
The Pennsylvania State University

The Graduate School

College of Engineering

ROBUST DYNAMICAL MODEL-BASED DATA

REPRESENTATIONS AND STRUCTURING OF TIME SERIES

DATA FOR IN-SEQUENCE LOCALIZATION

A Dissertation in

Electrical Engineering

by

Emil Laftchiev

c© 2015 Emil Laftchiev

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2015

The dissertation of Emil Laftchiev was reviewed and approved∗ by the following:

Constantino Lagoa

Professor of Electrical Engineering

Committee Co-Chair

Dissertation Co-Advisor

Sean Brennan

Associate Professor of Mechanical and Nuclear Engineering

Committee Co-Chair

Dissertation Co-Advisor

John Doherty

Professor of Electrical Engineering

Minghui Zhu

Assistant Professor of Electrical Engineering

Christopher Rahn

Professor of Mechanical and Nuclear Engineering

Kultegin Aydin

Department Head of Electrical Engineering

∗Signatures are on file in the Graduate School.

Abstract

In the modern era there is an unprecedented ability to actuate via an increasingly
cheaper array of actuators, and to sense through a growing, increasingly cheaper,
array of sensors. The ability to sense in particular represents both the unique
opportunity and the unique challenge of our time. It is an opportunity because
through the acquired data, it is possible to glean insight into processes that are still
too complex to be modeled correctly, and a challenge because the sheer volume of
data generated is often overwhelming.

Paradoxically, despite having the capability to collect vast stores of data, we still
lack knowledge of how to best analyze and use this data. In fact, multiple review
papers have demonstrated that published methods are too application specific and
depend too strongly on the data set size to be deployed on the scale necessary to
address the problem. Heated debates rage in the scientific literature on how to
best reduce the data into meaningful features and how to apply this reduced data
to solve real-world problems.

This thesis proposes a novel approach to reducing the dimension of data into
meaningful features that preserve the information of the data, but also enable the
localization of a small, newly collected, set of data in a previously stored data
set. The process of identifying a location within a stored data set is termed in-
sequence localization and it is particularly important in applications such as vehicle
localization, economic forecasting, energy generation mode selection, and stream
health monitoring, where stored data can be used to infer the present and future
state of a process.

To enable the process of in-sequence localization, this thesis proposes to model
the data using autoregressive models, such that a small number of model coeffi-
cients can be used to represent large subsets of data. Then using these autoregres-
sive models, in-sequence localization is performed by comparing new data with the
models and determining model feasibility. Emphasizing the fact that this method

iii

is to be used on practical data, the models are determined such that in-sequence
localization is robust to the data collection noise typically observed in sensors.

This thesis is developed around the application of vehicle localization. This
motivating application arises from the need to augment position estimates of the
Global Positioning System in the event of emergencies or signal occlusions. We
return repeatedly to this application because of its intuitive nature when conveying
concepts throughout the thesis. To demonstrate the broad applicability of the
methods, data from the applications of economic forecasting, energy generation
mode selection, stream health monitoring, and random data is used to demonstrate
algorithms throughout the text.

iv

Table of Contents

List of Figures x

List of Tables xiii

List of Symbols xiv

Acknowledgments xviii

Chapter 1
Introduction 1
1.1 Overview of Chapters . 4

1.1.1 Chapter 2: Literature Review 4
1.1.2 Chapter 3: The Effect of Noise on Alternative Representa-

tions of a 1-Dimensional Time Series used for In-Sequence
Localization . 4

1.1.3 Chapter 4: A Dynamics Discontinuities-Based Deterministic
Data Structure Creation Algorithm for In-Sequence Local-
ization using 1-Dimensional Time Series 5

1.1.4 Chapter 5: Robust AR model-based data structures for In-
Sequence Localization using 1-Dimensional Time Series . . . 5

1.1.5 Chapter 6: Robust Data Structures for In-Sequence Local-
ization using Multiple Time Series 6

1.1.6 Chapter 7: Conclusions and Future Work 7

Chapter 2
Literature Review 8
2.1 Data Mining Background . 9

2.1.1 Segmentation . 9

v

2.1.2 Robust Features . 11
2.1.3 Subsequence matching . 13
2.1.4 Data Compression via Pattern (Feature) Extraction 15

2.1.4.1 Rapid On-Line Clustering and Discovery 15
2.1.4.2 Pattern Analysis Using Linear Models 16

2.1.5 Classification . 17
2.1.6 Current Directions . 18

2.2 Pattern Matching/Texture Detection 20
2.3 Pattern Matching in the Vehicle Community/Localization 22

2.3.1 Sensor-Based Localization 22
2.3.1.1 Map-Matching . 23
2.3.1.2 Noise Characterization of the Inertial Measurement

Units . 25
2.4 Additional Topics . 26

2.4.1 Fault Detection . 26
2.4.2 Histogram Filters . 27

Chapter 3
The Effect of Noise on Alternative Representations of a 1-

Dimensional Time Series used for In-Sequence Local-
ization 29

3.1 Introduction . 30
3.1.1 In-Sequence Localization in Vehicle Data 32

3.2 Dimension Reducing Data Representations 35
3.2.1 Discrete Fourier Transform (DFT) 35
3.2.2 Piecewise Aggregate Approximation (PAA) 36
3.2.3 Discrete Wavelet Transform Representation (DWT) 38
3.2.4 Symbolic Aggregate Approximation (SAX) 39
3.2.5 Chebyshev Polynomial Representation 40
3.2.6 Piecewise Linear Representation (PLR) 42
3.2.7 Adaptive Piecewise Constant Approximation (APCA) 44
3.2.8 Additive Noise and Representation Fidelity 45

3.2.8.1 Testing Procedure 45
3.2.8.2 Results . 46

3.3 In-Sequence Localization . 52
3.3.1 Fixed Window Length Representations 53
3.3.2 Variable Window Length Presentations 54
3.3.3 Results . 55

3.4 Discussion . 58
3.5 Conclusions and Future Development 61

vi

Chapter 4
A Dynamics Discontinuities-Based Deterministic Data Struc-

ture Creation Algorithm for In-Sequence Localization
using 1-Dimensional Time Series 62

4.1 The Need for New Vehicle Localization Approaches 63
4.1.1 Problem Formulation . 65

4.2 State of Research . 66
4.2.1 Sensor-Based Localization 66

4.2.1.1 Map-Matching . 67
4.2.1.2 Noise Characterization of the Inertial Measurement

Units . 69
4.3 Algorithm Description . 69

4.3.1 Road-Map Model Extraction 69
4.3.2 Locating a Vehicle using the Extracted Models 72

4.3.2.1 Model Transitions 73
4.3.3 Tracking a Vehicle using the Extracted Models 74

4.4 Practical Considerations . 75
4.4.1 Advantages of Linear Model Based Localization 75
4.4.2 Computational Burden . 76
4.4.3 Measurement Noise and Pitch Profile Variance 79

4.4.3.1 IMU Characterization 79
4.4.3.2 Bias Noise . 81
4.4.3.3 Angle Random Walk Noise 83

4.4.4 Simulation Setup . 83
4.5 Numerical Results . 84

4.5.1 Localization using Noise-free Data 84
4.5.2 Localization using Noisy Data 87

4.6 Discussion of Algorithm Limitations 88
4.7 Conclusions and Future Development 90

Chapter 5
Robust ARX model-based data structures for In-Sequence Lo-

calization using 1-Dimensional Time Series 94
5.1 Introduction . 95

5.1.1 The Effect of Noise on Data Representations in Literature . 96
5.2 Overview of Dynamical Model-based Data Structures 97

5.2.1 Using Dynamical Models to Represent Data 97
5.3 Background . 99

5.3.1 Transition Points . 100
5.3.2 Data Mining Features . 101

vii

5.3.3 Robust Features . 102
5.4 Developing Dynamical Model-Based Robust Data Representations . 103

5.4.1 Bounding the effect of noise in context of linear model-based
data structures . 103

5.4.2 Canceling the Effects of Known Sinusoidal Noise 106
5.4.3 Data Structure Extraction Algorithm 108
5.4.4 In-Sequence Localization Procedure 109
5.4.5 Online Noise Mitigation During Localization 110

5.5 Simulation Results Demonstrating the Robust Model-Based Data
Structure Effectiveness . 111
5.5.1 Vehicle Data . 111
5.5.2 Economic Data . 113
5.5.3 Random Data . 114

5.6 Discussion . 114
5.6.1 Compactness of Data Representation 115
5.6.2 Uniqueness of Transition Points 116
5.6.3 Physical Interpretation of Transition Points 117
5.6.4 Limitations . 117

5.7 Conclusions and Future Development 119

Chapter 6
Robust Data Structures for In-Sequence Localization using Mul-

tiple Time Series 122
6.1 Introduction . 123

6.1.1 Vehicle Localization Using Multiple Time Series 124
6.2 Multi-Dimensional Data Representations Survey 125

6.2.1 Multi-Attribute Time Series 125
6.2.2 Multidimensional Time Series 125
6.2.3 Clustering . 126

6.3 Dynamical Model Representations of Multi-Attribute Time Series . 126
6.3.1 Model Agreement . 128

6.4 Defining Robustness at Transition Points 130
6.4.1 Mathematical Formulation of the Model Extraction Problem 133

6.5 Identifying Models with Robust Transition Points 134
6.5.1 An Asymptotically Optimal Solution Approach 135
6.5.2 An Approximate Solution Approach 136
6.5.3 Approximation Procedure 136
6.5.4 Approximating the Objective Function 137
6.5.5 Finding Preliminary Terms 140
6.5.6 Convexity of the Solution Space 141

viii

6.5.7 Finding the Approximation in Each Subspace 142
6.5.8 Implementing the Approximation 143

6.6 Data Representation Extraction Algorithm 144
6.7 In-Sequence Localization Algorithm 147
6.8 Numerical Experiments . 147

6.8.1 Vehicle Localization . 148
6.8.2 Dominant Source Localization in Power Generation 150
6.8.3 Localization Using Air Temperature and River Discharge . . 152

6.9 Discussion . 154
6.9.1 Contribution of Additional Time Series 154
6.9.2 Limitations on Adding Time Series 156
6.9.3 Reference Map Creation Without Time Series Normalization 157

6.10 Conclusions and Future Development 158

Chapter 7
Concluding Remarks 160
7.1 Contributions . 160

7.1.1 The Introduction of In-sequence Localization 160
7.1.2 An ARX Model-based Approach to In-Sequence Localization 161
7.1.3 A General Approach to Robust ARX Data Representations . 162
7.1.4 A Robust Multiple-Time Series Representation Method . . . 163

7.2 Future Work . 164
7.2.1 Robust Model Trees . 164
7.2.2 Simultaneous Optimization Across All Models on a Tree Level 165
7.2.3 Robust Path Selection Methods 165
7.2.4 New Application Areas . 166

Appendix
The One Dimensional Chance Constrained Formulation 167
1 Developing the Chance Constrained Formulation 167

Bibliography 170

ix

List of Figures

3.1 The effect of noisy sensors. An example from vehicle data collection. 33
3.2 Vehicle Sensor Output Diagram . 33
3.3 A sample PAA representation, representing a data set by 10 segments. 36
3.4 A sample SAX representation, representing a data set by 10 segments. 39
3.5 A sample PLR representation that describes a data set using 10

slopes. 42
3.6 A sample APCA representation with 10 adaptive segments. 44
3.7 Fidelity of All Segmentation Methods in vehicle data with respect

to 12 dB of Gaussian noise (data length = 1,500 pts) 47
3.8 Fidelity of All Segmentation Methods except PLR in vehicle data

subject to 12 dB of Gaussian noise (data length = 15,000 pts) . . . 48
3.9 Fidelity of All Segmentation Methods in vehicle rate data with re-

spect to 12 dB of Gaussian noise (data length = 1,500 pts) 48
3.10 Fidelity of All Segmentation Methods except PLR in vehicle rate

data that is subject to 12 dB of Gaussian noise (data length =
15,000 pts) . 49

3.11 Fidelity of All Segmentation Methods in Random Data that is Cor-
rupted with 12 dB of Gaussian noise (data length = 1,500 pts) . . . 49

3.12 Fidelity of All Segmentation Methods except PLR in Random Data
that is Corrupted with 12 dB of Gaussian noise (data length =
15,000 pts) . 50

3.13 Fidelity of All Segmentation Methods in Random Rate Data that
is Corrupted with 12 dB of Gaussian noise (data length = 1,500 pts) 50

3.14 Fidelity of All Segmentation Methods Except PLR in Random Data
Corrupted with 12 dB of Gaussian noise (data length = 15,000 pts) 51

3.15 Average Number of Matching Steps During In-Sequence Localiza-
tion in Vehicle Data . 57

3.16 Correct Detection Rate During In-Sequence Localization in Vehicle
Data . 57

x

3.17 Average Number of Matching Steps During In-Sequence Localiza-
tion When Using Vehicle Data rate 58

3.18 Correct Detection Rate for In-Sequence Localization in Vehicle Data
Rate . 58

3.19 Average Number of Matching Steps for In-Sequence Localization in
Random Data . 59

3.20 Correct Detection Rate in Random Data for In-Sequence Localization 59
3.21 Average Number of Matching Steps When Performing In-Sequence

Localization in Random Rate Data 60
3.22 Correct Detection Rate in Random Rate Data During In-Sequence

Localization . 60

4.1 ARX Model Fit Demonstration . 72
4.2 An Example Model Structure Designed For Localization. 77
4.3 An Example FLOPs Count, for Computational Comparisons. 78
4.4 IMU sensor noise comparison by sensor price. 80
4.5 Vehicle Data Difference Map . 82
4.6 Approximate Vehicle Data Collection Route in State College, PA,

USA . 82
4.7 Number of Converged Trials per Iteration Number for 100 Noise

Free Localizaiton Trials in Vehicle Data. 85
4.8 Model Elimination Example - Model 1 86
4.9 Model Elimination Example - Model 2 86
4.10 A Histogram of Localization Distances in Noisy Vehicle Data. . . . 87
4.11 Localization Experiment Outcomes in Noisy Vehicle Data 89

5.1 Demonstrating the Effects of Noise on Random Data Representations. 97
5.2 A Depiction of Model Structures for In-Sequence Localization. . . . 98
5.3 One Dimensional Transition Point Uncertainty. 104
5.4 In-sequence Localization Results using Vehicle Data using Robust

One Dimensional Models. 112
5.5 In-sequence Localization Results using Economic Data and Robust

One Dimensional Data Models. 113
5.6 In-sequence Localization Results using Random Data using Robust

One Dimensional Data Models. 115
5.7 Experiment Run Time Comparison for Localization Maps Created

in Chapters 4 and 5. 116
5.8 Uniqueness of Robust Transition Points in Vehicle Data 117
5.9 Inflation Data Model Order Fit for Robust One Dimensional ARX

Models. 118

xi

6.1 Example of the Uncertainty in Transition Points, Represented by
the Gaussian Distribution Overlap In Two Dimensions. 132

6.2 Solution Space Illustration for the Case of Two Dimensions (Time
Series). 142

6.3 Example of Localization Using Multiple Time Series of Vehicle Data. 150
6.4 Example of In-Localization in Wind Speed Data and Solar Irradia-

tion Data. 152
6.5 An Example of In-Localization For Stream Health Monitoring. . . . 154
6.6 Segmentation and Convergence using Only Vehicle Pitch Data. . . . 155
6.7 Vehicle Segmentation and Convergence Results Using Both Vehicle

Pitch and Roll Data. 155
6.8 Segmentation Results With Different Noise Variances. 158

xii

List of Tables

3.1 DFT Segmentation Algorithm . 36
3.2 PAA Segmentation Algorithm . 37
3.3 DWT Segmentation Algorithm . 38
3.4 SAX Segmentation Algorithm . 40
3.5 Chebyshev Segmentation Algorithm 41
3.6 PLR Segmentation Algorithm . 43
3.7 APCA Segmentation Algorithm . 45
3.8 Representation Fidelity Testing Procedure 46
3.9 Fixed Data Window Length In-Localization Procedure 54
3.10 Variable Data Window Length In-Localization Procedure 56

4.1 Optimal Greedy Algorithm for ARX Model Identification 71
4.2 Vehicle Localization Algorithm for Model Structures 92
4.3 Vehicle Data SNR at 1Hz Given a Sensor Choice. 93

5.1 Data Structure Extraction Algorithm for Robust One Dimensional
Models . 120

5.2 In-Sequence Localization Algorithm for Model Structures Using Ro-
bust One Dimensional Models. 121

6.1 Steps to Building the Problem Approximation 137
6.2 Approximation Procedure When Representing Multiple Time Series 144
6.3 Data Structure Extraction Algorithm for Multiple Time Series. . . . 146
6.4 In-Sequence Localization Algorithm for Model Structures Using

MIMO ARX Models. 159

xiii

List of Symbols

Data Symbols and Constants:

d, d̄ The letter d is reserved for noise-free time-series data. When multiple corre-
lated time series are present, they are denoted by the index subscript γ (see
Chapter 6). When a vector of noise-free data is represented by the constant
d̄.

x, x̄ The variable x denotes a corrupted data point, for example x(t) = d(t)+η(t).
A vector of sequential corrupted data points is denoted by x̄.

v The letter v is used to represent the velocity of a moving vehicle in the
descriptions of vehicle data collection. The first usage occurs in Fig. 3.1.

s The letter s denotes the distance traveled by a moving vehicle in the afore-
mentioned figures.

p The letter p denotes the current position of a traveling vehicle during local-
ization.

Probabilistic Symbols and Constants:

η In this thesis the letter η is reserved for the additive noise that is corrupting
the time-series data.

ση The noise in this thesis is typically Gaussian because of the sensors used
in vehicle localization. The standard deviation of this noise is defined as
ση and is given by the sensor manufacturer.

σm A standard deviation σm indexed by a model number, m, denotes the
output standard deviation of a particular model that is being discussed.
In the multiple time series cases, the covariance matrix of the models is
denotes as Σm.

σem When the distribution characterizes the modeling error of the mth model,
the standard deviation or the covariance matrix are expressed as σem or
Σem , respectively.

xiv

P(·) Given the description of noise, the probability of an event is described by
P(·).

Φη(·) The additive sensor noise, N(0, ση), is described by the cumulative distri-
bution function Φη(·).

Φem(·) The cumulative distribution function of the model output error is expressed
as Φems

(·).
β The Greek letter β is reserved for the addive bias noise introduced in Chap-

ter 4.

ζ In the multiple time-series, when the uncertainty is aggregated on the right-
hand side of the equation, this aggregate uncertainty is represented by ζ.

ρ The constant ρ is used to bound the minimum probably of success at a
transition point when finding the equivalent deterministic expression for a
probabilistic expression.

Modeling Symbols and Constants:

A The capital letter, A, is used to denote the Auto-Regressive Model with
an exogenous input (ARX) that describe the data in this thesis. This
letter is used both in the single and multiple dimensional cases.

c The coefficients of the models are designated by the letter c.

N The capital letter, N , signifies model order for the ARX models in this
thesis. Throughout this document the order five is used for the numerical
experiments.

e,e The letter, e, denotes the modeling error of a given model and is indexed
by the model from which it is produced and the time index. Addition-
ally a boulded e is used to denote a vector of error that is found when
evaluating a set of data points simultaneously.

λ In Chapter 5, the variable λ is used to describe the zeros of the system
equation.

ε,ε The Greek letter, ε, is used to denote the modeling error bound and is
indexed by the model number. A boulded ε denotes a vector of modeling
error bounds such as those seen in the multiple time series case.

τm The Greek letter, τ is used to denote the transition point where one
model’s segment ends and another model’s segment begins. The index m
denotes the ending point of the mth model segment.

ω In the matrix model equations, the vector ω contains all data points input
into the models. This data is typically noisy.

xv

z The vector that contains the subset of points against which model agree-
ment is tested is represented by z.

NL In a model structure the capital letter L is used to denote the number
levels of the structure.

m, NML Correspondingly, the number of models per level is denotes as NML. Each
model on a given level is indexed by the index m.

Ns The number of segments for previously published data representations
are denoted by the letter Ns.

ϕ,Ψ The symbols of previous data representations surveyed in this thesis are
represented by the Greek letter ϕ, and the total representation is repre-
sented by Ψ.

Indices and Other Variables:

t The index t is used to denote the time instant at which the data is collected.

j The index j is used throughout this thesis as a data index representing the
unknown location of a small subset of the data within the larger collected data
set.

k The index k is used throughout this thesis as a data index representing the
length of a small subset of the data. The first and last data point indices are
represented as ks and ke, respectively.

i The index s is used as a data index representing the length of the full data
set within which localization is occurring.

T The letter T is used to denote the time delay in acquisition of the localization
subset of data.

Nts The variable Nts is used to denote the number of time-series used in the multi-
attribute time-series localization. The time indices or corresponding model
dimensions are indexed by γ.

Mathematical Operations

vector inequality: ≤ or > Throughout this dissertation vector inequalities (for two
given vectors a and b) of the form a ≤ b are used to
denote the row-wise inequality of the elements of the
two vectors. For example when comparing the modeling
error vector to the modeling error bound vector,

em ≤ εm ⇔







em1
≤ εm1

...
emk

≤ εmk






.

xvi

vector inequality: ≷ In the case where the symbol ≷ is used to denote a
vector inequality of two vectors a and b, the specified
inequality contains some row-wise inequalities that are
less than or equal to the right hand hand term, and
some row-wise inequalities that are greater than the
right hand term, i.e. using the model error compari-

son from above em ≷ εm ⇔







em1
≤ εm1

...
emk

> εmk






.

scalar inequality: ≷ In the case of scalar inequalities denoted by ≷, this sym-
bol refers to the evaluation of whether the magnitude
of the left hand side is greater than or less than the
right hand size, i.e. we evaluate whether a given row
of one vector is greater than or less than the row of
another. Extending the modeling error example from
above ‖emk

‖ ≷ εmk
⇔ ‖emk

‖ ≤ εmk
or ‖emk

‖ > εmk
.

xvii

Acknowledgments

Its been said before that no thesis has ever been written alone. Anyone who has
ever completed a dissertation knows that nothing written in this document can be
truer than this statement. I would like to thank my advisors Constantino Lagoa
and Sean Brennan for the countless hours of advice both academic and personal
that contributed so much to my growth in graduate school. I could not have done
this without you.

