewpoint, in my opinion it is better to focus on the notion
of self-organization, rather than get stuck in the quagmire of study-
ing emergence. Self-organization itself is an equally challenging topic,
but at least the literature documents various scientific attempts to de-
fine and measure it in different fields, including in information theory
and differential geometry.

Strong mathematical background is critical to pursue research in the field of
self-organizing systems

To be forewarned is to be forearmed. It should not be surprising
to know that understanding self-organization will not only require
knowledge of diverse mathematical concepts, it will also require in-
depth knowledge of these concepts. While there isn’t any need to be
alarmed or disheartened, a new researcher in the field should remem-
ber to keep all research avenues open, and be on the constant lookout
for any methodology that brings one closer to the answer. During my
dissertation, I have had to read texts on differential geometry, statis-
tical mechanics, dynamical systems, information theory, and model
order reduction, to name a few. While the usefulness and relation-
ships between these fields may not be immediately relevant, over the
years they will hopefully help build connections and yield interest-
ing results. A strong mathematical background or the willingness to
learn diverse mathematical tools is essential for tackling problems in
the domain of self-organization.

Know the scope of your problem and remain focused

Self-organization is a harsh mistress – it entices you in different direc-
tions. A new researcher in this field should realize that a good prob-
lem is one that can be solved within a reasonable amount of time.
A new researcher should have a good idea of the scope of the prob-
lem and remain focused on it. From my personal experience, I have
run off on tangents to the work, such as when examining causality
and its implications for the phenomenon of self-organization – Are
agents the cause of ensemble dynamics, or is the ensemble causing
the agents to move in a specific fashion? (see Figure 5.1) – and this
behavior is counterproductive to the timely solution of a problem.
That said, occasional bouts of day-dreaming can be helpful to arrive
at out-of-the-box questions (and answers)!

7.2 potential future directions

The methodologies and insights contained in this dissertation repre-
sent an evolving body of work. As such, they are several open re-
search avenues that can be pursued. Several of the research avenues
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presented in this section are short-term in nature, while others would
require a longer engagement.

7.2.1 Short-term future work

Some of the potential short-term future work includes:

Comparison of results obtained from master equation and statistical mechanics-
inspired approaches

The master equation approach presented in Chapter 3 yields a re-
lationship between the acc penetration rate and the critical density.
The numerical simulations performed in Chapter 4 using the statis-
tical mechanics-inspired traffic flow model for mixed species were
used to determine the cluster distributions. As potential short-term
future work, the data from these simulations could also be used to
obtain a relationship between the acc penetration and critical den-
sity, and comparison with the master equation approach could make
a more compelling case for these models.

Numerical evaluation of influential subspaces of connected vehicles

The numerical simulation framework in Chapter 4 can be modified
to model cooperative cruise controlled vehicles. The simulations can
also make use of Newell’s simplified car-following model with ad-
ditional stochastic disturbances in the model dynamics. The simula-
tions can be performed for simple scenarios such as those discussed
in Chapter 5, and the numerical results can be compared against the
analytical solutions obtained for the event and null horizons.

Influential subspaces in 3-vehicle system with bounded control inputs

The astute reader may have noticed the absence of an event horizon
in Figure 6.7. While the analysis in this figure does not directly cor-
respond to the work performed in Chapter 5, there is a general ex-
pectation that similar elements will reappear. Thus, the absence of
the event horizon in this figure demands further inspection. The next
steps in this scenario may be to bound the control inputs on the accel-
eration and deceleration parameters and observe if an element simi-
lar to the event horizon appears. Since the concept of controllability
cannot directly handle bounded inputs, additional work related to
problem may be long-term in nature (see Section 7.2.2).

Comparison of alternative measures of controllability in 3-vehicle system

The analysis presented in Chapter 6 utilized a locally linearized model
of the 3-vehicle system and evaluated agent influence using Eising’s
measure of controllability. Alternative measures of controllability, also
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presented in the chapter, may be utilized to repeat the analysis and
results can be compared across these different measures.