I would like to thank my committee: John Doherty, Minghui Zhu, and Chris
D. Rahn for their collaboration and support.

I would like to thank my lab mates both past and present that helped set the
stage for my research. I especially want to thank Kshitij Jerath, who never misses
an event and is always ready to help, Pramod Vemulapalli, who continues to offer
advice and support long after he has graduated, Ashkan Jasour, for his comical
approach to life that made conferences presentations easier.

I would like to thank the Electrical Engineering Department for offering me
their support and allowing me to teach while finishing this degree. Thanks to
David Salvia, who has been a tremendous mentor for me as a teacher. Thanks to
Kultegin Aydin for offering me a hand when I needed it.

I am also deeply indebted to my family for their support. I would like to thank
my father, Ivan Laftchiev, for his always timely words of wisdom and encourage-
ment, my mother, Vessela Stefanova, for her undying support and love, my brother,
Christian Laftchiev, for his sage advice on life, and Sarah Yoder, who is always
patient, loving and understanding.

Finally, this dedication would not be complete without mentioning my friend,
Joseph Kasprzyk, a person whose shoulder I have leaned on one too many times,
and SherryDawn Jackson, who was my home away from home so often in this
process.

Thank you all, you made this work possible.

xviii

Dedication

To my family and Joe.

xix

Chapter 1

Introduction

Since the dawn of civilization, progress has been driven by the collection of data

that facilitates decision making. In the period known as the scientific Renaissance

(after the 17th century), the pace of data collection increased as systematic meth-

ods of analysis were developed that required repeated experiments for verification

[1]. Today, at the beginning of the third millennium, data collection occurs at a

dizzying pace and is increasing with every passing day [2].

The data collected today will enable new applications that change all aspects

of science. For example, the field of signal processing in the 20th century has been

focused on obtaining the best possible estimate of a signal given a single (or several)

time series of data. However, as sensing technology continues to decrease in cost

and the volume of collected data increases, the more pressing question has become

how to process, store and compress the large tracts of data while preserving the

most useful information from them. The information that is retrieved from this

data is then used to enable the design of new applications that were previously too

complex to model. This new paradigm builds on previous work in signal processing

but shifts the question from obtaining the “best” possible signal to extracting the

most meaningful information rapidly when the volume of data overwhelms the

available computational resources [3].

When discussing large scale data collection, two commonly cited examples of

future applications where data is recorded from multiple rapidly sampled sensors

are human body monitoring [4] and autonomous transportation systems [5]. In

monitoring the human body, the goal is to map and understand the biological

2

functioning of the human body1 thereby shaping treatments and reducing the dis-

comfort of aging or even extending the lifespan of the human population. In creat-

ing an autonomous transportation system, a system that is capable of optimizing

the transportation network without human intervention to minimize inefficiencies,

we seek to maximize the utility of global resources and efficiently transport goods

and services. Both tasks will be facilitated by arrays of sensors that provide con-

tinuous feedback and a torrent of information that must be rapidly processed.

The ubiquitousness of sensing technology is changing present day applications,

adding detail and reliability when needed. For example, in the domain of vehicle

navigation, new safety technologies are demanding greater reliability for the loca-

tion estimates [6] that GPS cannot provide (ex. driving through a tunnel) [7, 8, 9].

Of the many alternate (supplementary) localization strategies, the best methods

invoke sensors whose information content is orthogonal to the GPS signal and is

therefore available when the GPS signal is not.

The primary application explored in this thesis is terrain-based vehicle local-

ization. In particular, the motivation for this dissertation is to develop a vehicle

localization method using terrain data acquired from a vehicle. Terrain-based ve-

hicle localization can be divided into two phases. In the offline phase, the terrain

data is collected by a mapping vehicle and then compressed into a localization map

using data representations. Then in the online phase, a second vehicle acquires

new terrain data from its sensors and compares this data to the stored localization

map. Using this comparison, the vehicle then infers its location.

The localization process in a moving vehicle has three central requirements.

First, the process must be computationally efficient such that the vehicle can max-

imize the size of the map on which it is moving. Second, the on-disk size of the

map must be minimized to accommodate the storage requirements in the vehicle.

And third, the localization process must be maximally robust to sensor noise such

that it can be implemented in production vehicles with cheaper (noisier) sensors.

This thesis takes the approach of representing the data using dynamical models

that are of low order, computationally efficient for localization, and tunable to

achieve greater robustness to noise. In developing the approach in this thesis, the

problem of vehicle localization is extrapolated to the larger data problem of in-

1One example is Google’s new Baseline Study.

3

sequence localization . In-sequence localization is the ability to locate a small

fragment of a time series inside a larger data set containing the entire history of

the process that generates the time series. This is a data-driven problem that is

enabled by new data collection methods and that has not been addressed in detail

in the literature.

More formally, the problem of in-sequence localization can be described as

follows. First, a complete archive containing a data series is collected. This data

series is ordered by a flow; typically sequential ordering in time. The data series is

complete in the sense that the process repeats and “new” values that are observed

follow the historical trends. Then at some later point, a small subset of data

from the same process is collected to find its location within the original data

set. Here the term location is used to mean the relative index of the starting and

ending points of the second subset of data. This problem will be discussed in more

mathematical detail in the subsequent chapters.

In-sequence localization is a computationally expensive localization method if

the approach used is a brute force comparison of possible subsequences of data

[10]. For this reason in this thesis, we assume that during the localization map

building the computational resources are unlimited, but during the in-sequence

localization, the resources are limited because the process takes place on a mo-

bile platform. Using these assumptions allows the formulations of computationally

expensive problems during map building that can be leveraged to reduce the com-

putational cost of the online localization process.

In doing this, the work presented here straddles the previous localization ap-

proaches which tended to be probabilistic methods (ex. particle filter) [10, 11] or

focused on noise reduction prior to reducing the data dimension [12]. This thesis

studies prior dimension-reducing transformations from the literature [13, 14, 15]

and evaluates their performance for in-sequence localization. We follow the emerg-

ing realization [16, 17, 12, 18, 19] in the data community that data transformations

must be robust to account for the noise that is observed in every time series collec-

tion process. To this end, the transformations in this thesis are specifically geared

to reduce the effect of sensor noise when the distribution of the noise is known.

The remainder of this chapter will describe the contributions of this thesis and will

provide a road map to the reader of the evolution of the dissertation.

4

1.1 Overview of Chapters

1.1.1 Chapter 2: Literature Review

Chapter 2 introduces the previous work in vehicle localization and data driven

fields such as dimension reduction, pattern detection, fault detection, and filter

banks. This introduction provides a context for the remainder of the text. The

material presented here covers all chapters, but each chapter hereafter contains an

appropriate, self-contained background section of material.

1.1.2 Chapter 3: The Effect of Noise on Alternative Rep-

resentations of a 1-Dimensional Time Series used for

In-Sequence Localization

The problem of in-sequence localization is introduced in Chapter 3. After describ-

ing the problem two possible solutions are implemented using seven published and

common dimension-reducing data representations. The need for in-sequence local-

ization is motivated by the emerging ability to perform vehicle localization using

stored terrain data.

This chapter explains that because in-sequence localization is performed on a

mobile platform, the execution of solutions necessitates dimension reduction of the

terrain data, noise robustness of the data representations, and rapid convergence

to the solution. These criteria are used throughout the chapter to evaluate the

feasibility of using the published data representations. The performance of each

representation is tested for robustness in translation and for in-sequence localiza-

tion accuracy. To demonstrate that in-sequence localization is not restricted to

vehicle data, the algorithms are also tested on two types of random data. The

study shown in this chapter is under preparation to be submitted to IEEE Trans-

actions on Knowledge and Data Engineering.

5

1.1.3 Chapter 4: A Dynamics Discontinuities-Based De-

terministic Data Structure Creation Algorithm for

In-Sequence Localization using 1-Dimensional Time

Series

Terrain-based vehicle localization using a dynamical model-based data representa-

tion is developed in Chapter 4. In this chapter, vehicle localization is performed

using only terrain data from a vehicle’s on-board sensors. Road data is encoded

using linear dynamical models, and then, during travel, the location is identified

through continuous comparison of a bank of linear models. The approach pre-

sented has several advantages over previous localization methods described in the

literature. First, the approach creates computationally efficient linear model map

representations of the road data. Second, the use of linear models eliminates the

need for metrics during the localization process. Third, the localization algorithm

is a computationally efficient approach that can have a bounded localization dis-

tance in the absence of noise given certain uniqueness assumptions on the data.

Fourth, encoding road data using linear models has the potential to compress the

data, while retaining the sensory information. Lastly performing only linear opera-

tions on observed noisy data simplifies the creation of noise mitigation algorithms.

Preliminary work from this chapter was presented at the 2012 IEEE Conference on

Decision and Control [20] and was awarded second place paper at the Penn State

College of Engineering Research Symposium in 2012 [21]. The material in the

chapter is published in IEEE Transactions on Intelligent Transportation Systems

[22].

1.1.4 Chapter 5: Robust AR model-based data structures

for In-Sequence Localization using 1-Dimensional Time

Series

Continuing the development of dynamical model-based vehicle localization, Chap-

ter 5 introduces one approach to making the representations more robust to sensor

noise. The goal is to move noise mitigation from an online process where it re-

quires valuable computing resources to a map building process such that the map

6

automatically reduces the effect of sensor noise.

In particular, in this chapter the dynamical models are fitted to underlying data

such that the resulting models are maximally robust to collection sensor noise at

the respective model switch points in the data. In essence, the data is optimally

divided into features that minimize the effects of noise on the distinction between

neighboring model representations. Then, the data representations are organized

into structures that further reduce the effects of noise by preserving data order

and taking advantage of the properties of uncorrelated noise, namely the fact that

averaged data has a reduced standard deviation of noise.

The approach in this chapter is motivated by the application of vehicle localiza-

tion; however, the development of the chapter pushes further into expanding the

developed representation for the more generic problem of in-sequence localization.

To consider broader applications, the chapter also demonstrates the applicability

of the algorithms by testing them on financial and random data. Preliminary re-

search was presented at the 2013 IEEE Conference on Decision and Control [23]

and the 2014 American Control Conference [24] and was awarded the IEEE award

for best paper at the Penn State College of Engineering Research Symposium in

2013 [25]. The work presented in this chapter is currently under review in IEEE

Transactions on Knowledge and Data Engineering.

1.1.5 Chapter 6: Robust Data Structures for In-Sequence

Localization using Multiple Time Series

In Chapter 5 of this dissertation, the robust dynamical model representations of the

data are shown to produce smaller localization maps that are easier to compute,

and that show that for the given data sensor, large areas of the data do not

have a robust model transition point. This suggests that the method by which

new sensors should be added to localization maps is to find sensors whose output

produces robust transition points in the previously sparse region of the data.

Chapter 6 describes the incorporation of multiple time series when building

a localization map. Making a multi-dimensional data representation robust even

at transition points is a highly non-convex problem. For this reason, this chapter

introduces an approximation that allows the efficient incorporation of multiple time

7

series such that the problem can be solved efficiently as the number of collected

terrain data points is increased.

In addition to advancing the theoretical approach to representing multiple time

series for in-sequence localization, this chapter also expands the demonstration of

possible applications to the approach. Data from two new applications are used for

multiple time series in-sequence localization problems: stream health monitoring

data, and variable power generation forecasting data. The chapter demonstrates

the viability of using in-sequence localization in these applications and demon-

strates new possibilities for future research.

The preliminary work supporting this chapter was submitted to the 2014 IEEE

Conference on Decision and Control and was awarded the best paper award at the

Penn State College of Engineering Research Symposium in 2014 [26]. A manuscript

describing the material in this chapter is currently under development for submis-

sion to IEEE Transactions on Knowledge and Data Engineering.

1.1.6 Chapter 7: Conclusions and Future Work

We conclude this dissertation by discussing the advantages and disadvantages of

our work. We also propose future extensions that would strengthen the approach

and add to the body of science.

Chapter 2

Literature Review

Throughout history ideas have been often been discovered and re-discovered only

to be forgotten again. In hopes of not falling prey to this scientific folly, this

chapter overviews a wide array of previously published papers that pertain to the

research in this dissertation. Then each chapter hereafter reminds the reader of the

previous research by including an appropriate background section. Chapter 2 is

subdivided into three main sections that represent work from four broad categories

of researchers: data mining, pattern matching, vehicle localization and histogram

filters.

The layout of the data mining section (section 2.1) follows the logical steps

taken by a subsequence matching algorithm, the closest and most popular appli-

cation to in-sequence localization. The first step in any subsequence localization

algorithm is segmenting the data in disjoint segments. These segments are then

represented by a dimension reducing feature whose purpose is to reduce the com-

putational complexity of matching. Once the data is segmented and represented,

new data can be matched or classified using the same dimension reduction tech-

nique and a choice of similarity measure. The section concludes by discussing the

current directions in the field of data mining. The review here is focused on time

domain approaches because this dissertation is developed in the time domain. For

an even larger review of data mining papers, some of which are not in the time

domain, please see the review article by Fu [15].

Linear model based localization straddles the areas of data mining and pattern

recognition. The latter heavily borrows from the first in terms of creating pattern

9

databases and determining similarities in patterns. Section 2.2 in this chapter

reviews pattern matching literature that uses linear filter banks for detection. In

particular, the papers review are focused in texture detection which is the main

area of patter matching that uses linear filter banks.

Because the main application for the dynamical model-based in-sequence local-

ization technique described in this thesis is vehicle localization, section 2.3 reviews

relevant work in localization. This work can be thought of as pattern matching in

vehicle data, where the relative uniqueness of the patterns determines the quality

and the speed of the localization process. This section also reviews previous work

by other researchers in the authors’ labs. The chapter concludes with a brief de-

scription of histogram filters in section 2.4.2, which can be thought of analogues

to the localization process developed in this thesis.

2.1 Data Mining Background

2.1.1 Segmentation

In general terrain-based localization or the more general problem of in-sequence

localization are not computationally tractable using a burte force subsequence

matching approach. For this reason the first step in terrain-based localization (in-

sequence localization) is the creation of a reference map that contains patterns

which represent salient information in the data. The data mining community has

frequently used linear regressions in the past to models trends and patterns in the

data. In particular the work of Shatkay and Zdonik [27] showed that linear regres-

sions can be used to reduce the data dimension to represent large data sequences.

The work by Shatkay and Zdonik aims at determining an approximate match to

a subsequence using the linear regressions and then verifying the match using the

complete subsequence which is stored in parallel with the representation. To keep

the matching computationally simple, on the first order regression is saved as a

representation. The use of larger order models is rejected as too complicated, and

generally less efficient. Simplifying the representation of data even further, this

paper further suggests the representation of data using only the extrema points.

However, the authors determine that using only extrema points is too simplistic

10

to fully represent the data.

Following the approach in [27], many authors have used variants of the first

order regressions. Prominent examples include the piecewise aggregate approxi-

mation (PAA) [28, 29] which uses the mean values of a series of data segments as

representation. As noted in the literature the main drawback of the PAA algo-

rithm is its fixed segmentation length that may intersect important features in the

data. This limitation is subsequently addressed in the adaptive piecewise constant

approximation algorithm (APCA) [30]. A second representation that adaptively

models the data is the piecewise linear representation which is a set of slopes that

describe data segments chosen to minimize the mean square error between the

representation and the data [31, 32]. Specific descriptions of these algorithm and

others to follow can be found in Chapter 3 where the techniques are implemented

for testing for in-sequence localization.

In general, segmentation is the determination of either the extrema of the time

series or the “significant” points that enable pattern detection. The term significant

is defined in each publication by the authors. Significant points were first defined in

[33] as the points at which the behavior of the time series changes. The problem is

analogous to that called “change point detection” in the statistics community. The

generic approach to solving this problem is to identify a set of break points through

the identification of a set of models about the point. These models are identified

by minimizing a loss function specified by the author. No single loss function has

emerged as the correct choice. Popular choices to be described below include mean

square error, least squares fit, and maximum likelihood estimation. The problem is

most complex when encountering situations which require streaming segmentation

of segmentation where the length of the extracted segments is not identical. These

latter cases are the currents trends in development of the field.

Once a significant point (or transition point as will be later discussed in this

thesis) is chosen, the data is bisected about the point during the segmentation

process [34]. It is notable to mention that the idea to bisect significant points was

proposed earlier in [35]. In this paper the switching sequence of subprocesses was

identified using nonlinear gated experts, a statistical physics tool.

Concurrently with the development of the approaches above, a dynamical pro-

gramming approach [36] was developed to find the number of possible data in-

11

tervals, the model order in each interval, and the location of the intervals. This

work was aimed at determining the best possible method of modeling a set of data.

Duncan et al.’s algorithm [36] is based on a least-squares fit of the models onto

the available data. It is a more efficient method to detect of changes in dynamical

systems than the one proposed in [37] which is based on the parameterization of

linear systems in [38].

There are also several notable sliding window approaches that compete with

the significant event detection algorithms described above. First, [39] presented

a sliding window approach to change point localization and segmentation. Then,

in [40] piecewise segmentation and identification is proposed. The approach maps

similar segments in a time series as neighbors in a neighborhood map. Then later,

in [41] a bottom up sliding window method termed SWAB is suggested.

2.1.2 Robust Features

The literature on robust data representations, or data representations that are

designed to counteract the effects of noise, is sparse. Few papers explicitly discuss

or make mention of data noise as a consideration. One possible reason for this

lack of literature is that most data mining is performed with the goal of finding

“similar,” not exact features. Another possible reason is that the signals on which

these algorithms are based are strong, with large signal-to-noise ratios (SNRs) that

minimize the effect of noise. Both of these assertions are not valid in the application

of vehicle localization where an exact identification is needed and where the terrain

data has relatively poor SNR when the decimation of the recorded terrain data is

on the sub-meter scale.

The most commonly discussed representation where noise was observed in the

data is the piecewise linear representation (PLR) [42, 43]. In particular the work

by Jia et. al. [43] contains a good review of PLR algorithms and then aims to

develop a new approach that improves PLR’s robustness to noise. Here the authors

note that the need for a user-specified number of segments is a major weakness.

By reformulating the problem in terms of error bounds, the authors automatically

choose the number of segments in PLR on a data set given an error bound. The

advantage of formulated the error in terms of error bounds also extends to noise

12

robustness because the error bound could be chosen such that the level of noise is

accommodated.

A separate subset of papers by Fink et. al. [44, 45] also focuses on the problem

of identifying noise robust points. The difference here is that the papers focus

on the identification of maxima and minima in the data, which are inherently

more robust. The paper by Fink and Pratt [44] builds on this idea by identifying

patterns in the reduced dimension (extrema point) data set.

Building on the idea in [44], the work by Vemulapalli et. al. [12] proposes an

optimal filter that reduces the effect of noise prior to identifying patterns. The

patterns in this work are combinations of robust minima and maxima in the data.

Combining filtering and robust pattern identification improves on the classical

approach of smoothing the data before obtaining representations. Furthermore,

this approach is verified using real-world vehicle data from the author’s lab.

Lastly, a more general approach to robust data representations laid out by

Preng et. al. [46] cites the natural method of location recognition by animals and

humans, which use landmarks to identify particular sites in their surroundings. The

landmark model, as it is called in the paper, uses landmarks as robust data points

that can be used for identification. Specific development for a specific application

is left to future authors.

However, recognition of both the problems introduced by noise and the limita-

tions of sensor technology is increasing. Application specific papers from several

domains offer insight into this problem and evaluate the performance of algorithms

specifically evaluated with respect to the quality of sensors. In the vehicle localiza-

tion domain the authors of Stoyanov et al. [16], Mullane et al. [17], and Vemulapalli

et al. [12] discussed the effect of sensor noise on the building of localization maps.

In the realm of air traffic control where the piecewise linear representation (PLR)

is used to model aircraft motion data, Guerrero et al. [18] discusses the limitations

of PLR with respect to noise and and suggest improvements to the PLR algorithm

handle noise. Lastly, dealing with optical data, Skauli [19] discusses the effect of

sensor noise in storing and processing hyperspectral data that is recorded from

optical sensors.

13

2.1.3 Subsequence matching

When segmenting a time series the resulting representation is often used for sub-

sequence matching, or as discussed later in this thesis for in-sequence localization.

Subsequence matching is the identification of a user specified subsequence from ex-

isting data. And in-sequence localization is the matching of the subsequences and

the identification of the time series point locations in the previously recorded time

series. This section will describe the existing methods of subsequence matching.

Initial work in the field of subsequence matching was focused on the matching

of whole sequences [47]. This work is focused on reducing the dimension of the data

by taking the discrete Fourier transform and preserving the first 2-3 coefficients.

Using Parseval’s theorem the authors note that Euclidean distance in the frequency

domain is the same as the Euclidean distance in the time domain. They then use

a Euclidean distance in the Fourier coefficients to determine a match between the

query sequence and the database sequences.

Building on this work, the authors of [48] generalize the algorithm to subse-

quences, i.e. fragments of time series that are smaller than the originally recorded

sequence (time series). The developed algorithm, often referred to as FRM after

the author’s initials, uses a sliding window approach to find all possible subse-

quences in the data. A sliding window approach can be thought of as a fixed

width window, that is slid across the time series one end point at a time. Each

new offset point generates a new subsequence and a new set of Fourier coefficients.

Because the coefficients are similar at nearby offsets, groups of coefficients are col-

lected in minimum bounding rectangles (MBRs) that are stored hierarchically in

a tree to enable quick localization.

Together the papers [47, 48] form the basis of the data dimension reduction

research community. Since these papers, many authors have sought to improve

the performance of subsequence matching. An interesting example of this is the

work in [49] that is the dual of the FRM solution. Here the algorithm called Dual

Match segments the database into disjoint windows and the query sequence. This

segmentation is performed using a sliding window. The idea behind this algorithm

is to use the Fourier coefficients directly while storing the tree structure, instead of

the MBRs. This eliminates coefficient uncertainty created by MBRs and reduces

the false alarm rate.

14

Reducing the false alarm rate is a critical component of increasing algorithm

speed and efficiency, because the largest computational cost comes from the over-

head generated by the post-processing required to eliminate false alarms [50].

There exist several papers that transform the storage structure to optimize CPU

usage and minimize bottlenecks [51, 52].

There are also other approaches in the literature that perform subsequence

matching based on the Euclidean metric but are not based on the work in [47, 48].

For example in [53] the authors propose an approach that entails modeling the

query and database data using slopes that connect minima and maxima in the

data. The query is also described using a similar set of sloped lines. Subsequence

matching is then performed by sliding the query sequence representation over the

database representation at all offset points, and comparing the Euclidean metric

at each instance.

Another example is the work in [54] which proposes to extract anomalies in

time series data which can be used in classification and matching. This work

focuses on the creation of an efficient algorithm to detect these anomalies because

the original brute force problem is computationally prohibitive. The references

here in also point to a different body of work, which seeks to discover patterns or

motifs in time series data.

Lastly, there are also subsequence matching algorithms based on PLR [55, 56].

A key feature of these algorihtms is that they are online algorithm, i.e. algorithms

that are capable of processing data in real time. Testing their performance, the

authors use streaming financial data. Incoming data is modeled using a linear

piecewise representation, and then matched to the query sequence using a permu-

tation of the each, the set of higher segment bounding points, and the set of lower

segment bounding points. It is notable here that the metric is similar to other

subsequence matching literature (e.g. the Euclidean metric).

In fact, the majority of work cited in this chapter to date has relied predomi-

nantly on the Euclidean metric. This is because the Euclidean metric is a relatively

computationally inexpensive approach as compared to metrics used in the field (e.g.

dynamic time warping (DTW)). Using DTW, a method that aligns time series on

the time axis, several authors have presented notable results [57, 58, 59]. We choose

not to focus on this work because we are interested in developing approaches that

15

rely on the smallest number of pre-processing steps and the lowest computational

cost.

Lastly, this section would not be complete without a short overview of the

benchmarking papers that evaluate the state of research in the data mining com-

munity. In [13], Keogh and Kasetty offer a scathing review of the data mining

community and the approaches presented to data. Of 360 initially reviewed papers,

only 57 are cited in the final study. Of this, the majority perform only marginal

comparisons to other work and exhibit strong biases such as implementation bias

and data bias. Furthermore, it is interesting to find that at least 70% are based on

the initial work in [47, 48]. The paper concludes with some suggestions to improve

the quality of papers published by the data mining community.

An updated comparison is co-authored by Keogh in 2008 [14]. This paper

argues strongly for the adoption of tightness of lower bound metric by which to

evaluate time series representation. This metric bounds the minimum Euclidean

distance between extracted time series features, ie. if we imagine the features as

balls in a two dimensional space, then the minimum bounding distance is the small-

est distance between two balls. The conclusion drawn by the authors is that this

minimum distance is strongly correlated to the ultimate number of subsequences

retrieved from storage, with closer subsequences requiring more queries and vice

versa. In addition the authors evaluate the full breadth of the similarity measures

proposed in the literature. They conclude that as the size of the data set grows,

all similarity measures converge to the Euclidean metric performance. Due to the

relative simplicity of this metric, there is then no advantage to using more complex

approaches suggested in the literature.

2.1.4 Data Compression via Pattern (Feature) Extraction

2.1.4.1 Rapid On-Line Clustering and Discovery

One of the big challenges in the data mining community is the online compression

and classification of streaming data time series. This need is driven by the increas-

ing availability of data from a growing array of sensors. As the data increases,

the storage requirements also rise rapidly and the pattern discovery process grows

exponentially in computational cost [15].

16

The first online algorithm presented here is by Fu et.al [60], which introduces

perceptually important point representations algorithm for stock data. In this

paper the authors argue that the data representations rely mostly on a few ex-

trema points and therefore the in between fluctuations can be safely discarded and

approximated by line segments. The resulting features are then organized using

self-organizing maps (SOMs) that cluster the extracted patterns according to a

distance (squared Euclidean distance) from pre-specified set of nodes. Following

the addition of a pattern to a node, the node itself is updated hence the SOM

term.

The approach of neural clustering of SOMs was first pioneered by Kohonen

[61, 62]. In terms of clustering, SOMs have the desirable property of emergence

which is the ability to discover new patterns that have not been pre-specified by

an expert [63]. This property of the algorithms follows from the update step of

the network.

Other researchers have also adopted SOMs, for example Euliano et al. [64]

describes one approach to SOMs in the presence of wave distortion in time and

space. In the medical field [65, 66] use the emergence property of SOMs. The first

paper discusses the effects of the discretization on the identification of persistent

states in the SOM. A persistence score is introduced to aid in the author’s argu-

ment. In the second paper the authors use SOMs to visualize the data better for

human comprehension. Returning to more general data mining, [67] proposes to

replace the raw data with measures such as trends, seasonality, serial correction,

etc. and then to use an SOM to classify the data. In the financial domain SOMs

are employed in [68, 69] to determine stock closing price patterns.

2.1.4.2 Pattern Analysis Using Linear Models

Linear models have also been used extensively in pattern extraction from time

series. The papers listed here and the references therein describe the linear mod-

eling approaches taken in the past. In particular [70] employs the concept of the

linear prediction coding cepstrum. The linear prediction coding cepstrum is the

cepstrum of a model derived from the coefficients of an auto-regressive model. The

authors of this paper use the cepstrum to define a distance between models and

then use this distance for clustering. In [71] linear models are used to demonstrate

17

that clipped data approaches the same modeling coefficients as unclipped data.

This helps improve the efficiency of clustering algorithms by removing outliers and

replacing them with rounded values.

Linear models are also appropriate for variable length patterns. The authors

of [72] use ARMA models and an expected maximization algorithm to determine

models that appropriately represent time series data. Other authors have also

focused on the variable feature size of patterns. Examples of this that are not

linear models include [73, 74]

2.1.5 Classification

Time series classification is a traditional task handled by the data mining commu-

nity. This task appears as a subtask above in the segmentation and subsequence

detection work. For example, Geurts et al. [75] model the time series using piece-

wise linear models and extracts the break points between line segments as temporal

features for classification. In doing so, this algorithm both reduces the size of the

data and retains perceptually important points for classification. The latter is key

because of the stated goal of the author to maintain features that are perceptible

to humans.

A popular approach to classification is through the extraction of features using

wavelets. In [76], the authors extract features from wavelet coefficients. As pointed

by the authors wavelets preserve the Euclidean space between time series in the

time domain. The distance between wavelet coefficients is then generalized to a

distance between time series of varying length.

Other approaches include classification by modeling [77]. In [77] the time se-

ries data is normalized and classified according to its reconstructed phase space.

Reconstruction of phase spaces is a method of indirectly reconstructing the phase

spaces of a dynamical system. The phase space itself contains all system states.

Once the data phase space is reconstructed, Gaussian Mixture Models (GMMs)

are used to fully describe all aspects of the space. Then during classification a

Bayesian maximum classifier is used to detect test signal class.

Classification is typically performed by first extracting a data structure that is

later used to compare test series. Rodriguez et al. [78] argue that using raw data

18

in data trees leads to poor results. They present two approaches, one that creates

an interval tree with each interval described as data means, and a second approach

creates tree after first dynamically time warping the data. The authors find these

approaches to be competitive with previous work. Lastly, many authors have also

focused on the time series data set size reduction which is necessary to make all of

these methods feasible for implementation [79, 80].

2.1.6 Current Directions

The field of time series analysis has evolved dramatically in the past decade. Prior

to the early 2000s the field was concerned with time series segmentation and match-

ing. Strong arguments were made for metrics and segmentation algorithms that

were eventually consolidated two review papers [13, 14]. In summary, represen-

tations with complexity greater than first order were deemed too complex, and

all measures for subsequence matching converge in performance to the Euclidean

metric.

In the 2000s the field moved on to exploring new approaches such as the one

nearest neighbor approach (1-NN) and self organizing maps (SOMs). Lately, one

can observe that the field is moving towards both time series of greater length,

series that are analyzed on-line (or streaming series) and multiple dimensions. The

final chapter of this dissertation also moves in this direction. The work presented

in this chapter focuses specifically on the incorporation of multiple time series in

data representation. For this reason this section focuses on previously published

research in multidimensional time series.

There are two types of multidimensional series: time series with multiple at-

tributes and truly multiple time series are may be correlated. The difference be-

tween multiple attribute time series and multiple time series is almost a semantic

difference. For example, in the world of finance data, a stock’s volume and price

data can be considered two time series, or a single time series with multiple at-

tributes. The latter view was taken by Povinelli and Feng [81]. In this work the

authors choose to combine the attributes of stock volume and price into a phase

space. Data clusters are identified in the phase space by determining the optimal

data means via a linear optimization problem. In essence, clusters of data with

19

sufficiently dissimilar means are identified to denote evens in the time series and

non-events. The goal of the work is to address previous deficiencies in data mining

algorithms that assumed stationarity in the underlying data.

A similar approach is taken by Kahveci et al. [82]. In this work the authors

focus on the development of a shift and scale invariant clustering and indexing of

the multi-attribute time series. The authors begin by showing that the Euclidean

space of time series is often not robust to shifts and scaling. The subsequences are

then clustered by similar shift and scaling properties. In multiple dimensions this

appears as a cone with clusters appearing as slices of the cone.

Focusing less on invariance and more on the pattern uniqueness, Lee et al.

[83] creates a data mining approach that k dimensional patterns from m dimen-

sional data. The basic idea is to find 1-dimensional patterns and to concatenate

them to find patterns the smallest unique frequent patterns in a multi-dimensional

database. It is important to note that this work is applicable to both multi-

attribute and multi-dimensional time series as the patterns are generally the same

under the author specifications.

Moving more towards truly multi-dimensional time series Minnen et al. [84]

address the interesting problem of data patterns that not fully dimensional. By

this we mean that in an m dimensional data set, the patterns have a dimension

less than m. The paper by Minnen et al. focuses on the efficient discovery of these

patterns.

Simultaneous work by Minnen et al. [85] also extended the use of Hidden

Markov Models (HMM) into the multidimensional motif discovery. In a scalable

algorithm, ie. one applying to single and multiple dimensions. The algorithm

begins by extracting all subsequences of a fixed length. Then a preset number of

nearest neighbors is determined for each sequences. Effectively this clusters the

subsequences, in order to determine their estimated densities. Finally an HMM is

trained using the clustered subsequences and their respective densities. The states

of the HMM represent the motifs that have been discovered in the data.

The inherent clustering of subsequences in [85] is also a major theme in multi-

dimensional time series analysis. For example the work by Plant et al. [86] focuses

on the clustering of multidimensional time series based on the interaction between

the dimensions. This is an interesting approach because it preserves perhaps the

20

most important information from multiple dimensions. To accomplish this, each

dimension is modeled from other dimensions using linear models. The clusters are

then time series data that exhibits similar interactions between the dimensions.

Similar to the work in [85], Tatavarty et al. [87] propose clustering time series

data based on the temporal similarities between frequency patterns. To accomplish

this, the authors first identify and cluster all frequency patterns in each dimension

of the data. The dependence among patterns in different dimension is then identi-

fied. The goal of these two works is to extract the greatest amount of information

from the data.

Another interesting clustering algorithm is presented by Wang et al. [88]. In

this algorithm motion time series is clustered based on spectral features. These

features are found to be more robust normal spectral clustering. Spectral clustering

in general is a method of reducing the data dimensionality using the eigenvalues

of the similarity matrix before clustering itself.

Yet another interesting application of multidimensional time series analysis

is prediction [89]. The paper by Shibuya et al. [89] and the references within,

demonstrate the use of multidimensional time series to predict behavior. A key

component in this research is determining the causality of one dimension on an-

other. In other words, researchers are looking to determine whether the fluctuation

in one time series can be used to predict the behavior of another.

The research directions of similarity searching [90] and tree structuring [91]

are also addressed. These areas are important and still open areas for research

that bridge the divide between theory and practice. Finally, in terms of vehicle

technology, there are some examples of work that incorporate multidimensional

databases. The work by Gonzalez et al. [92] is one such example where multidi-

mensional traffic data is mine for anomaly detection. These anomalies are used

by traffic engineers to detect accidents early and re-route traffic to maintain flow

along the nation’s highways.

2.2 Pattern Matching/Texture Detection

As discussed in the introduction of this chapter, a second particularly relevant

area of research to this thesis is pattern matching. In parallel with the data

21

mining community which has used linear models for subsequence matching, the

pattern matching community has also used linear models for pattern detection

in applications such as texture classification and tracking [93, 94, 95, 96, 97, 98],

shape detection [99], fault detection [100], acoustic filtering [101, 102, 103], and

finger print identification [104].

The two types of texture detection that are most relevant to this thesis are dy-

namic texture detection and single frame texture detection using linear dynamical

models [105, 106, 107, 108, 109, 110]. Dynamic texture detection is the ability to

detect a texture evolving across several frames, while single frame texture detection

looks at identifying a texture within a single frame using dynamical models. Using

dynamical models in these applications is advantageous because many evolving

textures exhibit linear dynamical behavior and the use of these models provides

access to well developed tools from the control system literature [95].

The general approach when using linear dynamical systems for texture detec-

tion is to extract a set of linear models from training data that represent the desired

textures. Some authors employ switched linear systems to obtain this reference

set [109, 111]. Then using new data, new linear models are extracted and then

matched to the reference set to determine the exact texture. The metric used in

matching is often in the space of linear dynamical system coefficients such that

the distance between the model coefficients is interpreted as the distance between

the textures [110]. An elegant metric that is often used in this domain of research

is the Martin metric [112] that measures model distance in the cepstral domain,

which as previously discussed is additive and a function of the poles and zeros of

the system. Other authors use control system theory concepts to develop robust

model validation techniques [95], and still others use optimization techniques to

determine the model feasibility in the presence of uncertainty [107].

In this thesis the vehicle localization procedure can be thought of as the se-

quential matching of patterns which in our case are patterns of terrain pitch data.

This differs from approaches taken in the texture detection community in several

important ways. First, texture detection approaches are static in the sense that

they assume the data is available before the detection process. Second, the pre-

sented approach does not require the use of matching metrics which are pivotal

in texture detection algorithms. Lastly, to identify the correct vehicle location,

22

our approach requires the correct identification of several sequential linear models.

Thus we identify a series of textures rather than a single specific texture. Previ-

ously literature has shown that identifying a series of models increases the certainty

of the algorithm output. In addition, as pointed out in [94] using a sequences of

linear systems also reduces computational complexity by allowing a reduction in

model order.

2.3 Pattern Matching in the Vehicle Commu-

nity/Localization

This chapter will now conclude with a brief overview of vehicle localization research

that will show the reader the contributions made by this thesis.

2.3.1 Sensor-Based Localization

Sensor based localization is the localization of a vehicle (robot) using only the

sensory data from the platform. There are two types of localization: reference

localization (or dead-reckoning), where the vehicle location is propagated from a

known position, or relative localization, where the vehicle position is inferred from

environmental landmarks.

The three sensors commonly used for dead-reckoning (DR) localization are the

odometer, the velocity encoder and the inertial measurement unit (IMU). A series

of review papers can be found in [113, 114, 6]. Perhaps the simplest method of

navigation is odometry. To keep track of odometry, manufacturers install a sensor

that records a pulse each time it passes by a specific point on the wheel. The

number of pulses is then multiplied by a scale factor that is related to the wheel

diameter, tire pressure, temperature, and any environmental factor that changes

the wheel radius. References citing the use of odometry and error-correcting tech-

niques in vehicle localization can be found in Abbott and Powell [114] and also

within the mobile robotics community [115, 116].

A similar set of sensors are the wheel tachometers. These sensors are typi-

cally employed in anti-lock brake systems (ABS) to detect the differences in wheel

speeds. Using the same framework, the difference in wheel speeds can reveal the

23

direction of the vehicle. Like the odometer, the critical piece of knowledge neces-

sary to make use of velocity encoders is wheel radius. In Carlson et.al. [117, 118]

velocity encoders are used in a dual GPS/DR system. Here while GPS is avail-

able, the signal is used to provide a heading and a wheel radius estimate. When

GPS becomes unavailable, wheel tachometers are calibrated to provide heading

information.

Odometers and velocity encoders suffer from well-known sources of terrain er-

ror such as wheel slips, uneven road surfaces, and skidding. In addition, these

same sources suffer from vehicle structure errors such as wheel diameter changes,

wheelbase uncertainty, and low resolution of the encoding sensors. These errors

have been observed and characterized both in the vehicle navigation community

[114, 118] and the mobile robotics community in Borestein and Liqiang [115].

In contrast to odometry and tachometers, gyroscopes and accelerometers in

IMUs measure rates of acceleration and rates of change in displacement of the

vehicle. A typical IMU consists of three gyroscopes and three IMUs, each directed

in one of the axes of motion. To obtain vehicle heading and velocity, the IMU

outputs are integrated in each direction. This integration leads to the cumulative

growth of small bias and noise sources in the IMU as a function of the operation

time. These noise sources will be further discussed in section 4.2.1.2. However,

because IMUs are self-contained and thereby not susceptible to the vehicular and

environmental noise sources, IMUs are a good complement to other vehicle sensors

and GPS [119, 120]. For this reason, GPS and IMU data is frequently integrated

in augmented systems [121, 6].

2.3.1.1 Map-Matching

The DR localization approaches described above can be used to estimate vehicle

location given a known starting point for the vehicle. However, if the location

is unknown, then the vehicle position can be estimated through the comparison

of sensory data with a localization map. This map can be of beacon locations,

requiring triangulation for localization (the GPS is a form of active beacon), or of

another type of feature which is selected by the localization mechanism designer

[122, 123, 124]. This form of relative localization is called map-matching.

In this thesis, localization maps are built using linear models and the localiza-

24

tion mechanism combines DR using inertial measurements and map-matching. A

state of the art review of map-matching is found in Quddus et.al. [124]. The author

subdivides the field of map-matching into early techniques that take into account

the road geometry, such as arcs and lines; topological approaches which take into

account road geometry and the interconnection between each geometric feature;

probabilistic approaches that assign a region or error within which a likely road

segment is found; and more recent approaches termed advanced map-matching us-

ing Kalman Filters, fuzzy logic, particle filters, etc. The references therein provide

an in-depth look of the field of map-matching.

As a general outline, the map-matching process begins by extracting or ob-

serving features from the data [125]. The choice of features during the extraction

process has a pivotal role in the subsequent localization performance of the al-

gorithm. Early algorithms use arcs and lines as features that modeled the road

shape [122, 126]. In advanced algorithms, the features are extracted through a

non-linear transform that is used to identify the most noise-robust portions of the

data. A few examples are local extrema, geometric features such as arcs and lines,

or geometric beacons. Further examples can be found in the literature on pattern

matching and data mining [127, 128, 129, 130, 131].

Then, during localization, the features are re-extracted from new vehicle data.

The location is determined by comparing these features to the map. The most

common comparison approach is the threshold. Here a distance is computed from

the road data to each possible map location. An empirical threshold is used to

determine the correct segment. More advanced methods of matching include those

presented in the robotics community where the probability of the vehicle’s loca-

tion and of the detected features is calculated using Kalman filtering in a formal

framework methodology established in [132, 133, 134], or a Bayesian comparison

approach such as the one used by Levinson and Thrun [135], or a particle filtering

approach in Törnqvist et al. [136].

The motivation to develop advanced map-matching algorithms stems from the

need to handle increasingly complex road networks that easily overwhelm earlier

algorithms. Unfortunately, to the best of our knowledge, there does not exist a

unifying publication that elucidates the limitations of each map-matching approach

in the vehicle navigation community. In contrast, several review papers in the data

25

mining community have concluded that more work is necessary to design efficient

algorithms to handle large databases [14].

Choosing the features and the extraction process plays a pivotal role in the

subsequent performance of the algorithm. Previous research in our own group

has focused on IMU pitch data for localization [10, 137, 138, 119, 120, 127]. In

particular, Dean [10] demonstrated a particle filter-based approach using inertial

measurements. A more noise robust approach was presented in Vemulapalli et

al. [137] where an optimal filter was derived to process the data prior to extract-

ing extremum features. Combining previous work, the work by Katetotad et al.

[138] employed both the particle filtering and feature-based approaches to allow

localization and tracking of a vehicle over a greater area.

A third alternative is called Simultaneous Localization and Mapping (SLAM).

This alternative is the simultaneous building of the localization map and the con-

current vehicle localization [139, 140]. The SLAM approach is mostly advanced by

the robotics community.

2.3.1.2 Noise Characterization of the Inertial Measurement Units

The main sensor used in this dissertation is the inertial measurement unit with

readings such as vehicle pitch and roll playing pivotal role in the creation of the

data representations. For this reason this section introduces recent work describing

the use of IMUs in localization and the characterization of IMU noise.

Recent decreases in the cost of Micro-Electrical-Mechanical Systems (MEMS)

IMUs have contributed to a rise in the number of publications citing augmented

GPS/IMU systems [141, 119, 120, 142]. Given this development and the potential

for further research in the future, it is important to understand how sensor lim-

itations affect the localization approach. In particular, El-Sheimy et al. in [143]

characterize IMU noise in terms of Allan variance and power spectral densities.

The same authors then offer approaches to mitigating IMU noise [144]. A MEMS

specific analysis is demonstrated by Aydemir and Saranli [145], while the work in

[146] evaluated the noise performance of several grades of IMUs.

Extensive research has also been presented on the calibration of IMUs [147, 148,

149]. An in-depth discussion of IMU noise components is shown in section 4.4.3.

This description is then used to corrupt the IMU data for localization simulations.

26

2.4 Additional Topics

We conclude this section by discussing two more topics seen in the literature: fault

detection and histogram filters. This work is related to this thesis but not as

strongly as the work above. For this reason the background here is abridged to

briefly introduce the reader to these topics.

2.4.1 Fault Detection

In contrast to the data mining community and the pattern detection community,

this task is significantly more difficult. The reason is that the field of fault detection

is fragmented into application subfields. Few papers have ventured to unite the

subfields into coherent general bodies of work. Examples include [150, 151, 152,

153, 154].

In general the majority of the fault detection work originated with plant models

of designed systems. These plant models had available inputs and output and

naturally led to the adoption of control system techniques for stabilization and

monitoring. These techniques include state and output observers which observe

the states of the known system and detect changes that indicate faults. Also, parity

equations which is a way to compare a system’s input/output behavior to the

expected transfer function [155]. Lastly, parameter estimation is the continuous

re-estimation of system parameters until a significant deviation demonstrates a

fault has occurred.