7.2.2 Long-term future work

Some potential long-term future work includes:

Nonlinear model order reduction of 3-vehicle system

The 3-vehicle system analyzed in Chapter 6 helped determine the
spatial dependence of agent influence on self-organizing dynamics.
However, the presented analysis utilized a locally linearized system
to evaluate a measure of system controllability. For developing this
methodology into a more comprehensive one for self-organized sys-
tems, alternative nonlinear model reduction techniques may be evalu-
ated. These approaches may have to draw from differential geometry
to directly obtain the invariant manifold on which the self-organized
dynamics reside (e.g. see the works of Ginoux and Rosseto on invari-
ant manifolds of complex systems [151], or the works of Sarlette and
Sepulchre on consensus optimization on manifolds [152]).

Influential subspaces of connected vehicles in complicated scenarios

The work presented in Chapter 5 simplified the analysis by consider-
ing a single lane highway where no passing was allowed, and with
only two connected vehicles in the traffic stream. The concept of the
influential subspace of a connected vehicle can be expanded to in-
clude additional scenarios, such as (a) several connected vehicles on
the highway, (b) highways where vehicle passing is allowed, and (c)
the presence of on- and off-ramps.

Analytical approach to solve for influential subspaces

The work presented in Chapter 5 makes use of specific control poli-
cies in a limited scenario to obtain analytical results for the influen-
tial subspaces of connected vehicles. These results are too restrictive,
and if the concept of influential subspaces is to succeed, it must be
generalized further to be applicable for arbitrary control policies. In
this regard, future work could focus on polyhedra-based approaches
to determine controllable sets as suggested by Lasserre and extend
the results presented therein to influential subspaces [55]. Alternative
approaches, such as the use of mutual information-based Lyapunov
functions, may also be potential candidates to achieve this objective.

Additional application domains

The beauty of the concept of the influential subspace is that it is
domain-agnostic. Several complex systems exhibit self-organizing be-
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havior for which it may be possible to identify event horizons and in-
fluential subspaces of ‘smart’ agents. Some applications include con-
trol of seizures in the human brain through the use of neural implants,
and the control of cascading failures to prevent widespread blackouts.
These applications an benefit from an understanding of the influen-
tial subspaces of each individual agent that comprises the large-scale
multi-agent system.

Measures of self-organization

While self-organized dynamics of traffic systems have been a focus
of this study, there remain several unanswered questions as to what
constitutes self-organization. When can a system be said to be self-
organized? Several researchers, such as Van Dyke Parunak and Brueck-
ner, have proposed entropy-based measures for self-organization, these
metrics have not yet been fully developed [153]. Information-theoretic
measures such as delayed mutual information may be utilized to
develop a measure of self-organization [154]. Future work can also
leverage the apparent relationship between controllability and self-
organized dynamics as indicated in Chapter 6 to develop a measure
of self-organization.
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A
T H E O N E - D I M E N S I O N A L I S I N G M O D E L W I T H
N E A R E S T- N E I G H B O R I N T E R A C T I O N S

Ernst Ising presented a particle interaction model for ferromagnetism
in his Ph.D. thesis in 1925, and this model has since come to be known
by his name [31]. In this work, Ising modeled a one-dimensional fer-
romagnet as an infinitely long chain of ‘magnets’, where each site
represented a magnetic dipole moment generated by the atomic spin.
If the atomic spins are aligned, the magnetic moments add up, re-
sulting in the magnetic nature of a ferromagnetic material. On the
other hand, if the spins are not aligned, such as at high temperatures,
the magnetic nature is lost. The phase transition between these two
behaviors of a ferromagnetic material occurs at the Curie tempera-
ture. The goal of Ising’s thesis was to study if the interaction between
neighboring spins was the underlying mechanism for such behavior
of ferromagnetic materials.

a.1 model description

In this model, atomic spins are denoted by σ. The atomic spins can
be in one of two states, i.e. σ ∈ {−1,+1}. The actual values of the
spins do not hold any physical significance, except for the fact that
they simplify some of the following analysis. Specifically, if two ad-
jacent atomic spins are aligned in the same direction, they could be
modeled as either {−1,−1} or {+1,+1}, with no change in the en-
suing analysis. Similarly, if two adjacent spins are not aligned, they
could either be represented by {−1,+1} or {+1,−1}. Now, the state
of the magnet is collectively represented by the atomic spins at each
site of the one-dimensional infinitely long chain of magnets as σ =