A subset of model based fault detection is signal-model-based methods. This

subset of methods applies in the case where only plant outputs can be observed. In

this case researchers focus on filter based methods like spectral analysis, bandpass

filters, and maximum entropy estimation to identify faults that produce novel

frequency components. Yet another subset of techniques are called the change

detection methods. These methods are largely probabilistically based and detect

changes in the probability mean and variance of the plant output, or use statistical

techniques such as a likelihood-ratio-test or Bayes decisions.

27

2.4.2 Histogram Filters

The algorithms developed in this thesis continuously validate the road pitch models

with the incoming vehicle data. Each feasible model is considered feasible until

contradictory data is observed by the vehicle’s sensors. This can be viewed as

a binary “on/off” decision, and correspondingly path-wise as a binary histogram

filter.

Histogram filters are numerical implementations of the Bayes filter over an

area that is discretized into some appropriate number of bins [156]. The key ad-

vantage of discretizing the search area is that this allows the derivation of recursive

equations to implement the discrete Bayes filter. The recursive implementation is

computationally efficient for online operation. However, there are two underlying

assumptions that must hold when implementing the histogram filter. First, all

possible predictions from the data can be summarized by the most recent data

point. And second, the data and predictions must obey the Markov property.

Histogram filters are appropriate for vehicle tracking and localization due to

several properties of the vehicle system. The most significant property is order

which is enforced by the physical nature of the process. In essence, vehicle states

such as velocity and position always evolve sequentially from previous states.

Several studies have presented compelling evidence that approaches similar to

the histogram filter are appropriate for vehicle localization and tracking [157, 158,

159, 160]. In [157] an algorithm is developed for the localization and tracking

of a land vehicle from an unmanned air vehicle (UAV). This algorithm uses a

directed graph and breaks up the vehicle location into discretized states that are

updated using a Bayesian filter. The algorithm builds on previous work [158] that

implemented Bayesian filters to localize vehicles with a known velocity and final

destination within a mine. Bayesian filters were also implemented in [159] to track

vehicles from multiple UAVs. Additional tracking work was presented in [160]

where a histogram filter tracked underwater targets using sonar.

The work of these authors demonstrates that the histogram filter is an ap-

propriate tool for vehicle localization and tracking. While this thesis does not

implement a histogram filter, the analog between the work here and histogram

filters is strong because, along a path, each model agreement can be considered

a “vote” for the current segment. Unlike histogram filters, in this work votes are

28

not presently aggregated over all models. However, future implementations of the

presented algorithms may incorporate a histogram filter as a recursive method of

estimating the correct vehicle path from among several surviving possibilities.

Chapter 3

The Effect of Noise on Alternative

Representations of a 1-Dimensional

Time Series used for In-Sequence

Localization

The goal of this chapter is to formally introduce the problem of in-sequence lo-

calization by collecting seven published dimension reducing data representations

[13, 14, 15] and evaluating their performance in the problem of in-sequence lo-

calization: the Piecewise Aggregate Approximation [28, 29], the Discrete Wavelet

Transform Representation [161], the Symbolic Aggregate Approximation [54], the

Discrete Fourier Transform [47], the Chebyshev Polynomial Representation [162],

the Piecewise Linear Representation [56], and the Adaptive Piecewise Constant

Approximation [163]. These representations, and the procedures to obtain them

from a data set, are described in some detail in the text, creating a survey of avail-

able dimension reducing representations that may be applicable for in-sequence

localization.

The evaluation of the performance of a given representation for in-sequence

localization begins with evaluating the translation of the representation before

and after the addition of noise. Testing is performed on four different data sets:

two vehicle data sets and two synthetic data sets. Then, an in-sequence local-

30

ization procedure is demonstrated for each representation. Two general types of

procedures are shown, a fixed window size procedure and variable window size pro-

cedure. In each case the performance of the representations is tested across all four

of the test sets discussed above. Lastly, the chapter concludes by suggesting two

possible approaches to creating dimension reducing representations for in-sequence

localization. The first approach is to incorporate generic noise descriptions that fit

the application [20, 23, 24, 22] and the second approach is to incorporate process

specific information about the application [18].

A manuscript detailing the work in this chapter is currently under preparation

for submission to IEEE Transactions on Knowledge and Data Engineering.

3.1 Introduction

The work presented in this dissertation is one possible approach to addressing a

pivotal challenge of modern data processing: the determination of formal methods

to reduce the dimensions of data to a meaningful set of features (representations)

that are then stored in logical and efficient data structures. While previous research

in dimension reducing data representations exists [28, 29, 161, 54, 47, 162, 56, 163],

there are two principal challenges that face the data community. First, the existing

methods have been repeatedly shown to scale poorly with time series size [13, 14].

Second, the unprecedented scale on which data is presently collected is enabling

new applications that demand a fundamental rethinking of dimension-reducing

representations.

But these challenges in data dimension reduction are not independent. The

newly introduced problems are challenges that help describe theoretical deficiencies

that may have previously been obscured. This chapter formally introduces one

such illuminating problem, the problem of in-sequence localization. Our interest

in this problem is motivated by the problem of vehicle localization using large data.

This intuitive application is revisited throughout the thesis to illustrate ideas and

concepts.

Localizing vehicle using in-sequence localization is a difficult problem because

of the extraordinary size of available data. For example, presently an autonomous

31

vehicle may collect up to 750 Gb of data for each second of driving1. Because the

average road vehicle is driven 600 hours per year, this means that an autonomous

car would collect 1.62 Exabytes (EB = 10006) of data annually, and all this data

must be reduced and stored such that it enables in-sequence localization.

In addition to size, noise introduced in the data via the collection sensors is also

a significant problem, [16, 17, 12, 18, 19]. This noise obscures trends in the data

and makes in-sequence localization using terrain data particularly challenging. In

general noise increases the computational cost of localization because it requires

the addition of mitigation algorithms that improve the signal-to-noise ratio (SNR)

of the data. Thus the problem of in-sequence localization is the problem of reduc-

ing and representing large data sets such that the resulting data structure is not

obscured by noise.

The solution to the problem of in-sequence localization is divided into two

phases - an offline phase where computational power is unconstrained and an online

phase where computation is constrained and the localization is taking place. In

the first phase a complete time series data set is collected. This data set describes

a desired process in its entirety, for example in vehicle localization this data set

is all terrain data from a road or road network. The time series data is then

represented using a dimension reducing representation and organized into a data

structure (ex. significant road features are organized in a map). In the second

phase, a mobile platform is localized using the created database (ex. finding the

location of a vehicle on the map). Here newly acquired data is matched to the

stored data structure, and successive data points are matched to the previously

feasible points in the map. The successive matching helps to narrow the location

estimate to the correct location. In addition the approach of successive matching

reduces the computational requirements on localization.

Localizing only the most recently-acquired data points implies using knowledge

about the data ordering [20, 23, 24, 22] that is not typically used in dimension-

reducing data representations. In fact, when evaluating typical dimension reducing

representations [28, 29, 161, 54, 47, 162, 56, 163] for in-sequence localization, three

criteria emerge from the flaws of the previously published data representations.

1This is the amount of data estimated to have been collected by the Google autonomous
vehicles during the XPrize competition in 2013.

32

First, the representations must allow the initial data samples to be located in the

middle of a data interval. Second, the data representations must preserve the or-

dering (flow) of the data. Third, the data representation must have an inherent

robustness to noise. The solutions to the problem of in-sequence localization that

meet these criteria can be applied to other data rich areas such as the identifica-

tion of system states, estimation of historical trends, or retrieval of data from a

collection [50, 164, 165].

3.1.1 In-Sequence Localization in Vehicle Data

The problem of in-sequence localization in vehicle data is that of finding the ve-

hicle’s location in a previously recorded data set. This application is commonly

called vehicle localization, and it is more precisely defined in this section. The text

here serves as an overview for the vehicle data simulations within the remainder

of the thesis.

Consider the terrain data-collection process in a vehicle that is illustrated in Fig.

3.1. In tandem with this illustration, Fig. 3.2 shows a block diagram representation

of the mapping of vehicle position into pitch. In these depictions, the variable v(t)

represents the vehicle velocity; s(t) is the displacement of the vehicle; p(t) is the

position of the vehicle, relative to its initial position p(to); and m(t) represents

vehicle pitch that is mapped from the vehicle’s position. The terrain data collected

by the vehicle is represented by d(t) and it is subject to additive sensor noise η(t).

During localization, the noisy data is then matched to a stored database. More

precisely, for each instant t the data point d(t) + η(t) is compared to the map

and possible matches are identified. At first, the data point is compared to the

whole map, as parts of the map are eliminated, comparisons only take place on the

remaining possible regions. A point in the map can only be feasible if the sequence

of points leading up to it was feasible as well. This is a fundamental limitation of

the application of in-sequence localization and therefore any dimension reduction

in the map must take care not to destroy this order.

During this matching process, it is critical to discern the true values of d(t)

because localization errors could misinform the driver or the localization algorithm.

Now observe the two time series shown in the upper-right hand side of Fig. 3.1.

33

Figure 3.1. The effect of noisy sensors. An example from vehicle data collection.

Figure 3.2. Vehicle Sensor Output Diagram

Note that a trend is clearly observed in the time series d(t), but this trend is

obscured when the noise is added in d(t) + η(t). Thus it would be difficult to

match d(t) to d(t) + η(t) without at least generating several false positive results.

A more precise mathematical description of in-sequence localization is presented

below.

Definition: Given a data set D = {d1, d2, ..di} that represents a complete sam-

pling of a real world process and a small (i.e. k � i), noisy subsequence of length

k + 1 collected at some later time T , x̄ = {dT + ηT , dT+1 + ηT+1, , dT+k + ηT+k},
find the index j such that the subset d̄ = {dj , dj+1, , dj+k} most closely represents

x̄. Here most closely depends on the representation method chosen for D.

If it is assumed that the data is noise-free, i.e. η = 0 ∀t and if it is assumed that

there exists unlimited computational power and unlimited storage space, then the

problem of in-sequence localization can be solved by brute force. This is the ap-

proach followed by many researchers who develop trajectory tracking algorithms

[166]. While the state of the art may not be a fully brute force approach, it is

nonetheless based on the ability to extract all possible trajectories and then eval-

uate their feasibility. For example, a sliding window of length k + 1 is used to

extract all possible subsequences in the data set D. Then each subsequence is eval-

uated against the query subsequence using the norm of the differences between the

34

subsequence and the query. Finally, the subsequence that minimizes the partic-

ular norm is chosen as the most likely path, taking a step further to in-sequence

localization, the last point in the subsequence is used to determine the location.

However, the computational cost of such an approach to in-sequence localiza-

tion is high and grows with the size of the data set. To see this, suppose that the

noise-free time series has a length i and the 1-norm is used for evaluation. Then

the process takes one scan of i−1 subsequences each requiring k(k +1) operations

to complete. Thus as the size of the subsequences increases, and the size of the

process time series increases, the order of operations approaches i2.

In practical systems, neither unlimited computational power nor unlimited stor-

age are available, nor will they be available in the foreseeable future because the

pace of data collection matches or exceeds the growth in computing power. Thus

as i and k grow, the practical burden becomes too great. In addition, while re-

cent history has seen an explosion in the number of collected time series [14], this

has come at the cost of increased noise characteristics of cheaper sensors. The

new noisier data that is acquired using these sensors further increases the com-

putational burden by requiring add-on noise mitigation algorithms or extended

matching times that incorporate bigger time series.

To the best of our knowledge, the issue of noise mitigation has been historically

cited in only a handful of papers [42, 46, 43, 12]. However, the recognition of the

problem in large scale data applications is growing. In the vehicle localization

domain, the authors of Stoyanov et. al. [16], Mullane et. al. [17], and Vemulapalli

et. al. [12] discussed the effect of sensor noise on the building of localization maps.

In the realm of air traffic control where the piecewise linear representation (PLR) is

used to model aircraft motion data, Guerrero et. al. [18] discusses the limitations

of PLR with respect to noise and and suggest improvements to the PLR algorithm

handle noise. Lastly, dealing with optical data, Skauli [19] discusses the effect of

sensor noise in storing and processing hyperspectral data that is recorded from

optical sensors.

35

3.2 Dimension Reducing Data Representations

This section will present the data representation methods. These methods are

typically applied to reduce the size of the stored data for the purpose of subsequence

matching at a later point. In other words, these methods create possible sets of

subsequences such that a similar subsequence can be identified. In this thesis the

methods are applied to create a map of representations to be used for in-sequence

localization. The aim of this section is both to describe each method and to test

the representation method’s robustness to noise. Section 3.2.8 will describe the

testing procedure and the results for each representation.

3.2.1 Discrete Fourier Transform (DFT)

The discrete Fourier transform (DFT) is the first dimension reducing representa-

tion. Presented in 1993 by Agrawal et. al. [47], the use of the DFT as a dimension

reduction tool signaled the beginning of the drive to find useful data representa-

tions. As published by Agrawal et. al., the DFT is used to represent an entire

time series using just a few coefficients. The strength of the DFT as a data rep-

resentation is that Parseval’s theorem can be used to show that taking the DFT

preserves the energy of the underlying time series. Then assuming that the ma-

jority of signal energy is in low frequencies, saving the first 3-5 coefficients means

that most of the signal energy information is preserved.

In this chapter, the DFT is adapted for in-sequence localization by segmenting

the time series into fixed window length intervals and taking the DFT within each

window. As shown in table 3.1, the segmentation procedure begins by choosing

the number of segments Ns into which the time series will be segmented. Then in

each segment the DFT is performed and 5 coefficients are saved.

The DFT is a classical approach to data representation. In the case of repeated,

high signal-to-noise ratio data, saving the first few DFT coefficients provides an

adequate representation of the data that preserves most of the signal energy. How-

ever, in the case of corrupted data, preserving the first few coefficients can be

problematic. This is because in the presence of noise, the saved coefficients should

be those that correspond to the strongest, most robust, frequencies in the data.

These are typically not known during the segmentation process.

36

Choose Constants:
Number of segments : Ns

Input Time Series Data, read length: Di

Segment the data:
Divide the data in Ns intervals of L points
Discard the last set of points that do not fill an interval

For each interval:
Find the DFT of the data
Save 5 coefficients as the DFT representation

Store the representation

Table 3.1. DFT Segmentation Algorithm

3.2.2 Piecewise Aggregate Approximation (PAA)

One of the most intuitive data representations is the data mean. The data mean

is a simple, easy to comprehend representation, and it is a dimension reducing

representation because an arbitrary number of data points can be represented by a

single number. However, representing an entire time series using a single number

is not sufficient. To alleviate this problem, a sequence of interval means can be

stored such that the resulting sequence is a pattern that represents the original

time series. The sequence of interval data means is called the piecewise aggregate

approximation (PAA) and it was first presented by Keogh et. al. [28] and Yi et.

al. [29]. An example of a time series represented using PAA is shown in Fig. 3.3.

data index [k]

Original data
PAA rep.

0 5000 10000 15000
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.3. A sample PAA representation, representing a data set by 10 segments.

37

The procedure used to obtain a PAA representation is shown in table 3.2.

First, a time series is input into the algorithm. The length of the time series, L,

is recorded. Then the data is divided into N evenly spaced intervals where N

is chosen by the designer. The number of points is obtained by rounding down

the fraction L/N , and the last few points that do not fill an entire interval are

discarded. Then data in the ith interval is represented by its averages, mi and the

sequence of averages, D̂ = {m1, m2, . . . , mN} is stored as the PAA representation.

Choose Constants:
Number of segments : Ns

Input Time Series Data, read length: Di

Segment the data:
Divide the data in Ns intervals of L points
Discard the last set of points that do not fill an interval

For each interval:
Find the first and last data point indices, ks,ke

Find the data average: ϕk = 1

ke−ks+1

ke
∑

k=ks

dk

Store the representation
The PAA representation is Ψ = {ϕ1, ϕ2, . . . , ϕNs}

Table 3.2. PAA Segmentation Algorithm

PAA is an intuitive representation with a low computational cost that is very

effective in reducing the size of data dimensions. However, with respect to in-

sequence localization there are several significant disadvantages. First, the reso-

lution of the representation is chosen by the designer. Thus PAA is a supervised

algorithm and requires significant attention over a large database. Second, the av-

erage of an interval of data is the DC frequency information of the data; therefore

all higher frequency information is assumed to be noisy and discarded. However,

it has been recognized in the literature that higher frequency components carry

significant information that should be used in the segmentation of a time series

[33, 34]. Lastly, the regular segmentation of data may interrupt a significant un-

derlying feature. For example, note that in Fig. 3.3 the first peak in the data is

bisected when intuitively it should be captured as a whole.

38

3.2.3 Discrete Wavelet Transform Representation (DWT)

The next representation is the Discrete Wavelet Transform (DWT). The DWT,

obtained using the Haar wavelet transform, can be thought of as the more general

case of PAA. Chan et. al. [161] first introduced the idea of the DWT as a dimension

reducing representation by choosing the 3 largest DWT coefficients to represent a

time series. Similar to the DFT, the DWT is extended for in-sequence localization

by segmenting the time series into fixed width intervals and representing each

interval by its Haar wavelet transform.

The Haar wavelet transform for each interval is shown in table 3.3. It begins

by segmenting the given interval data into consecutive, non-overlapping, 2-point

intervals. The averages are computed for each pair, and then the differences for

each pair are computed and divided by 2. The resulting vector is contains the Haar

wavelet coefficients at resolution r. Now segment the vector of interval averages

into 2-point intervals. Find the mean of the new set of intervals and the corre-

sponding Haar wavelet coefficients. These Haar wavelet coefficients correspond to

a resolution of r − 1. This procedure is iterated until a single average is found.

This is the r = 0 wavelet resolution. The total number of resolutions determined

will be the length of the time series L divided by 2.

For resolutions r = Di/2-1 :
Segment time series into 2-point intervals,
Find interval averages,
Find wavelet coefficients by finding the

average difference in the 2-point intervals.
For resolutions r = Di/2-2 : 0

Segment the average vector from previous
resolution into 2-point intervals,

Average the resulting intervals,
Find wavelet coefficients by finding

the average interval difference.

Table 3.3. DWT Segmentation Algorithm

Analyzing the procedure to obtain the DWT, one can observe that the coeffi-

cients are built by a series of low pass operations. The underlying assumption is

that high frequencies contain noise and that the low frequency information signal

is sufficiently strong. While more frequency components are used than in PAA, the

39

representation of the time series is not detailed until a large number of segments is

used. For in-sequence localization, these issues are significant since the information

carrying frequencies are unknown, and the desired representation should have as

few segments as possible.

3.2.4 Symbolic Aggregate Approximation (SAX)

Building on the foundation of PAA, Keogh et. al. [54] introduced the symbolic

aggregate approximation. In this representation, the data means are replaced

by equi-probable symbols that correspond to a range of possible data means. The

data mean ranges that correspond to each symbol are chosen such that each symbol

has an equal probability of occurrence. An example of the SAX representation is

shown below in Fig. 3.4 for N = 10 segments and 6 equi-probable symbols. The

procedure to obtain a SAX representation is shown below in table 3.4.

data index [k]

c c c

f
e

f

e

a

e

a

0 5000 10000 15000
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.4. A sample SAX representation, representing a data set by 10 segments.

The first step in obtaining a SAX representation of data is choosing the num-

ber of segments into which the time series is to be segmented, Ns, and the number

of equi-probable symbols, ϑ. Then a time series of data is input and normalized

using the data mean, µ and the data standard deviation σ. The resulting stan-

dard normal distribution is subdivided into Ns regions and the region bounds are

determined from the data. The data is then partitioned using the PAA procedure

in table 3.2. Finally, each PAA mean, ϕk is translated into a symbol, ϕ̂k according

40

to the regions determined in the first step. The resulting sequence of symbols is

the SAX data representation.

Choose Constants:
Number of segments : Ns

Number of symbols : ϑ
Input Time Series Data, read length: Di

Determine the equi-probable region for each symbol:
Normalize the data by subtracting the data mean, µ, and

dividing by the data standard deviation, σ: d̃ = d−µ

σ

Find S equi-probable ranges
Find the PAA representation of the data

Ψ = {ϕ1, ϕ2, . . . , ϕNs}
Assign the SAX symbol for each mi

Ψ = {ϕ̂1, ϕ̂2, . . . , ϕ̂Ns}
Table 3.4. SAX Segmentation Algorithm

The SAX representation is particularly well-suited to noisy data because com-

paring symbols does not require thresholding. However, with respect to in-sequence

localization where the reference data set and the query data are not collected si-

multaneously, there are two problems. First, the normalization that is required

to assign the symbols is problematic if the entire time series is not available. For

example in vehicle localization the map data can be normalized, but the incoming

localization data may not be of sufficient length to be normalized. Furthermore,

no distinction is made of symbols that are near their respective probability bound-

aries. For example, in Fig. 3.4 the symbol “f” can easily be perturbed by a small

amount of noise and miss-assigned during translation.

3.2.5 Chebyshev Polynomial Representation

Another method of representing time series is using Chebyshev polynomials [162].

The advantage of using Chebyshev polynomials is that they closely approximate

minimax polynomials, which are used to minimize the maximum deviation between

the polynomial and the model data. Because these polynomials minimize the

maximum deviation, they improve the ability to select in between time series

when matching. The Chebyshev polynomial representation is intended to describe

whole time series. Here we extend again the approach to in-sequence localization by

41

instead describing consecutive intervals of the time series and, in effect, localization

sequences of Chebyshev polynomial representations.

The Chebyshev polynomial approximation begins by selecting the number of

segments into which the time series is to be segmented, Ns. Then Ns equally sized

intervals are extracted. For each interval the data is approximated using three

Chebyshev polynomials,

d̂k = c0P0 + c1P1 + c2P2, (3.1)

where Pi are the Chebyshev polynomials and ci are coefficients to be determined.

The Chebyshev polynomials are approximated as [162],

P0[k] = 1

P1[k] = k (3.2)

P2[k] = 2k2 − 1

and the coefficients are determined as,

c0 =
1

ke − k0

ke
∑

j=k0

dkP0[k] (3.3)

ci =
1

ke − k0

ke
∑

j=k0

dkPi[k]

The approximation from each interval is concatenated in the final represen-

tation, Ψ = [{c0, c1, c2}, {c0, c1, c2}, . . .] . This procedure is summarized below in

table 3.5.

Choose Constants:
Number of segments : Ns

Find representations:
for each interval find the constants ci

using eqns. (3.2) and (3.3)
Store the final representation:

Ψ = [{c0, c1, c2}, {c0, c1, c2}, . . .]
Table 3.5. Chebyshev Segmentation Algorithm

42

In contrast to other representations, the idea behind Chebyshev polynomials is

to represent the data most faithfully to the original time series is a novel approach

to data representation. From the point of view of in-sequence localization, this

is not necessary. It has been observed in the authors’ work that a few significant

frequencies in the data dictate the robustness and performance of in-sequence

localization algorithms [24, 167]. For this reason, a separate study would be needed

to determine which Chebyshev coefficients are most useful in this application and

for each unique time series to be indexed.

3.2.6 Piecewise Linear Representation (PLR)

Another intuitively simple representation that captures the trends in the data is

the piecewise linear representation (PLR) [56]. This is the first representation in

this chapter that chooses the segmentation points such that the mean square error

of the approximation is minimized. For this reason, PLR is termed an adaptive

representation in the data mining literature [15, 14]. An example of PLR can be

seen in Fig. 3.5.

Data index [k]

Original data
PLR representation
Segmenting points

0 50 100 150
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.5. A sample PLR representation that describes a data set using 10 slopes.

The segmentation procedure for PLR, table 3.6, begins by segmenting the entire

data series into consecutive 3 point intervals. Each interval is modeled as a slope

between the first and last data point, and the mean square error (MSE) over the

entire data series is calculated. Then one pair of intervals (ex. intervals 1 and 2)

43

is merged and the slope is modeled from the first to the last point of the merged

interval. The MSE of the estimation with one merged pair is calculated. The

MSE is then calculated for all possible cases where one set of neighboring intervals

is merged. From all merging possibilities, the merge that minimizes the MSE

is chosen as the merge point. This procedure is iterated until only N segments

remain. The resulting representation is the representation with the smallest mean

square error given the number of segments specified by the user. By obtaining

the minimum MSE representation, PLR addresses the fundamental problem with

fixed-width segmentation, which is the inability to capture changes in the data

dynamics.

Choose Constants:
Number of segments : Ns

Initial Data Segmentation:
Segment the data into Υ = Di/3 consecutive intervals
Approximate each interval by a slope

Segmentation Procedure:
While number of segments > Ns

For u = 1: Υ - 1
Merge segments u and u + 1, find new MSE

END
Choose the segment merge that minimized MSE
Υ = Υ - 1

END

Table 3.6. PLR Segmentation Algorithm

PLR is a popular representation that has been tuned in some papers [18] to

minimize the effects of noise. However, in the case of in-sequence localization, this

type of adaptive segmentation is not possible because the query data is a subset

of the entire time series and thus cannot be optimally segmented. In addition,

segmenting time series with PLR is a computationally intensive process. For ex-

ample, in the numerical simulations supporting this chater, it was found that at

most 1400 data points could be evaluated across a set of possible segmentations

within an 18 hour period.

44

3.2.7 Adaptive Piecewise Constant Approximation (APCA)

The major drawback of fixed window length segmentation is that changes in the

data dynamics do not necessarily occur at regular intervals. To remedy this prob-

lem, Chakrabarti et. al. [163] created an adaptive segmentation approach termed

the Adaptive Piecewise Constant Approximation (APCA). Given the number of

desired segments, N , APCA uses the largest N Haar wavelet coefficients as seg-

mentation points. In each segment, the deviation of the data mean from the whole

time series mean (r = 0 Haar wavelet resolution) is used as the data representation.

An example of the obtained representation is shown below in Fig. 3.6.

Data index [k]

Original data
APCA representation

0 5000 10000 15000
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.6. A sample APCA representation with 10 adaptive segments.

The APCA segmentation procedure, shown in table 3.7, begins by finding the

Haar wavelet coefficients for all resolutions r. These resolutions are assembled in

descending order in a triangular matrix. The K largest coefficients are chosen as

the segmentation points. Then for each of the determined intervals, the mean of

the data is compared to the resolution average r = 0. This corresponds to the

average of the whole time series. The error between the time series average and

the interval average is the data representation.

APCA is a data adaptive approach that captures the changes in the data be-

havior in a much more computationally efficient manner than PLR. However, in

the application of in-sequence localization, APCA still suffers from the inability

to optimally segment the query sequence. In addition, APCA has a much higher

45

Choose the number of intervals, Ns

Find all Haar Wavelet Coefficients
Choose the K largest coefficients to be segmentation points
Represent data as the error between the interval average

and the time series average
Haar Wavelet Procedure:
For resolutions r = Di/2-1 :

Segment time series into 2-point intervals,
Find interval averages,
Find wavelet coefficients by finding

the average difference of each interval.
For resolutions r = Di/2/2-2 : 0

Segment the average vector from previous
resolution into 2-point intervals,

Average the resulting intervals,
Find wavelet coefficients by finding

the average difference in each interval.

Table 3.7. APCA Segmentation Algorithm

computational burden when compared to the more intuitive representations like

PAA and SAX.

3.2.8 Additive Noise and Representation Fidelity

When evaluating the usefulness of data representations in the application of in-

sequence localization, the key criterion is fidelity in the presence of noise. In

particular, the data translation mechanism should be invariant in the presence of

noise or at least have a close representation. This section evaluates the presented

dimension reducing representation with respect to 12 dB of Gaussian noise. This

noise was chosen for consistency with later Chapters in this thesis in which the

noise was chosen to correspond to the type of noise observed in a mid-grade vehicle

inertial measurement unit sensor [20, 23, 24, 167].

3.2.8.1 Testing Procedure

The procedure used in testing is shown in table 3.8. First a vector is created

that holds all possible segment numbers to be evaluated. Then for each number

of segments, a noise free representation is obtained and stored. The data is then

46

corrupted with 12 dB of Gaussian noise and the noisy representation is formed.

The noise free and noisy representations are compared, and any differences larger

than 1 standard deviation of the noise are considered an error. The exception to

this is SAX, which is not a numerical representation and can thus be evaluated in

a “yes/no” fashion.

All representations are tested on four data sets: vehicle pitch data from State

College, PA, USA; vehicle pitch rate data (the pitch derivate); random walk data;

and random walk rate data. The vehicle data sets have a length of 14,000 data

points, and the random data time series are 10,000 points long. The results shown

in the figures below represent the mean number of errors across 100 trials for each

of the testing data sets.

Choose segmentation method:
Segment the original time series (Ψ)

Corrupt the data:
Corrupt the data using 12 dB of White Gaussian Noise
Segment the corrupted time series (Ψη)

Compare the two representation:
sum(|Ψ −Ψη| > ση)

Table 3.8. Representation Fidelity Testing Procedure

3.2.8.2 Results

The testing results are presented below in Fig. 3.7 - Fig. 3.14. In each figure, the

x-axis represents the number of segments into which the time series was segmented.

The y-axis shows the representation method, and the z-axis shows the probability

of a translation error. Each plot represents the average rate of error across 100

trials for the corresponding data set.

From the plots one can see that with the exception of SAX that the data rep-

resentation error rates are high and increase with the number of segments. This

indicates that the number of incorrectly transcribed representations is very high,

and that noise affects smaller segments more significantly. A notable exception

to this is SAX, which represents data as a symbol corresponding to a pre-defined

region of probability. The definition of a symbol across a range of values auto-

matically accounts for some noise and distortion in the data. Despite this, in our

47

experiments, SAX suffered from the lack of data normalization which is an integral

step in the SAX representation process.

In addition SAX suffered from the high number of symbols that were used.

In these experiments, 26 symbols were used in the SAX representation. The high

number of symbols was necessary because in-sequence localization requires at min-

imum some level of uniqueness in the local sequence of symbols. Restricting the

number of SAX symbols to a smaller number would greatly increase the resulting

localization distance due to a large decrease in the symbol subsequence uniqueness.

While studying these figures it is important to also note the type of noise that

is used in testing. Here white Gaussian noise corresponding to an overall signal

to noise ratio of 12 dB was used. This means that representations that employ

data averaging naturally perform slightly better because the standard deviation

of the noise in the data is reduced by the square root of the number of averages.

Thus is its expected that the PAA and SAX representations will do slightly better.

Nonetheless, it is obvious from these experiments that the representation trans-

lation mechanisms are greatly affected by white Gaussian noise, and the results

foreshadow the in-sequence localization results to be presented later because quick,

efficient, and accurate in-sequence localization depends on the ability to discern

sequences of representations in the map.

Number
of Segments

P
ro

b
ab

il
it
y

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
PAA
APCA
DFT
DWT
Cheby
PLR

SAX

PLR
55

155
255

355
455

0

50

100

Figure 3.7. Fidelity of All Segmentation Methods in vehicle data with respect to 12
dB of Gaussian noise (data length = 1,500 pts)

48

Number
of Segments

P
ro

b
ab

il
it
y

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
PAA
APCA
DFT
DWT
Cheby

SAX

Cheby
55

155
255

355
455

0

50

100

Figure 3.8. Fidelity of All Segmentation Methods except PLR in vehicle data subject

to 12 dB of Gaussian noise (data length = 15,000 pts)

Number
of Segments

Representing method

P
ro

b
ab

il
it
y

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
PAA
APCA
DWT
DFT
Cheby
PLR

SAX

PLR
55

155
255

355
455

0

50

100

Figure 3.9. Fidelity of All Segmentation Methods in vehicle rate data with respect to

12 dB of Gaussian noise (data length = 1,500 pts)

49

Number
of Segments

R
ep

re
se

n
ta

ti
on

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
APCA
PAA
DFT
DWT
Cheby

SAX

Cheby
55

155
255

355
455

0

50

100

Figure 3.10. Fidelity of All Segmentation Methods except PLR in vehicle rate data
that is subject to 12 dB of Gaussian noise (data length = 15,000 pts)

Number
of Segments

P
ro

b
ab

il
it
y

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
PAA
APCA
DFT
DWT
Cheby
PLR

SAX

PLR

5
105

205
305

0

50

100

Figure 3.11. Fidelity of All Segmentation Methods in Random Data that is Corrupted

with 12 dB of Gaussian noise (data length = 1,500 pts)

50

Number
of Segments

R
ep

re
se

n
ta

ti
on

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
PAA
APCA
DFT
DWT
Cheby

SAX

Cheby
55

155
255

355
455

0

50

100

Figure 3.12. Fidelity of All Segmentation Methods except PLR in Random Data that
is Corrupted with 12 dB of Gaussian noise (data length = 15,000 pts)

Number
of Segments

P
ro

b
ab

il
it
y

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
APCA
PAA
DWT
PLR
DFT
Cheby

SAX

Cheby

5
105

205
305

0

50

100

Figure 3.13. Fidelity of All Segmentation Methods in Random Rate Data that is

Corrupted with 12 dB of Gaussian noise (data length = 1,500 pts)

51

Number
of Segments

R
ep

re
se

n
ta

ti
on

of
S
eg

m
en

ti
n
g

E
rr

or
[%

]

SAX
DWT
APCA
PAA
DFT
Cheby

SAX

Cheby
55

155
255

355
455

0

50

100

Figure 3.14. Fidelity of All Segmentation Methods Except PLR in Random Data

Corrupted with 12 dB of Gaussian noise (data length = 15,000 pts)

52

3.3 In-Sequence Localization

The problem of in-sequence localization is fundamentally different from that of

subsequence matching. Subsequence matching, the problem for which most di-

mension reducing representations are designed, is the matching a time series to

either a stored time series of equal length or a type of previously described time

series. This means means that in subsequence matching both the query time series

and the pre-established database are available during the matching process. Fea-

tures are extracted from the data to reduce the dimension of the data to simplify

the computations necessary to evaluate a match.

In-sequence localization, on the other hand, is the matching of a fragment of a

time series to a previously stored complete time series. Moreover, when a match

is determined, the last data point in the time series fragment is used to estimate

the final location of the data collection process. During in-sequence localization,

new data is continuously acquired and each fragment of data that is received is

immediately applied for localization. The goal is to quickly, efficiently and robustly

identify the location of each new acquired information bit in the stored database.

Because in-sequence localization is carried out on a mobile platform, computa-

tional complexity of the data representations must be low, such that the compu-

tational burden during matching is minimized. Furthermore, because in-sequence

localization is supposed to be fast and efficient the number of data points that must

be acquired prior to beginning in-sequence localization must be minimized. These

requirements constrain the number of data representation that can be used in this

application, and they dictate that the number of data segments be large, such

that the maximum segment size is acceptable as a starting point for localization.

Lastly, small segment size is also desirable because it is (locally) unique sequences

of represented intervals that lead to rapid localization, not large repeated repre-

sentations. In essence, rapid, efficient and robust localization is achieved when the

largest common subsequence in the representation is small.

There are two types of representations described in this chapter: fixed window

length and variable window length (data adaptive). The remainder of this section

will describe the performance of these representations for in-sequence localization

using the realistic scenario of noisy incoming data. Section 3.3.1 describes the

53

procedure for in-sequence localization using fixed window length representations.

Section 3.3.2 will describe the localization method for adaptive data representa-

tions. Lastly, section 3.3.3, compares the performance of all data representations

across found different data sets: vehicle data representing the terrain data collected

by a moving vehicle for localization, vehicle data rate, representing the differences

between neighboring terrain data points, random walk data generated using un-

correlated white noise, and the differences between neighboring random walk data

points. Testing on each data set is performed for all possible starting points on

the map and the results are averaged across 100 trials per starting point.

3.3.1 Fixed Window Length Representations

Of the the two types of data representations, the fixed width representations are

much easier to implement for in-sequence localization because the number of data

points to be acquired is the same regardless of the starting point in the data. The

procedure to test in-sequence localization begins with the creation of a localization

map. That is, a complete time series is segmented using a user specified represen-

tation method (PAA, SAX, DFT, DWT, Chebyshev polynomials). Then the time

series data is corrupted using 12 dB of Gaussian noise. From among all interval

starting points, a random query start point is chosen. The number of data points

corresponding to one interval is collected and the new data is represented using

the chosen method.

In-sequence localization begins when a localization map is built and an ini-

tial localization segment is collected. The localization segment is matched to each

interval in the map, and the error is compared to the standard deviation of the cor-

rupting noise. Errors that are smaller than the standard deviation are considered

a match for the segment, and errors that are larger than the standard deviation

are considered infeasible segments. After all map intervals are compared, the num-

ber of matches is counted. If the number of matches is one, then the interval is

localized. If the number of matches is greater than one, then a second interval

of data is collected and represented. The two-interval sequence is then matched

for each possible two-interval sequence of segments in the map. The number of

matches is counted, and the procedure is iterated until a single possible match re-

54

mains. When a match has been determined, the match is evaluated to determine

if it is a false positive, i.e. an apparent match with the wrong end segment, or a

correct detection, a match with the correct end segment. The number of matching

steps2 is recorded to analyze the distance that was necessary for localization. This

procedure described herein is summarized in table 3.9.

The testing procedure is iterated for 100 individual trials on each possible

starting point in the map. This iteration allows the collection of probability of

error rates and the average number of matching steps (number of segments collected

prior to localization) for localization. The results of these experiments across the

four specified data sets are further shown below.

Choose segmentation method:
PAA, SAX, DFT, DWT, Chebyshev polynomials

Create a noise-free localization map:
Segment the time series using the chosen method

Corrupt the data:
Corrupt the data using 12 dB of White Gaussian Noise

Choose a starting point:
Collect one interval of corrupted data and

represent using the method above
Localization:

While num matches > 1
For each possible segment in map:
Compare localization interval to map representation
Error > ση means segment infeasible
Error < ση means segment is a match
Count num matches
IF num matches > 1
Collect another interval of data, represent,
return to top of loop for matching

Table 3.9. Fixed Data Window Length In-Localization Procedure

3.3.2 Variable Window Length Presentations

The adaptive window localization procedure is much more intricate than the proce-

dure described above because regardless of the start point in the map, in-sequence

2Number of segments collected prior to localization

55

localization requires matching to begin at the smallest possible segment. The

modified procedure is shown in table 3.10 and described below.

First a method of representation is selected. From the methods described in

this chapter, PLR and APCA are adaptive methods, capturing the changes in

data behavior. Then a time series is segmented. To simulate the online acquisition

of noisy data, the time series is corrupted with 12 dB of Gaussian noise and a

random start point is selected. This start point must still be at the beginning of

the map segments. The map is then scanned for the smallest possible interval size

to determine smallest number of data points to be initially collected.

The initial data segment is collected and represented. The resulting represen-

tation is then matched to all segments of the smallest possible size in the map.

If a single match is found, then the localization procedure is complete. If more

than one match is found, then from among all possible segments, the next smallest

segment subsequence is determined. This number of data points is acquired and

represented. The new two interval sequences matched to the map to all 2 interval

sequences of the same segment sizes. If any are feasible, a third segment is acquired

and matching continues until a single segment is found.

However, if no matches are found in the first interval, several more data points

are acquired that correspond to the next largest interval size. If any matches are

found the procedure above is iterated. If no matches are found, then additional

data is acquired to the next interval size. This type of exhaustive testing continues

until all possible matches are tested for agreement and only a single feasible match

remains. The difficulty in this approach is maintaining flexible trajectories that

can change as paths are invalidated and new segment sizes are determined. The

matching procedure for variable interval window length is summarized below in

table 3.10.

3.3.3 Results

This section reviews the results of in-sequence localization using both fixed width

and variable window width representation methods. There are two types of figures.

The first is the number of matching steps needed until one match was left in on

the map. These figures show the average distance across all possible map starting

56

Choose segmentation method:
Choices are: PLR or APCA

Create a noise-free localization map:
Segment the time series using the chosen method

Corrupt the data:
Corrupt the data using 12 dB of White Gaussian Noise

Choose a starting point:
Collect a number of data points corresponding

to the smallest segment size in the map
and represent using the chosen method

Localization:
match the newly acquired segment

to all segments of the same size
while nummatches > 1
Among all matches,
find the smallest second segment size
acquire data and represent as next segment
Count number of matches
Repeat while nummatches > 1
for all possible segment lengths

Table 3.10. Variable Data Window Length In-Localization Procedure

points 3 to localization. There are four separate figures, Fig. 3.15, Fig. 3.17, Fig.

3.19, and Fig. 3.21 showing the necessary distance to a match for all four data

sets. In each plot, the x-axis shows the number of segments in the map, the y-axis

shows the encoding method, and z-axis represents the number of matching steps.

The second type of plot is the plot of correct detection. That is, following the

determination of a match, the final segment is evaluated to determine whether the

correct location has been identified. The correct detection rate, or the percentage

of trials which resulted in a correct localization, is shown with respect to the

number of segments into which the time series is segmented and the segmentation

method. The results across all four data sets are shown below in Fig. 3.16, Fig.

3.18, Fig. 3.20, and Fig. 3.22.

The results shown in this section demonstrate two facts about using represen-

tations designed for subsequence matching for in-sequence localization. First, the

relative uniqueness of sequences of representations is high. This is evidenced by

3100 trials per starting point

57

Number
of Segments

M
at

ch
in

g
st

ep
s

PLR
SAX
PAA
APCA
DFT
DWT
Cheby

PLR

Cheby
55

155
255

355
455

0

5

10

15

Figure 3.15. Average Number of Matching Steps During In-Sequence Localization in
Vehicle Data

Number
of Segments

C
or

re
ct

D
et

ec
ti

on
R

at
e

[%
] PAA

Cheby
DFT
SAX
DWT
PLR
APCA

PAA

APCA
55

155
255

355
455

0

20

40

60

80

Figure 3.16. Correct Detection Rate During In-Sequence Localization in Vehicle Data

the rapid convergence of the majority of algorithms - less that 30 steps in the ma-

jority of cases. Second, despite converging rapidly, the algorithm is usually wrong,

resulting in correct detection rates less than 10% for the majority of representa-

tions. Thus the presented data representations are significantly susceptible to the

effects of noise.

A notable exception to the trends stated above are the variable width represen-

tation methods - PLR and APCA. Taking into account key points in the data as

is the case in these representations, results in faster matching times and increased

correct detection rates of up to 30%. Still, even for these representations increas-

58

Number
of Segments

M
at

ch
in

g
st

ep
s

PLR
SAX
PAA
DFT
DWT
Cheby
APCA

PLR

APCA
55

155
255

355
455

0

10

20

30

Figure 3.17. Average Number of Matching Steps During In-Sequence Localization
When Using Vehicle Data rate

Number
of Segments

C
or

re
ct

D
et

ec
ti

on
R

at
e

[%
] Cheby

DFT
PAA
SAX
DWT
PLR
APCA

Cheby

APCA
55

155
255

355
455

0

0.2

0.4

0.6

0.8

Figure 3.18. Correct Detection Rate for In-Sequence Localization in Vehicle Data Rate

ing the number of segments dramatically reduces the performance of in-sequence

localization which suggests that there are relatively few important points to be

used for in-sequence localization on any data set.

3.4 Discussion

The results in the previous section demonstrate the fact that the seven current

reviewed methods have serious shortcomings for in-sequence localization. This is

not surprising, since the representations reviewed in this chapter are designed for

59

Number
of Segments

M
at

ch
in

g
st

ep
s

PLR
APCA
SAX
PAA
DFT
DWT
Cheby

PLR

Cheby
55

155
255

355
455

0

5

10

15

Figure 3.19. Average Number of Matching Steps for In-Sequence Localization in Ran-
dom Data

Number
of Segments

C
or

re
ct

D
et

ec
ti

on
R

at
e

in
[%

]

PAA
Cheby
DFT
SAX
PLR
APCA
DWT

PAA

DWT
55

155
255

355
455

0

10

20

30

Figure 3.20. Correct Detection Rate in Random Data for In-Sequence Localization

subsequence matching and thus do not account for the time component of the data.

Because of this, when the representations are tested for in-sequence localization,

an application that inherently requires a tracking of the temporal nature of the

data, the representations fail. One important observation that can be made from

the results is that taking into account the significant points in the data where the

behavior of the underlying data generating process changes is an important step for

any in-sequence localization algorithm. Thus any algorithms that are developed

for this purpose should be adaptive, and capable of capturing such changes.

In addition, all representation approaches above lack the basic requirement

60

Number
of Segments

M
at

ch
in

g
st

ep
s

PLR
SAX
DWT
PAA
DFT
Cheby
APCA

PLR

APCA
55

155
255

355
455

0

10

20

30

40

Figure 3.21. Average Number of Matching Steps When Performing In-Sequence Lo-
calization in Random Rate Data

Number
of Segments

C
or

re
ct

D
et

ec
ti

on
R

at
e

[%
] Cheby

PAA
DFT
SAX
DWT
APCA

Cheby

APCA
55

155
255

355
455

0

5

10

15

20

Figure 3.22. Correct Detection Rate in Random Rate Data During In-Sequence Local-

ization

for in-sequence localization that localization can begin anywhere in the segment.