{σ1, σ2, ..., σN}, which is known as the system microstate. The energy
associated with the microstate σ for a one-dimensional Ising model
with only nearest-neighbor interactions is given by the Hamiltonian:

H(σ) = −B
N

∑
i=1

σi −∑
〈i,j〉

Jijσiσj (A.1)

where B represents an external field, 〈i, j〉 represents a nearest-neighbor
site pairs, and Jij = Jji denotes the interaction strength between sites
i and j. The interaction strength is assumed to be constant, i.e. Jij = J.
In order to further simplify analysis, the one-dimensional model is
assumed to have periodic boundary conditions, so that σN+1 = σ1.
While this assumption does not affect the thermodynamic properties

131



of the infinitely-long chain, it does allow a symmetric representation
of the Hamiltonian as follows:

H(σ) = −B
2

N

∑
i=1

(σi + σi+1)− J
N

∑
i=1

σiσj (A.2)

a.2 partition function

The partition function plays a very important role in the field of sta-
tistical mechanics and can be used to determine the aggregate prop-
erties of a system. It derives its name from the fact that it encodes the
probability distribution that partitions microstates into ‘bins’ of equal
energy. Specifically, the probability of occurrence of a particular mi-
crostate σ is given by:

P(σ) =
1
Z

e−βH(σ) (A.3)

where Z denotes the partition function and acts as a normalizing con-
stant, β = 1/kBT, kB denotes the Boltzmann constant, and T denotes
the temperature. The partition function Z is thus defined as:

Z =
σ1 = +1

∑
σ1= –1

σ2= +1

∑
σ2= –1

· · ·
σN = +1

∑
σN= –1

e−βH(σ) (A.4)

which can be written as:

Z =
σ1 = +1

∑
σ1= –1

· · ·
σN = +1

∑
σN= –1

exp

{
β

N

∑
i=1

(
B
2
(σi + σi+1) + Jσiσj

)}
(A.5)

a.3 transfer matrix

In order to evaluate the partition function, Kramers and Wannier sug-
gested the use of transfer matrices [31, pp. 476]. The right-hand side
of (A.5) can be expressed as a product of 2 × 2 matrices as explained
below. Consider a situation with only two adjacent sites σi and σi+1.
Then, in accordance with (A.2), the Hamiltonian H(σ) yields:

e−βH(σ) =


eβ(B+J), σi = +1, σi+1 = +1

eβ(−B+J), σi = −1, σi+1 = −1

e−βJ , otherwise

(A.6)

Now, consider a vector representation of the spins, such that the spins
+1 and −1 can be written as q1 = [ 1 0 ] and q2 = [ 0 1 ], respec-
tively. If the transfer matrix P is given by:

P =

[
eβ(B+J) e−βJ

e−βJ eβ(−B+J)

]
(A.7)
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the operation (σiPσi+1) yields the same results as in (A.6), i.e.

(σiPσi+1) =


eβ(B+J), σi = q1, σi+1 = qT

1

eβ(−B+J), σi = q2, σi+1 = qT
2

e−βJ , otherwise

(A.8)

a.4 solution of the partition function

Using the transfer matrix representation, the partition function can
be re-written as:

Z =
σ1 = +1

∑
σ1= –1

· · ·
σN = +1

∑
σN= –1

(σ1Pσ2)(σ2Pσ3) · · · (σN Pσ1)

=
σ1 = +1

∑
σ1= –1

(σ1PNσ1)

= Tr(PN)

= λN
a + λN

b (A.9)

where λa and λb(< λa) represent the eigenvalues of P. In the absence
of an external field (i.e. B = 0), the eigenvalues can be found to be:

λa = 2 cosh(βJ) (A.10)

λb = 2 sinh(βJ) (A.11)

which yield a solution of the partition function. With knowledge of
the partition function, several other statistics (e.g., free energy and
magnetization per spin) can be evaluated along with their trends as
a function of inverse temperature β.
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