Because of this the localization procedure needed increasingly smaller segments

to minimize the starting point error. This resulted in worse performance in the

presence of noise, because fewer time points were used to mitigate the effects of

noise.

Recent work that is described in this thesis has focused on mitigating some

of the negative effects of additive noise (see later chapters or the publications

[20, 23, 24, 22]). In fact this work has shown that by taking into account the tem-

poral nature of the data, and some characteristics of the noise greatly improves the

61

results. We have shown that using this extra information, the problem of converg-

ing to a correct location can be reformulate from that of whether the algorithm will

correctly converge, to what is the localization distance, and the data decimation

given a set of sensor noise characteristics.

Other authors have sought to do the same based on the existing data repre-

sentations. For example, Guerrero et. al. [18] build on the foundation of PLR

to improve its performance. The work is based on airplane tracking data used to

improve flight controller information in Europe. By taking into account the pre-

dictable patterns of motion of the airplane, Guerrero was able to show significant

improvements in matching using PLR in the presence of noise.

3.5 Conclusions and Future Development

This chapter introduced the problem of in-sequence localization by testing seven

published dimension reducing representations. The testing was performed in two

steps. First, the representations were tested to determine the fidelity of translation

in the presence of sensor noise. Second, the representations were tested in noisy

data and in the application of in-sequence localization. The results showed that

published representations do not adapt well to noisy data, and lack the ability

to track sequences that are temporal in nature. Because of this the published

representations perform poorly in the problem of in-sequence localization.

Subsequent chapters will seek to develop a new data representation that is

specifically targeted to the application on in-sequence localization. At first the

representation will be tailored to meet the demands of random starting location,

retaining the sequential information of the data, and minimizing the computational

complexity of localization. Then in subsequent chapters we will address the noise

observed in the data and scaling the problem.

Chapter 4

A Dynamics Discontinuities-Based

Deterministic Data Structure

Creation Algorithm for In-Sequence

Localization using 1-Dimensional

Time Series

The previous chapter introduced the problem of in-sequence localization and eval-

uated the performance of representations published for the application of subse-

quence matching in the new problem (in-sequence localization). The poor perfor-

mance of the representations motivates the need to create a targeted representation

that takes into account the requirements of in-sequence localization. This chapter

introduces linear models as one possible method of storing data patterns for this

application.

These linear models are structured in a tree-like fashion to simplify the online

localization process. During localization, using linear models eliminates the need

for the computation of an agreement metric by instead comparing each model

output to the modeling error bound. Agreement or disagreement with this bound

determines the segment feasibility.

Thus the introduction of linear models is advantageous because it reduces the

63

complexity of both the mapping and the localization mechanisms while enabling

the creation of simpler noise mitigation schemes. When compared to prior pub-

lished work (by other authors) that uses linear models, this chapter uses models

of order greater than 2 that more faithfully describe the data to preserve a greater

portion of the information in the data. Preserving this information is the key to

eliminating the matching metric during the localization process, and therefore the

key to reducing the computational complexity. In addition using linear models

allows the approach to be easily extensible to streaming data, large datasets and

multiple dimensions.

Some of the preliminary work for this chapter was presented at the 2012 Penn

State College of Engineering Research Symposium where it was awarded the second

place paper award [21]. Further preliminary work was presented at the 2012 IEEE

Conference of Decision and Control [20]. A full manuscript containing this work

has been published in IEEE Transactions on Intelligent Transportation Systems

[22].

4.1 The Need for New Vehicle Localization Ap-

proaches

The motivating application for the problem of in-sequence localization is vehicle

localization. This is a critical area of research because of the rapid development of

advanced vehicle safety systems, navigation systems, and intelligent transportation

systems capable of optimizing traffic patterns, tracking resources and identifying

infrastructure problems as they arise. All of these systems depend heavily on the

ability to localize a vehicle and, in many cases, are significantly more effective with

meter-scale resolution of the vehicle’s location. In addition, any safety system must

be highly reliable to prevent potential accident causing failures [6].

The Global Positioning System (GPS) has been the standard-bearer for vehicle

localization for some time. Current single-frequency GPS receivers can achieve a

minimum error of about 10m [7, 8]. Achieving meter resolution requires a two-

frequency GPS receiver, which is currently cost prohibitive for consumers. Fur-

thermore, even with the three independent global positioning systems, the U.S.’s

64

GPS, the European Gallileo, and the Russian GLONASS, there are still geographic

locations that will experience insufficient coverage or multi-path effects due to sig-

nal occlusions [9, 8]. These situations are encountered sufficiently frequently on

roadways to necessitate the development of alternate localization technologies.

To address these issues, manufacturers have focused on developing systems that

augment the GPS position estimate. The augmentation is typically performed us-

ing a combination of vehicle sensors, road maps, and motion models. Regardless

of what type of augmentation is performed, each augmentation strategy is depen-

dent on vehicle sensors that provide information for the vehicle maps and models

to estimate short term position changes during GPS drop-outs. However, costs

can increase significantly when including additional sensors. This is particularly

true as the field of research moves to visual odometry sensors such as cameras and

LIDAR [168, 169, 170, 171].

Sensors that have proven to be reliable for localization and navigation include

steering encoders, odometers, wheel tachometers, and inertial sensors. Published

results have shown the first three are capable of accurately tracking a vehicle’s

location [114, 118]. In addition, recent work by Jo et.al. [172] demonstrated the

fusion of these sensors with low cost GPS for effective localization. Inertial sensors

in the form of inertial measurement units (IMUs) have been previously used in

commercial and military-grade applications but suffer from integration errors that

grow unbounded with respect to operation time. Nonetheless, many IMUs are

sufficiently accurate for localization during brief dropouts [173].

Inertial measurements are particularly attractive when augmenting GPS data

because they provide a self-contained source of measurements that is not suscepti-

ble to the environment. This complements the attributes of the GPS and creates

a system more robust to environmental factors such as signal blocking and vehicle

condition [6]. To address IMU output drift, the sensor output can be transformed

into a set of features that neutralize integrative error. These features are stored in

a reference map that is compared to new data during vehicle travel. An example

of this is the work from Penn State that uses vehicle pitch to measure road grade,

a disturbance measured in the vertical IMU’s measurements. In this work, new

features are correlated to the previously stored map [127, 119, 137, 146, 138, 120].

The use of reference maps is the main limitation in using IMUs because it requires

65

substantial computational power and storage to support the map-matching [122]

infrastructure. Therefore, new approaches to the creation and structuring of refer-

ence maps are necessary to improve the viability of using IMU data for localization

when augmenting GPS, with map and feature representation research being a key

area of ongoing research.

To this end, this chapter presents a dynamical model-based approach to the

problem of localizing a road vehicle using inertial measurement data (see Fig.

3.1). In particular, the method described herein uses vehicle pitch data in a self-

contained dead reckoning (DR) approach that does not require the addition of a

GPS signal. Creating self-contained approaches is useful, even if used in conjunc-

tion with a GPS, because it creates both hardware and software redundancy in the

localization process and thereby increases the reliability of the overall navigation

system.

4.1.1 Problem Formulation

Previous localization work has addressed the implementation problems by either

setting the localization problem in the probabilistic domain; using tools such as the

Kalman filter, the Bayes filter, or the particle filter to obtain the location estimates;

or by evaluating map location using a comparison metric. In contrast, this chapter

chooses to frame localization as a deterministic problem by expressing the road

data using linear models. Linear models address the problem of data compression

by expressing large portions of the data using a small number of model coefficients.

During localization, linear models simplify computations by eliminating the need

for metrics to match incoming data. Instead classically defined error bounds can be

used to define data agreement. Relative to the feature matching approaches, this

further reduces the complexity of the transformations performed on the observed

noise and simplifies noise mitigation algorithms.

Vehicle pitch, as recorded by the IMU, is the road grade filtered by the wheel-

base of the vehicle. The collection of road data is illustrated in Chapter 3, Fig.

3.1. Typically during localization the collected data includes the variables v(t),

s(t), and m(t), and the localization problem is reduced to identifying the position

p(t). The challenge of localization can be further reduced to determining initial

66

position constant p(to).

In this work, the localization of the vehicle is accomplished by a two-step pro-

cess. First, a specially instrumented test vehicle collects position and pitch road

data1. This data is compressed and stored as a road map for use in another vehicle.

The compression and storage of the data is performed by extracting linear models,

which represent patterns from the data that are robust to noise. When a different

vehicle travels along the same road, the data observed by its sensors are compared

to the predetermined map. Regions of the map are continuously eliminated until

the correct vehicle location is identified. This approach to localization is referred

to as the map-matching approach.

4.2 State of Research

4.2.1 Sensor-Based Localization

The three sensors commonly used for DR localization are the odometer, the wheel

tachometer and the IMU. A series of review papers can be found in [113, 114, 6].

Perhaps the simplest method of navigation is odometry. To keep track of odometry,

manufacturers install a sensor that records a pulse each time it passes by a specific

point on the wheel. The number of pulses is then multiplied by a scale factor that

is related to the wheel diameter, tire pressure, temperature, and any environmental

factor that changes the wheel radius. References citing the use of odometry and

error-correcting techniques in vehicle localization can be found in Abbott and

Powell [114] and also within the mobile robotics community [115, 116].

A similar set of sensors are the wheel tachometers. These sensors are typi-

cally employed in anti-lock brake systems (ABS) to detect the differences in wheel

speeds. Using the same framework, the difference in wheel speeds can reveal the

direction of the vehicle. Like the odometer, the critical piece of knowledge neces-

sary to make use of velocity encoders is wheel radius. In Carlson et.al. [117, 118]

velocity encoders are used in a dual GPS/DR system. Here while GPS is avail-

able, the signal is used to provide a heading and a wheel radius estimate. When

GPS becomes unavailable, wheel tachometers are calibrated to provide heading

1The instrumentation of the vehicle is described in detail in section 4.3.1.

67

information.

Odometers and velocity encoders suffer from well-known sources of terrain er-

ror such as wheel slips, uneven road surfaces and skidding. In addition, these

same sources suffer from vehicle structure errors such as wheel diameter changes,

wheelbase uncertainty and low resolution of the encoding sensors. These errors

have been observed and characterized both in the vehicle navigation community

[114, 118] and the mobile robotics community in Borestein and Liqiang [115].

In contrast to odometry and tachometers, gyroscopes and accelerometers in

IMUs measure rates of acceleration and rates of change in displacement of the

vehicle. A typical IMU consists of three gyroscopes and three accelerometers,

each directed in one of the axes of motion. To obtain vehicle heading and veloc-

ity, the IMU outputs are integrated in each direction. This integration leads to

the cumulative growth of small bias and noise sources in the IMU as a function

of the operation time. These noise sources will be further discussed in section

4.2.1.2. However, because IMUs are self-contained and thereby not susceptible to

the vehicular and environmental noise sources, IMUs are a good complement to

other vehicle sensors and GPS [119, 120]. For this reason, GPS and IMU data is

frequently integrated in augmented systems [121, 6, 174].

4.2.1.1 Map-Matching

The DR localization approaches described above can be used to estimate vehicle

location given a known starting point for the vehicle. However, if the location is

unknown, then the vehicle position can be estimated through either triangulation

using active beacons (the GPS is a form of active beacon) or map-matching using

a pre-existing reference map [122, 123, 124, 175, 176]. A third alternative is un-

der development where building the reference map and localization is carried out

simultaneously [139, 177, 140].

The linear modeling approach to reference map creation and localization in this

chapter combines DR using inertial measurements and map-matching. A state of

the art review of map-matching is found in Quddus et.al. [124]. The author sub-

divides the field of map-matching into early techniques that take into account the

road geometry, such as arcs and lines; topological approaches, which take into

account road geometry and the interconnection between each geometric feature;

68

probabilistic approaches that assign a region of error within which a likely road

segment is found; and more recent approaches termed advanced map-matching us-

ing Kalman Filters, fuzzy logic, particle filters, etc. The references therein provide

an in-depth look of the field of map-matching.

As a general outline, the map-matching process begins by extracting or observ-

ing features from the data, Smith et.al. [125]. The choice of features during the

extraction process has a pivotal role in the subsequent localization performance of

the algorithm. Early algorithms use arcs and lines as features that modeled the

road shape [122, 126]. In advanced algorithms, the features are extracted through

a non-linear transform that is used to identify the most noise-robust portions of

the data. A few examples are local extrema, geometric features such as arcs and

lines, or geometric beacons. Further examples can be found in the literature on

pattern matching and data mining [127, 128, 129, 130, 131].

Then, during localization, the features are re-extracted from new vehicle data.

The location is determined by comparing these features to the map. The most

common comparison approach is the threshold. Here a distance is computed from

the road data to each possible map location. An empirical threshold is used to

determine the correct segment. More advanced methods of matching include those

presented in the robotics community where the probability of the vehicle’s loca-

tion and of the detected features is calculated using Kalman filtering in a formal

framework methodology established in [132, 133, 134], or a Bayesian comparison

approach such as the one used by Levinson and Thrun [135], or a particle filtering

approach in Törnqvist et.al. [136].

The motivation to develop advanced map-matching algorithms stems from the

need to handle increasingly complex road networks that easily overwhelm earlier

algorithms. Unfortunately, to the best of our knowledge, there does not exist a

unifying publication that elucidates the limitations of each map-matching approach

in the vehicle navigation community. In contrast, several review papers in the data

mining community have concluded that more work is necessary to design efficient

algorithms to handle large databases [14].

Choosing the features and the extraction process plays a pivotal role in the

subsequent performance of the algorithm. Previous research in our own group

has focused on IMU pitch data for localization [10, 137, 138, 119, 120, 127]. In

69

particular, Dean [10] demonstrated a particle filter-based approach using inertial

measurements. A more noise robust approach was presented in Vemulapalli et.al.

[137] where an optimal filter was derived to process the data prior to extracting

extremum features. Combining previous work, the work by Katetotad et. al.

[138] employed both the particle filtering and feature-based approaches to allow

localization and tracking of a vehicle over a greater area.

4.2.1.2 Noise Characterization of the Inertial Measurement Units

Recent decreases in the cost of Micro-Electrical-Mechanical Systems (MEMS)

IMUs have contributed to a rise in the number of publications citing augmented

GPS/IMU systems [141, 119, 120, 142]. Given this development and the potential

for further research in the future, it is important to understand how sensor lim-

itations affect the localization approach. In particular, El-Sheimy et.al. in [143]

characterize IMU noise in terms of Allan variance and power spectral densities.

The same authors then offer approaches to mitigating IMU noise [144]. A MEMS

specific analysis is demonstrated by Aydemir and Saranli [145], while the work

by Jerath and Brennan [146] evaluated the noise performance of several grades of

IMUs.

Extensive research has also been presented on the calibration of IMUs [147, 148,

149, 178]. An in-depth discussion of IMU noise components is shown in section

4.4.3. The described noise is then used to corrupt the IMU data for localization

simulations.

4.3 Algorithm Description

4.3.1 Road-Map Model Extraction

The first step in our approach is to collect road pitch data using a specially in-

strumented vehicle. This vehicle has been equipped with the Honeywell HG1700

IMU, which is mounted to the console near the vehicles center of gravity between

the driver and passenger seats. The vehicle pitch data is estimated using both the

longitudinal gyroscope and longitudinal accelerometer readings and is internally

filtered in the IMU using a factory-integrated Kalman filter that reduces the effects

70

of IMU noise.

The data is then modeled using a set of AutoRegressive models with an eX-

ogenous input (ARX) [179], that describes non-overlapping segments of the data.

ARX models are particularly suitable for this application because the model out-

put is a prediction of the incoming data. In this application the exogenous input

is the error between the estimate and the collected data; it is assumed that this

error is bounded by a bound ε. The general form of an ARX model is

d[k] = c1d[k − 1] + ... + cNd[k − N] + e[k]

= A ω[k] + e[k], |e[k]| ≤ ε (4.1)

where k is the data index, d[k] represents the current sample of data, A =

[c1, ..., cN] is a vector that contains the coefficients of the linear model of order

N , the vector ω[k] = [d[k − 1], ..., d[k − N]] contains the previous N samples of

data, i.e., the so-called regressor vector, and e[k] is the model output error bounded

by the above mentioned bound ε.

Models are extracted using a Greedy algorithm developed in [180]. This al-

gorithm simultaneously obtains the ARX model coefficients and breaks the road

data vector into non-overlapping segments. The algorithm is shown in table 4.1.

The algorithm begins at the (N + 1)th data point, labeled k0. Starting at

this initial data point, the algorithm searches for the largest interval for which

it is possible to obtain a single ARX system that satisfies the error bound for

every point.2 Once this is not possible, a transition is declared indicating the

end of the model fit and start of the next model; the corresponding data index

is labeled τ0. Henceforth, τ0 is called a transition point, and it is the point at

which one model segment ends and the next begins. The model-fitted segment

is removed and this process is repeated until the final data point is reached, i.e.

kmax is reached. The resulting set of data segments spans the values of consecutive

transition points: (d0,τ0),(τ0,τ1), etc.3 The optimality of this algorithm is described

below in proposition I. This proposition was proven in [180].

2The search itself is performed solving a linear feasibility problem.
3The model coefficients that correspond to each segment are not unique since multiple sets of

coefficients may result in a model that satisfies the error bound.

71

Greedy Algorithm

Initialize Constants:
model order : N
precision variable: ε
segment index: n = 0
initial loop index: k0 = N + 1
first “transition point”: τ0 = k0

Algorithm Loop:
FOR i = k0:kmax

Find a vector An such that:
F : {|d[k] − An ω[k]| ≤ ε ∀k ∈ [τn, i]}

IF F is infeasible
Store An from index i-1, set the data index bounds:
In = [τn,i], iterate the segment index: n = n + 1,
Store the transition point: τn = i

END IF
END FOR
In = [τn,kmax] and τ = {Ij}n

j=0

Return n and τ

Table 4.1. Optimal Greedy Algorithm for ARX Model Identification

Proposition I : Given a bound on the error, ε, and a model of order N , the

algorithm described in Table 4.1 breaks the collected data set into the smallest

possible number of segments.

The segmentation of the data set is illustrated in Fig. 3.1. In this figure, the

horizontal axis represents the distance in meters from the initial map position.

The vertical axis represents the angular pitch rate output of the IMU. In each sub-

figure the solid line represents the query data, the solid line with circle markers

displays the model output, and the dashed lines represent the error bounds. In

each case the model is only valid for a portion of the plotted data. For example,

the first sub-figure shows a model valid from 300 m to 500 m. Then the next plot

shows the model that belongs to the segment from 500 m to 600 m. Lastly, the

third plot shows a model that is valid for the remaining distance. Note that each

model is within its error bound for the given segment. Outside of this segment the

model may or may not agree with its bound. It is the unique sequence of these

models, even if they themselves are not unique, that will be used in the localization

algorithm development.

72

A
n
gu

la
r

R
at

e

distance [m]
300400 600 800 1000 1200 1400

300400 600 800 1000 1200 1400

300400 600 800 1000 1200 1400

-1
0
1
2

-2

0

2

-2

0

2

Figure 4.1. ARX Model Fit Demonstration

4.3.2 Locating a Vehicle using the Extracted Models

Vehicle localization can be subdivided into two distinct problems: locating the

vehicle without a priori knowledge of the start location and tracking a vehicle

given knowledge of its initial position. The set of ARX models extracted in the

previous section can be used to perform both functions. At first, segments are

continuously eliminated until a single feasible segment remains. This segment

represents a possible set of vehicle locations. Then, when a transition between

models is found, the precise location of the vehicle is detected. From this point

forward, the vehicle’s location can be tracked through validation of the current

segment and detection of future transition points. The iterative process by which

this is accomplished is described in table 4.2. In this algorithm the variable “L” is

set to one.

Similar to the Greedy algorithm in Table 4.1, the localization procedure in

Table 4.2 begins with the collection of N + 1 pitch data points. The data index

is set to k = N + 1, and the acquired data is sequentially tested in each of the

extracted linear models, denoted by the index m. The output error of the models

is compared to their error bound, εm. More precisely, this comparison is shown in

equation (4.2).

If for a given set of data the model error is smaller than the bound, then

the current segment is labeled as a possible, or feasible, set of vehicle positions;

otherwise the segment is labeled as infeasible. At each time step, only segments

73

that were previously labeled as feasible are tested. Thus, under some assumptions

to be discussed below, the number of feasible segments monotonically decreases to

one after some iterations.

|d[k] − Amω[k]| ≷ εm. (4.2)

Two critical assumptions must hold to facilitate the localization of the vehicle.

First, the pitch map must not be periodic to within an epsilon bound equivalent

to the model error. For real-world pitch maps that have been measured to date

by the authors, roughly 10,000 km or 6,000 miles, this assumption is quite valid.

Second, the vehicle must travel a distance sufficiently great such that there exists

a unique observed sequence of models from among all possible sequences of models

on the map. The length of necessary travel distance is dependent on the starting

location of the vehicle on the map.

As an illustrative example, consider a vehicle that begins traveling on a path

that contains two hills and otherwise flat road in between and around the hills.

Suppose that the hills are similar in their pitch profiles. Then no single segment

of the map alone is sufficiently unique to identify the location of the vehicle. For a

small travel distance the algorithm would have at least two possible feasible paths

during localization. In this example travel distances smaller than the distance

between the hill peaks would result in this localization ambiguity.

However, if the vehicle travel is extended to at least the distance between

peaks of the hills, then there is only one unique profile which can be identified.

The unique profile in this case is the flat road ahead of the vehicle followed by two

hills and then flat road again. Similar to this example, each time a vehicle begins

travel, there exists some distance within which a unique localization sequence of

models can be found.

4.3.2.1 Model Transitions

If the vehicle is traveling inside of a model segment and a data point is collected

that does not agree with the model, then a transition test is performed. Transition

points contain more information regarding the vehicle location because they must

74

satisfy the following three inequalities.

|d[k − 1] −Amω[k − 1]| ≤ εm

|d[k] − Amω[k]| > εm (4.3)

|d[k] − Am+1ω[k]| ≤ εm+1

The first inequality shows that the vehicle was in segment n at the data point

immediately preceding point d. The next inequality shows that the vehicle is no

longer in segment n, and the third inequality shows that the vehicle is now in

segment n + 1. The latter two inequalities have domains that only overlap at the

transition point and therefore provide strong evidence about the location of the

vehicle.

When segmenting the model map, the error associated with the first model is

also recorded. This provides an additional point of reference when determining

the validity of a transition. Thus transition points contain information about the

vehicle’s location that is significantly larger than ordinary points. Segmenting a

map with as many transition points as possible improves the localization speed

and increases the robustness of the map to noise.

4.3.3 Tracking a Vehicle using the Extracted Models

Once the vehicle’s starting point has been identified, the set of models at the

bottom of the model tree, or a switched linear system, can be used to track the

vehicle’s progress. This is a critical function of the algorithm because it provides

a method of detecting changes in direction, sudden maneuvers, etc. Tracking is

performed in a similar manner to localization, but only a single feasible segment

is tested at a time. While the vehicle is located in a segment, its location can

be verified using the simpler test shown in equation (4.2), and its position on the

map can be updated using odometry readings. This process continues until a data

point is found which does not agree with the model.

The data point that does not agree with the current model is assumed to be

a transition point and is evaluated using equation (4.3). Additionally, the vehicle

location is verified by comparing the distance since the last transition point to the

75

previous segment length. If the data satisfies both checks, then the models are

iterated and the process is repeated. Otherwise, the initial localization is assumed

to be erroneous. In this case, the vehicle localization loop is repeated and a new

location is selected.

In general, once a correct transition point is located, only large changes in the

road surface or unexpected maneuvers will lead to errors in the tracking phase of

the algorithm. For example, if the driver of the vehicle executes a sudden braking

or accelerating maneuver, large oscillations will be introduced in the data. This

will lead to a rapid elimination of the feasible models. When this occurs, the

tracking code will restart all levels of the model tree that have no feasible models.

Practically this means that re-localization is occurring in a neighborhood of the

last known vehicle location, ignoring the data produced during the unexpected

maneuver.

4.4 Practical Considerations

4.4.1 Advantages of Linear Model Based Localization

The dynamical models extracted from the vehicle pitch data represent a mapping

of the underlying road surface. It is not possible to claim that these models are

uniquely correlated to a location on a global scale; indeed, there are many situations

where road profiles in one location are quite similar to road profiles in a very

different location. However, as discussed in the previous section, given a sufficient

travel distance, a unique sequence of models can be found for localization; in other

words, two roads may be similar to each other for a small model segment, but they

will not be similar to each other over many segments in a series.

Using dynamical models offers several advantages. First, given a sufficiently

unique map and a noise-free environment the vehicle can be accurately localized for

every experiment. While this localization may be to within a neighborhood of the

correct position, it is not a probabilistic neighborhood, but rather a deterministic

range determined by collection sensor characteristics. Second, in contrast to previ-

ous approaches to localization, subsequence identification, and pattern recognition,

the approach presented here does not require a metric for matching. Instead the

76

modeling output error is compared to the modeling error bound, equation (4.2),

which is determined for each model during the map creation. This simultaneously

reduces the need for a metric function, calculating the metric function, and empir-

ically determining a threshold for the metric output. Third, following above, the

algorithm is most computationally expensive during the extraction of the model

map. This is advantageous because the largest computational constraints are in-

vehicle, where computational power is constrained by cost and energy efficiency.

Lastly, the linear treatment of data allows for the implementation of simpler noise

mitigation strategies. This again reduces the computational power necessary dur-

ing vehicle travel.

4.4.2 Computational Burden

Because computational power of in-vehicle computers limits the usefulness of most

self-contained localization strategies, it is critical to design algorithms that are

efficient in their online execution [6]. In particular, the research community in

mobile robotics has invested significant efforts in the real-time implementations of

the SLAM algorithms [181, 182, 183, 136]. In this section, the computational cost

of the presented algorithm is compared to the particle filtering approach in [10].

This comparison is particularly relevant because the particle filtering approach is

similar to the prevalent approach used to solve the SLAM problem, and second,

the approach in [10] utilized the same database as the work presented here.

The measure used to assess computation cost in [10] is the number of floating

point operations (FLOPs) required during the solution of the algorithm. The num-

ber of FLOPs required for particle filter convergence is dependent on the number

of particles used per mile. For 1000 particles per mile, the particle filter approach

required 37009 FLOPs per mile for each iteration during the localization process.

Given this number of operations, the in-vehicle computer was only able to scan

several miles of the road map during localization.

For the model-based localization approach in this thesis, an adequate vehicle

map covering several miles would require many thousands of models. This is

because for a map to be considered adequate, it must cover a region large enough

to span the uncertainty in vehicle position. The size of this map would result in a

77

very large initial computational burden.

One way to reduce the initial computational burden is to create a tiered tree

structure. At the top level of the structure there are “coarse” models that describe

large segments of the map. At the bottom level of the structure there are “fine”

models that describe small sections of the map. Fig. 4.2 shows an example of this

type of model structure. The models are denoted as Am,l, where l is the level in

the model structure, and m is the segment index on the mth level. Each model

structure will have L levels and ML models per level. At each successive model

level, the ε-region is contracted so that each segment from the previous level is

both bisected and modeled with a tighter error bound. This leads to an increase

in the number of segments for each consecutive level.

The model structure extracted for this chapter uses bisection at successive

levels, i.e. at each consecutive level, the segments from the previous level are

bisected. Practically, bisection is advantageous because eliminating large segments

at the top of the model structure eliminates a large number of models at lower levels

and reduces the computational cost. Additionally, there is little difference between

finding a single transition or multiple transition points at a time. This is because

there exist naturally occurring transition points between different models which

result from changes in the data. These transition points occur for all segmentation

types and consequently result in equivalent overall performance.

Figure 4.2. An Example Model Structure Designed For Localization.

The localization process discussed in Section 4.3.2 can also be extended to

the model structure. In short, the feasible models on each level of the structure

are tested sequentially. In this case a model is considered feasible when both the

model and its parent have not been invalidated. For example, testing begins at

the top level with a single model that describes the map. Then at the second level,

two segments are tested. Because the first segment describes the entire map, all

segments on level two begin as feasible. Then on the third level only segments that

were described by a feasible model in the previous level are tested. This process is

78

iterated to the bottom of the model structure. At each successive level, the models

become more precise because the error bound ε becomes tighter and therefore

a greater number of segments can be eliminated. The localization procedure is

described by the algorithm in table 4.2.

Fig. 4.3 demonstrates the reduction of the computational requirements with

respect to distance traveled. In this figure the vertical axis represents the number of

floating point operations performed per iteration, and the horizontal axis represents

the vehicle’s travel distance in meters. The sample point spacing during vehicle

travel is 0.5 m, which is a decimation similar to that in [10]. Note that, to process

the whole map, the initial number of floating point operations is 36000, but within

several meters the majority of the models in the structure have been eliminated and

the steady state number of FLOPs per iteration is around 9600 for each incremental

map query. The periodic spikes that occur in steady state are transition points

that require a larger number of operations to verify.

distance [m]

F
L
O

P
s

p
er

it
er

at
io

n
[x

10
4
]

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.3. An Example FLOPs Count, for Computational Comparisons.

The results presented in this figure are typical for this map but can vary with

respect to the starting point of the simulation. As a point of comparison with [10],

note that testing was performed on a 6 km (3.73 mile) stretch of road. At the time

6 km was the largest stretch of road that was tractable to store and parse in a ve-

hicle using the PF approach. Comparing this same map, the algorithm presented

in this chapter required 9600 FLOPs per mile and per iteration. After conver-

gence, the algorithm requires 2574 FLOPs per mile and per iteration. In this case

79

we note a fourfold reduction in FLOPs. The steady state number of FLOPs re-

quired can be further reduced by optimizing the code and using model similarities.

Therefore, the size of the map that can be computed with this approach is many

times larger than the map that is feasible using a particle filter. It is important to

note that the approach presented here is extensible and capable of accommodating

any data set size. The main limitations are the in-vehicle computation power and

storage capacity, both of which are already within the domain of present desktop

computing.

4.4.3 Measurement Noise and Pitch Profile Variance

There are two significant sources of error that affect changes in the road pitch pro-

file that may occur between road traversals: sensor noise and changes in the road

pitch profile. The latter is a significant problem because the observed pitch profile

is dependent on environmental and mechanical circumstances that surround the

vehicle. Even for the same vehicle, different characteristics can alter the observed

road profile. These characteristics include the number of passengers, the weight in

the trunk, the level of fill in the fuel tank, the state of the system shock absorbers,

the amount of wind resistance, the pressure in the tires, and even pot holes. This

could be interpreted as a variance in the pitch profile of the road. However, re-

peated measurements of actual roads show that the road grade profile is invariant

or at least can be bounded by a fixed measurement error. Because the goal of this

chapter is to demonstrate the approach of compressing data using linear models

and then efficiently parsing through this data online, the pitch profile is assumed to

be invariant and repeatable with every vehicle run. The remainder of this section

discusses IMU noise.

4.4.3.1 IMU Characterization

An IMU contains three gyroscopes that provide an angular rate measurement for

each of the 3-dimensional coordinate axes and three accelerometers that output

velocity rate information. Although the averaged rate measurements are accurate

over time, they are integrated with respect to time to obtain orientation, position

and velocity estimates. This integration leads to the accumulation and propagation

80

of small errors.

IMU noise is characterized by the manufacturers in terms of Allan variance

of the angular rate output. The primary components of this noise are an angle

random walk noise and bias noise. Angle random walk and bias are added to the

angular pitch rate before it is integrated to obtain the orientation, position and

velocity estimates. Thus even small errors are propagated indefinitely through the

integration process.

There is a wide range of commercially available IMU sensors that each exhibit

varying noise characteristics. Fig. 4.4 uses the code developed in [146] to demon-

strate the noise characteristics for a noisy IMU, ADIS16367; a mid-grade IMU,

Crossbow 440; and a low noise IMU, Honeywell HG1700. The top of the figure

shows the angle random walk component of the IMU noise and the bottom of the

figure shows the bias noise component. In both plots the horizontal axis represents

vehicle travel distance in meters.

D
eg

.
P

it
ch

D
eg

.
P

it
ch

distance [m]

ADIS 16367
Crossbox 440
HG1700

0 100 200 300 400 500 600

0 100 200 300 400 500 600

-4
-2

0
2
4

-4
-2
0
2
4

Figure 4.4. Top: Angle random walk noise. Bottom: Bias noise.

Note that the larger component of noise is the angle random walk noise. The

angle random walk noise can be described as white noise added to the angle rate

measurements of the gyroscopes prior to integration. The standard deviation of

the white noise is specified by the manufacturer for a 1Hz sample rate. The specifi-

cation at 1Hz means that the variance of noise is scaled by the sampling frequency

at the output of the IMU. Table 4.3 shows the maximum and average SNRs using

the manufacturer specifications and the test data. SNR is calculated using equa-

81

tion (4.4) [184] where σm is standard deviation of the map data, σn is the standard

deviation of white noise provided by the IMU manufacturer, and fs is the sampling

rate at the IMU output.

SNR = 20log10

(

σm√
fsσn

)

(4.4)

There is an important observation that can be made from the preceding dis-

cussion; as the IMU sampling frequency increases, the average SNR monotonically

decreases. Because the test map data has been re-sampled to place equal spacing

between samples, the effect of noise on vehicle localization can be reformulated as a

question of localization resolution. For example, a 100 Hz sample rate corresponds

to a 0.05 m map decimation, while a 1 Hz sample rate corresponds to 5 m between

samples. According to equation (4.4), reducing the sample rate from 100Hz to 1Hz

improves the SNR by a factor of 2. Thus the sampling frequency can be decreased

to improve SNR and algorithm performance. This can be done for low-cost sensors

provided a coarse map resolution is acceptable.

4.4.3.2 Bias Noise

The first noise component to be addressed is bias noise. The bottom of Fig. 4.4

shows that bias is relatively constant in neighboring data points. Such a low-

frequency or DC signal can be rejected through the use of the differences between

neighboring data points during map building. Therefore, assuming that bias re-

mains constant in neighboring points, a map of differences can be generated, where

each point is the difference between two neighboring pitch values. This is illus-

trated by the following equation,

∆d[k] = d[k] + β[k] − d[k + 1] − β[k + 1] (4.5)

where d[k] and d[k + 1] are adjacent pitch values with bias β[k] and β[k + 1],

respectively. Because bias is relatively constant, β[k] ≈ β[k+1], the variable ∆d[·]
is insensitive to bias noise. Hence, ∆d[·] can be used during the extraction of the

road map models and structure and during the online localization to mitigate the

effects of bias noise. The two data sets, pitch data and angular pitch rate data,

82

are illustrated in Fig. 4.5. To provide context for the data, the approximate route

along which the data was collected is included in Fig. 4.6. This figure demonstrates

that the test set of data included both measurements from highways and arterial

roads.

D
eg

re
es

P
it

ch

distance [m]

A
n
gl

e
R

at
e ∆ m[d]

m[d]

0 1000 2000 3000 4000 5000 6000

0 1000 2000 3000 4000 5000 6000

-0.5

0

0.5

-6

-4

-2

0

2

Figure 4.5. Top: Pitch Values vs. Difference Map Bottom: Difference Map

Figure 4.6. Approximate Vehicle Data Collection Route in State College, PA, USA

In Figure 4.5, the horizontal axis represents distance of travel in meters. The

top half of the plot shows the pitch data profile used in these experiments. The

bottom half of the plot shows the difference map profile of the data. These plots

show clearly that any bias integrated into the pitch signal is greatly reduced in

the difference map and is very small when compared to the terrain signal size. In

particular, when using the bias characteristics of the mid-grade sensor, the residual

bias terms were found to be on average four orders of magnitude smaller than the

terrain signal size.

83

4.4.3.3 Angle Random Walk Noise

The second mitigation strategy addresses angle random walk noise. This noise is

modeled as white noise added to the angular rate output of the IMU. Otherwise

stated, angle random walk noise adds small perturbations to each acquired data

point. These perturbations cannot be eliminated by subtraction like the bias noise

above. An alternative mitigation strategy is to introduce a tolerance for each data

point.

Assume that the perturbations can be bounded by some ηB . Let each data

point have a perturbation |η[k]| ≤ ηB. Then a model is said to be feasible or agree

with the data, contained in vector ω[k], if a set of constants η̄ = [η[k], ...η[k+N−1]]

can be found such that,

|∆d[k] − A(ω[k] + η̄)| ≤ ε. (4.6)

The choice of the bound ηB is simplified because we know from the manufac-

turer that the added noise can be modeled as white Gaussian noise with a standard

deviation σ specified in the IMU datasheet at a 1Hz sampling rate. Thus the bound

ηB is set to two standard deviations of the additive white Gaussian noise for the

particular sensor and sampling frequency.

One important observation is that because pitch is integrated from angular

pitch rate, the perturbations at each pitch data point are not independent. Testing

a large horizon of data points simultaneously allows for the greatest ability to

detect and mitigate the correlation between the points. Practically, this scales the

computations of the model validation step and it is therefore not feasible to test

more than a sequential few points at a time.

4.4.4 Simulation Setup

When setting up the numerical experiments, the two critical parameters are model

order, N , and error bound, ε. Unfortunately, there do not exist optimal values

for either parameter. Instead these parameters can be varied with respect to one

another to create different model structures with similar localization properties.

For the numerical experiments in this chapter, the model order was held constant

84

at five, and the error bound was allowed to vary for each model.

The initial value for the error bound is 0.2556 degrees of pitch. This is the

smallest value of ε such that at the top of the model structure, a five-coefficient

model can be used to describe the entire data segment. For each successive level,

the error bound was contracted by a factor of 0.85.

4.5 Numerical Results

4.5.1 Localization using Noise-free Data

In the ideal case, the traveling vehicle records noise-free pitch measurements from

an invariant pitch profile. In this ideal case, given all available data, the algo-

rithm presented will always converge to the correct location. Because of this, the

presentation in this section is focused on illustrating the underlying method and

demonstrating that the algorithm is coded correctly, rather than analyzing the

localization algorithms convergence properties in the presence of noise.

Fig. 4.7 demonstrates one approach to illustrating the algorithm’s convergence.

This figure shows the convergence of 100 trials using random start points in a noise-

free environment. The horizontal axis in the plot shows the distance traveled by

the vehicle in meters. The vertical axis shows the number of trials that have

converged. Note here that more than 90% of the trials have converged by 25 m of

travel distance. All trials have converged within 60 m of travel, which corresponds

to the length of the largest segment on the lowest level of the model structure.

Thus for the map used in this work, in a noise-free case, the maximum travel

distance to convergence can be bounded by the length of this segment.

The variation in convergence distance can also be explained using transition

points. Because these points provide a greater amount of information for conver-

gence, the intersection of multiple transition points on the vehicle path leads to

shorter convergence distances. This can be observed on the plot where a majority

of segments are eliminated within 25 m. The paths that require longer convergence

distances lie in more information sparse regions of the map and need a longer time

to acquire the information-rich points needed to localize the vehicle.

The figure underscores two of the fundamental advantages of the developed

85

distance [m]

N
u
m

b
er

of
C

on
v
er

ge
d

T
ri

al
s

0 25 50 75
0

20

40

60

80

100

Figure 4.7. Number of Converged Trials per Iteration Number for 100 Noise Free

Localizaiton Trials in Vehicle Data.

algorithm. The first is that there exists an upper bound on the convergence time

of localization. The second is that the convergence distance can be predicted from

the observation of models along the vehicle route.

The processes of segment elimination and transition point identification are

illustrated by Figs. 4.8 and 4.9. In these figures the horizontal axes show the

distance traveled from the map origin. The top plots show the model output

plotted against the reference map data, with the error bounds, ε plotted in red

dotted lines. The vertical axis in these plots represents the angle rate. In the

bottom plots the model error, in degrees, is plotted against the distance traveled

in meters. In this case, the vertical axis represents the model errors.

Suppose that the vehicle begins traveling at 30 m on the map. Then comparing

the output of model 1 in Fig. 4.8 with its error bound shows that the segment is

a feasible set of vehicle locations. While the vehicle is traveling, all model output

errors remain below the modeling bound, ε. However, when the vehicle reaches

the end of the segment at 110 m, the output error is significantly higher than

the bound ε. This output error is compared to the known transition point error,

which was recorded during model identification, for Model 1, and the input data

is also compared to Model 2. The mathematical description of a transition point

is described in equation (4.3). If all three equations are simultaneously valid and

the error matches the known transition point error, then the point at 110 m is

identified as a transition point, and Model 2 becomes the feasible vehicle location

86

A
n
gl

e
R

at
e map data

model output
ε

distance [m]

E
rr

or
[D

eg
.] model error

ε

30 40 50 60 70 80 90 100 110

30 40 50 60 70 80 90 100 110

0

0.5

1

1.5

-1

0

1

2

Figure 4.8. Top: Map data vs. Model 1 output, Bottom: Model Error

P
it

ch

map data
model output
ε

distance [m]

E
rr

or
[D

eg
.] model error

ε

110 115 120 125

110 115 120 125

0

0.5

1

-2

-1

0

1

Figure 4.9. Top: Map data vs. Model 2 output, Bottom: Model Error

model.

The comparison of errors is performed for all feasible segments each time a

new data point is collected. Because only feasible segments are evaluated, and

because only segments whose parents are feasible are re-activated, the number of

feasible segments monotonically decreases as the number of iterations rises. Thus

the number of feasible segments in Fig. 4.7 converges to one as the number of

iterations increases.

87

4.5.2 Localization using Noisy Data

To test the algorithm in the presence of noise, the map data used to create the

reference map is corrupted with the noise characteristics corresponding to the

Gaussian random walk characteristics of the Crossbow 440 IMU. The corrupted

data is then used for the localization experiments in this section. The map data

is plotted along with the road pitch profile in Fig. 4.5, and the approximate real-

world map location is shown in Fig. 4.6. At a 1 Hz sampling rate, or a 5 m

map decimation, the Crossbow sensor has noise characteristics that are an order

of magnitude higher than the collection sensor but sufficiently low to allow for

accurate localization. The algorithm performance is evaluated over a 2 km travel

distance from a random start point that is uniformly chosen.

Fig. 4.10 shows a histogram of the vehicle travel distance required for algo-

rithm convergence in over 1100 trials with a random start point. As before, the

convergence to a single path corresponds to the first estimate of vehicle location.

The horizontal axis in the figure represents the vehicle travel in meters, and the

vertical axis represents the number of trials. The mean convergence time for this

set of trials is 172 m. Furthermore the maximum convergence distance is about

280 m of travel.

distance in meters

n
u
m

b
er

of
tr

ia
ls

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Figure 4.10. Distance traveled until 1 feasible path using Crossbow 440 IMU

For trials in the presence of noise, the plot of localization errors [m] vs. the

trial start points [m] in Fig. 4.11 helps to illustrate the algorithm’s performance

across the map. For example, note that the localization distance is different in

88

the beginning of the map when compared to the end of the map. This difference

comes from the physical nature of the roads from which the data was collected. In

this case, the road vehicle began traveling on a secondary road and merged onto a

highway. Thus the beginning half of the map contains data whose variance is high,

and the latter portion of the map contains highway data with low variance. In the

presence of high variance data, models have larger modeling error bounds and are

eliminated at a slower rate. This fact is illustrated in the convergence error, which

is highest in the beginning of the map. Examining the convergence errors more

closely reveals that when errors are measured in terms of map decimations (5 m),

all errors fall within a few decimations.

The accuracy achieved in these simulations is comparable to the findings of

Dean [10], who found that the limiting factor in his particle filtering approach was

the map decimation. The results also compare favorably to the accuracy found in

recent map-based localization work [175, 176] which had localization accuracies of

about 1 m and 15 m, respectively. While [175, 176] do not use IMU data for local-

ization, the research presented in these papers is map-based localization research

using real-world noisy sensors. These references show that the work presented here

is at least as accurate as the state of the art in localization, with the additional

benefits discussed throughout the chapter. A strength of the approach presented

here is that localization is a function of the map decimation, as pointed out in

section 4.4.3.1. In particular, map decimation is proportional to the size of the

observed sensor noise, and thus choosing higher fidelity sensors will allow finer

resolutions and correspondingly smaller localization errors.

Overall, the algorithm performs well using the noise characteristics of the Cross-

bow 440 sensor. It is possible to address the source of error and decrease conver-

gence distance by adjusting the mechanism by which the likely vehicle path is

selected among the remaining paths. This promising area of research is left to

future work.

4.6 Discussion of Algorithm Limitations

The preceding sections tested the terrain-based localization algorithm for an in-

variant pitch profile with additive sensor noise. As can be seen in Fig. 4.11, the

89

L
o
ca

li
za

ti
on

D
is

ta
n
ce

[m
]

starting position [m]

A
b
so

lu
te

V
al

u
e

of
L
o
ca

li
za

ti
on

E
rr

or
[m

]

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

5

10

15

20

0

100

200

300

Figure 4.11. Convergence Distance and Error vs. Start point

localization results using this algorithm are good for the mid-range IMU sensor.

On average the error observed in the location estimates is on the order of the map

decimation.

There are two principle sources of error in the localization process: survival

of too many paths in the presence of noise and erroneous segment elimination.

The first is a natural consequence of using terrain data and a bounded localization

distance in the demonstration of this algorithm. Terrain data is unique on a local

scale but not on a global scale. Thus when the localization algorithm is working

with an area of the map that has low SNR and does not display strong uniqueness

in features, multiple models survive. For example localization might be difficult

in the Great Plains of the United States where the terrain is largely flat resulting

in fewer road features. Conversely, localization might be more rapid in the Rocky

Mountains (United States) where the topography is quickly changing and offering

a large number of unique terrain patterns.

Here it is important to note that reference maps are made up of patterns that

are used for localization. These include both the geographical effects and the road

construction effects (e.g. the sequence of concrete or asphalt pours). Thus, even

in flat terrains, there may still remain a surprising number of localization features

due to location specific construction of the road.

This chapter demonstrated a series of localization experiments for a set road

distance. Making the road distance finite was chosen to make the experiments

90

tractable. If multiple models survived, a heuristic based on the number of detected

transitions was invoked to choose the correct path. This is not an optimal choice

since noise can also trigger false transitions. In order to eliminate heuristic errors,

the solution is to extend the run of each experiment until it is localized. However,

the results above show good performance for a fixed localization distance.

Conversely, the presence of noise can also lead to the erroneous elimination

of segments. For instance, the angle random walk mitigation approach presented

in this chapter bounds the possible noise coefficients to two times the standard

deviation of the angle random walk noise. This means that in approximately

5% of the cases it is expected that the noise will exceed the limitation and the

correct segment will be eliminated. As travel distance is increased indefinitely,

these types of eliminations are corrected by segments in higher levels of the tree

with larger error tolerances. However, for a fixed distance, the end result may

appear erroneous because of one of these eliminations. In this case, the algorithm

can be re-initialized and restarted.

4.7 Conclusions and Future Development

This chapter presented two linear model based algorithms specifically designed for

localization. The first algorithm is used to compress a one dimensional vector

of data and to represent this data as a tree of models with increasingly tighter

modeling error bounds. The second algorithm is a parsing algorithm that can

quickly locate an incoming stream of data in the extracted model tree. Both algo-

rithms were developed and demonstrated for the application of vehicle localization.

Because these algorithms and the linear model representation were specifically de-

veloped for in-sequence localization, the work here greatly outperforms the work

reviewed in the previous chapter.

Thus with the conclusion of this chapter a representation has been designed

that address all but one of the required characteristics - robustness to noise. In the

subsequent chapters the models will be tuned to accommodate the expected noise

in the process. In essence, this work will show, that given some further information

about the process, it is possible to improve the linear modeling approach to data

representation by choosing models that will be more robust in the presence of

91

noise. Lastly, because robustness must also include redundancy both for increased

accuracy and reliability, the next chapters will also extend the development of this

representation into multiple dimensions.

92

Vehicle Localization

Initialization
Collect N + 1 data points:
set loop index: k = N + 1
initialize data vector: ω[·] = d[1 : N]
Begin Localization Loop
WHILE localization flag == 0
FOR l = 1:L

FOR m = 1:ML − 1
IF the parent segment ofAm is feasible:
em,k = |d[k] − Amω[·]|
em+1,k = |d[k] − Am+1ω[·]|
IF em,k < εm

set Am as feasible
ELSEIF em,k > εm AND em+1,k < εm+1

then the data point m[d] is a transition point
obtain τn from the map

ELSE
set Am as infeasible

END IF
END IF

END FOR
IF l = L AND num. feasible models = 1

localization flag = 1
END IF

END FOR
Collect an additional data point
iterate the index: k = k + 1
iterate the data vector:ω[·] = d[k − N : k − 1]
END WHILE
Following a Detected Transition Point
FOR l = 1:L

FOR m = 1:ML

IF τn is inside the segment
Set the segment as feasible

ELSE
Set the segment as infeasible

END IF
END FOR

END FOR
Exit to Tracking Loop

Table 4.2. Vehicle Localization Algorithm for Model Structures

93

Sensor fs [Hz] Average SNR [dB]
ADIS16367 1 -6

Crossbow 440 1 12
Honeywell HG1700 1 34

Table 4.3. Vehicle Data SNR at 1Hz Given a Sensor Choice.

Chapter 5

Robust ARX model-based data

structures for In-Sequence

Localization using 1-Dimensional

Time Series

Building on the work in the previous chapter, this chapter focuses on tuning the

linear model data representations for robustness in the presence of noise. The

disturbances considered here are both deterministic and stochastic. Deterministic

noise is often observed due to interference between devices [185] or vibrations in

the recording sensors [186]. Stochastic noise is typically observed in any practical

data collection device and is an important component in algorithm performance.

The consideration of both types of noise is critical in data representation [187].

The deterministic noise considered in this chapter is sinusoidal noise. This

noise, which occurs in IMU data [186] and is of interest in many other applications

including speech processing [185], is particularly destructive to data representations

because strong cyclic noise components can obscure the data points about which

representations are determined. In this chapter, the internal model principle is

used to automatically remove sinusoidal components of a known frequency during

the in-sequence localization process.

The stochastic noise considered in this chapter is white Gaussian noise. This

95

noise can be equally destructive as shown by the results in chapter 3. In particular,

in IMU data, the effects of the noise are accentuated when the data is integrated

to obtain quantities such as position and velocity [146].

In addition to introducing the idea of robust tuning of the models, this chapter

also improves the localization process by making it adaptive such that localization

occurs after a user defined accuracy is achieved. Moving to an adaptive in-sequence

localization process based on robust data representations demonstrates the effec-

tiveness of the representations for in-sequence localization. In addition, when view-

ing the results of localization in parallel with the representation map, the adaptive

approach to in-sequence localization reveals the strengths and weaknesses of the

data sensor, which leads to a logical method of evaluating the addition of sen-

sors with respect to the amount of information they contribute to the localization

process.

Lastly, this chapter seeks to extend the domain of the problem of in-sequence

localization. In addition to experiments on vehicle data, new numerical experi-

ments are presented using random data. These experiments show that any data

set can be put into the algorithms developed in this thesis. In addition US infla-

tion data is used to demonstrate the practical significance of transition points. In

fact, work in this chapter shows that when inflation data is segmented, the result-

ing transition points delineate the beginning and end of major US recessions and

depressions.

The preliminary work that supported the development of this chapter was

presented in the 2013 Penn State College of Engineering Research Symposium [25]

where it was awarded the best paper award. In addition, separate papers were

presented at the 2013 IEEE Conference on Decision and Control [23] and the 2014

American Control Conference [24]. A full manuscript detailing the work of this

chapter is currently in review with IEEE Transactions on Knowledge and Data

Engineering [167].

5.1 Introduction

The objective of this chapter is to further the design of one dimensional data

representation that are robust to noise for in-sequence localization. By designing

96

the localization map (which is actually a data representation structure) in a way

that reduces the effects of noise, the online matching process is primed to be

optimized to further reduce the computational load, enabling larger data structures

to be parsed. Here we consider additive sensor noise that is both deterministic and

stochastic and describes commonly observed noise in real-world data. The next

subsection, briefly overviews the history of sensor noise in the data representation

literature. The main drawback of traditional dimension reduction approaches is

highlighted with a brief set of simulations.

5.1.1 The Effect of Noise on Data Representations in Lit-

erature

Recall from the discussion in Chapter 3 that in the presence of noise the traditional

dimension reducing representations are not adequate (see chapter 3 or [27, 28,

29, 30, 31, 32]) for the case of in-sequence localization for three reasons. First,

traditional methods require windowing the data which introduces errors if data

acquisition begins in the middle of a window. Second, few of these representations

have an inherent mechanism for mitigating the effects of noise. And third, these

representations do not preserve the ordering of the data, which is a key attribute

of the data that can be exploited for in-sequence localization.

As a brief example, consider Fig. 5.1 where the top plots show random data

encoded into three popular representations: the data mean ([29]), the data slope

([31]), and DFT coefficients [47]. The bottom plots show the data encoded into

the same representations, but this time the encoding occurred after the addition of

noise. The experiments were performed on a random data set generated in MAT-

LAB, and the data is corrupted with approximated 12 dB of Gaussian noise and 12

dB of linear noise for consistency with previously published work by the authors.

Note that the addition of noise significantly alters the resulting representations as

demonstrated numerically in the caption of the figure.

Some preliminary work [23, 24], has shown that it is possible to design data

representations that are inherently robust to noise. The key to finding these rep-

resentations is selecting points in the data that are inherently robust to noise, i.e.

they display behavior that is significant enough that it cannot be obscured by the

97

Mean and line
approximation

C
le

an
D

at
a

DTF Coefficients

data point index [x1000]

C
or

ru
p
te

d
D

at
a

Coefficient Number
0 5 100 2 4 6 8

0 5 100 2 4 6 8

0

2

4

6

-50

0

50

100

0

2

4

6

-40

-20

0

20

40

Figure 5.1. Clean Data: mean = -0.36, slope = 64.17. Corrupt Data: mean = 2.60,
slope = 70.97

additive sensor noise. In this chapter, these points are chosen to reflect signifi-

cant changes in the data dynamics, where quantifying significant depends on the

characteristics of the observed noise.

5.2 Overview of Dynamical Model-based Data

Structures

5.2.1 Using Dynamical Models to Represent Data

Prior to describing the identification of robust data representations, this section

provides a brief overview of the dynamical modeling approach used in the last

chapter [20, 23]. Then section 5.3 will discuss the contributions of other authors

in the field of subsequence matching, and an in-depth discussion of the approach

taken in this chapter begins in section 5.4.

Dynamical models have inherently advantageous properties as data representa-

tions. These models are capable of preserving data information, modeling data

modes, and detecting changes in data dynamics to provide natural transition

points. To describe a data set using dynamical models, D is first segmented into

non-overlapping intervals. Each interval, m, is represented using an autoregressive

98

linear model of N th order, A = [cm,1, . . . , cm,N], with a modeling error bound εm. 1

The beginning and end data points of an interval m are called transition points

and denoted by τm−1 and τm, respectively. Transition points are points in the data

at which the underlying data dynamics are changing. This change in dynamics at

τm is denoted by a modeling error that exceeds the modeling error bound of the

preceding data model. Maintaining the ordered nature of D, the ordered set of

models describing sub-intervals is shown in equation (5.1).

dk = cm,1dk−1 + ... + cm,Ndk−N + ek, ∀k ∈ [τm − 1, τm)

dk = [cm,1...cm,N]A>

m + ek, ∀k ∈ [τm − 1, τm)

|ek| ≤ ε1 for m = 1, 2, . . . (5.1)

To create a reference data structure for in-sequence localization, the data is

sequentially segmented into smaller intervals whose models describe the data more

accurately. Each sequential segmentation is stored into a model tree that aids in

the online localization process. For example, a data set is first segmented into two

segments each with a corresponding modeling error bound εm. The segments are

recorded into the first level of the model tree. At the second level of the model tree,

the segments from the first level are broken into two more segments each with a

smaller bound εm. This process is iterated until the model error bound approaches

the size of the expected noise in the data. The modeling structure is depicted in

Fig. 5.2.

Figure 5.2. A Depiction of Model Structures for In-Sequence Localization.

Localization is the process of sequentially evaluating model agreement with

the new data and eliminating models that disagree. Mathematically the process of

model evaluation is the determination of the model prediction error and comparing

1These models are found by solving a linear feasibility problem. For this reason the models
in previous work are not necessarily unique.

99

it to the modeling error bound, as shown in equation (5.2).

|dk − cm,1dk−1 + ... + cm,Ndk−N | ≷ εm

|ek| ≷ εm. (5.2)

When evaluating models, errors that are smaller than εm indicate that this partic-

ular interval is a candidate for the data sequence location. Errors that are larger

than εm indicate this is not a possible location of the data sequence. When a

transition point is reached in the data, three distinct inequalities are satisfied: the

mth model was in agreement at the k − 1st instant, the mth model disagrees with

the data at the kth instant, and the m + 1st model agrees with the data at the kth

instant.

|dτ1−1 − (cm,1dτ1−2 + ... + cm,Ndτ1−1−N)| ≤ εm

|dτ1
− (cm,1dτ1−1 + ... + cm,Ndτ1−N)| > εm (5.3)

|dτ1
− (cm+1,1dτ1−1 + ... + cm+1,Ndτ1−N)| ≤ εm+1

From these equations it becomes clear that transition points contain signifi-

cantly more matching information than points in the interior of data intervals.

Thus while the majority of data points provide a range of possible locations, tran-

sition points provide an exact location, or a sparse list of candidate locations.

Objective: Given the importance of transition points, the objective here is to

maximize the robustness of the transition points in the presence of sensor noise.

Making transition points more robust will increase the overall robustness of

the approach and shorten the necessary data sequence length for matching. A full

development of the proposed approach can be found in section 5.4.

5.3 Background

In presenting the literature review, the section follows the logical order of data

representation and structuring. Section 5.3.1 shows methods of windowing the

data. Then section 5.3.2 discusses representations of the windowed data. Finally,

a brief overview of data representations that explicitly discuss noise is provided in

100

section 5.3.3.

5.3.1 Transition Points

The most critical component in a data representation creation algorithm is seg-

mentation - i.e. choosing the points at which to divide a set of data into intervals.

These points are referred to as transition points because of the model transitions

that these points represent, in other literature these same points are sometimes

called change points. Change points were first defined in [33] as the points at

which the behavior of the time series changes, a problem also examined by the

statistics community. The general approach to solving the change point identifi-

cation problem is to identify a set of break points through the identification of a

set of models about the point [15]. The models are identified by minimizing some

loss function specified by the author, and a change point consists of a point about

which the identified models have significant dynamical differences. Popular choices

for the loss function include the mean square error, least squares fit, and maximum

likelihood estimation.

Transition points are also frequently called events, and segment bisection is

commonly adopted during the segmentation process [34]. The neural networks

literature contains an example of a similar idea where the switching sequence of

a subprocess is identified using nonlinear gated experts, a statistical physics tool

[35].

Using optimization approaches, Ozay et. al. [188] developed the linear programming-

based break point identification algorithm that was the basis for the initial work in

Chapter 4 [20]. Using dynamical programming, Duncan and Bryant [36] created

an algorithm to find the number of possible data intervals, the model order in each

interval, and the location of the intervals. At its core, this was a least-squares

fit algorithm that identified models of the data. The work by Ozay et. al. and

Duncan and Bryant is a step forward from previously published work that detected

changes in dynamical systems [37] based on the parameterization of linear systems

in [38].

Lastly, concluding this subsection we mention several sliding window approaches

that compete with significant event detection approaches discussed above. To be-

101

gin, Chu [39] presented a sliding window approach to change point localization and

segmentation. This was followed by Fancourt and Principe [40] with a piecewise

segmentation and identification procedure. The latter approach maps similar seg-

ments in a time series as neighbors in a neighborhood map. More recently Keogh

et. al. [41] proposed a bottom up sliding window method termed SWAB.

5.3.2 Data Mining Features

Following the segmentation of the data, each window is converted to a feature or

a symbol. Of particular relevance is the paper by Shatkay and Zdonik [27] where

linear regressions are used for dimension reduction in large data sequences. Be-

cause the goal of this work was simplicity and because the original time series was

kept for in-depth matching, the authors choose to represent trends in the data as

lines defined from one extrema point of the data to the next. This representation

is referred to as the piecewise linear representation (PLR). This paper also con-

tributes to the idea of abstract representations by proposing data representations

using only the extrema points of the time series.

Following the approach established by [27], many authors have proposed vari-

ants of the first order representations. Prominent examples include the piecewise

aggregate approximation (PAA) [28, 29] which represents data using the mean

value of a segment. The PAA algorithm stipulates that segments must be of fixed

and equal length. In some data sets this is a significant constraint, which prompted

work by Keogh et. al. [30] to update the PAA algorithm allowing variable segment

lengths. The new approach was termed the adaptive piecewise constant approxi-

mation algorithm (APCA). In addition several authors build on the piecewise linear

representation creating similarity search algorithms [31] and clusering algorithms

[32].

Lastly, the new representations are stored using application-specific structures.

Two principle types of structures are used. The first are classification schemes [15]

that require the comparison between classes and new data. The second are data

trees [189] that allow rapid elimination of possibilities.

The body of research in data representations is extensive. However, several

critical review papers [13, 14] have demonstrated that large issues exist with the

102

current set of approaches. The published representations and matching approaches

were shown to perform well for small sets of data but their computational perfor-

mance was shown to rapidly deteriorate as the underlying data size increases. Thus

new approaches are necessary to advance the field of data knowledge.

5.3.3 Robust Features

Few papers explicitly discuss or make mention of data noise as a consideration.

One possible reason for this lack of literature is that most data mining is performed

with the goal of finding “similar,” not exact features. This differs in the application

of some data representations, for example those used in vehicle localization where

an exact identification is needed.

The most common representation, and one which has been discussed in the

presence of noise, is PLR [42, 43]. In particular the work by Jia et. al. [43] contains

a good review of PLR algorithms and then aims to develop a new approach that

improves PLR’s robustness to noise. Here the authors note that the need for

a user-specified number of segments is a major weakness. By reformulating the

problem in terms of error bounds, the authors automatically choose the number

of segments in PLR on a data set given an error bound.

A separate subset of papers by Fink et. al. [44, 45] also focuses on the problem

of identifying noise robust points. The difference here is that the papers focus

on the identification of maxima and minima in the data, which are inherently

more robust. The paper by Fink and Pratt [44] builds on this idea by identifying

patterns in the reduced dimension (extrema point) data set.

Building on the idea in [44], the work by Vemulapalli et. al. [12] proposes an

optimal filter that reduces the effect of noise prior to identifying patterns. The

patterns in this work are combinations of robust minima and maxima in the data.

Combining filtering and robust pattern identification improves on the classical

approach of smoothing the data before obtaining representations. Furthermore,

this approach is verified using real-world vehicle data from the author’s lab.

Lastly, a more general approach to robust data representations is laid out by

Preng et. al. [46]. The work cites the natural method of location recognition

by animals and humans, which use landmarks to identify particular sites in their

103

surroundings. The landmark model is defined to be invariant under smoothing and

transformations such as shifting, scaling, and warping. However the applications

shown by the authors are limited and leave the development of more extensive

applications to readers of the paper.

5.4 Developing Dynamical Model-Based Robust

Data Representations

5.4.1 Bounding the effect of noise in context of linear model-

based data structures

This chapter builds on the dynamical model-based approach previously used by the

authors by incorporating knowledge about the sources of noise to make the data

representations more robust. This robustness is introduced both at the represen-

tation and structure levels. A depiction of the data structure and representation

is shown in Fig. 5.2.

On the structure level, two mitigation strategies are employed. First, the struc-

tures are tiered with large data decimations at the top leading to lower decimations

at the bottom. To achieve the larger decimations, the data is averaged, which leads

to a reduction in the noise power particularly for independent zero mean types of

noise. Second, the dynamical models have increasingly tighter modeling error

bounds, ε, for lower structure levels. This means that as the level of noise changes,

the same data structure can be used at varying resolutions. Small levels of noise

can be accommodated by more precise models, which provide greater resolution

during localization. Conversely, large levels of noise will only be accommodated

by coarser models resulting in more coarse localization results. Practically this

means that one data structure can be extracted and used with a variety of sensors,

ranging from inexpensive to military grade.

At the representation level, the dynamical models characterized in this chap-

ter emphasize the preservation of transition points in the presence of noise. Here

it is assumed that the additive noise is Gaussian with a probability distribution

function N (0, σ2
η), as described in the notation section. The corresponding cu-

104

mulative distribution function of this noise is Φ(0, σ2
η). Then, because the models

are linear, at the kth data point, the mth model output and output error are also

Gaussian random variables. The distribution of the error can be described as

Nem(µem,k, σ
2
em

) with a corresponding cumulative distribution Φem(µem,k, σ
2
em

). At

a transition point, one model’s segment is ending and another model’s segment is

beginning. Thus the transition point can be described by two overlapping Gaus-

sian distributions, shown in Fig. 5.3: a distribution for the modeling error of the

model whose segment is ending and a distribution for the model whose segment

is beginning. Similar to the idea used in radar theory [190], the area below the

overlap of these distributions represents the probability of an error at a transition

point. Since its inception, this idea has been frequently used in many fields, for ex-

ample in the field of fault detection Iserman [191] has used the idea to differentiate

between fault/no fault conditions.

seg starting

seg ending

µn ε µe

Figure 5.3. The Distribution Overlap Assuming Additive Gaussian Noise.

Using the model coefficients and the additive noise distribution, it is then pos-

sible to precisely describe the probability of the mth model agreement ending as

P(|em| ≥ ε), and the m + 1st segment beginning as P(|em+1| < ε). Then the opti-

mal choice of a transition point will minimize the probability of an error, i.e. the

optimal choice will maximize P(|em| ≥ ε) and P(|em+1| < ε). One simple form of

writing this optimization problem is described in equation (5.4).

minimize Perror

s.t. ηk̂ v N (0, σ2

η) (5.4)

Perror = 2 − P(|em| ≥ ε) − P(|em+1| < ε)

105

In practice to obtain a related convex problem which can be efficiently solved, the

optimization problem is written in the chance constrained framework demonstrated

by Kataoka [192]. In this framework, the problem is divided into two subproblems

denoted by O1 and O2, each of which describes a convex solution domain. For each

subproblem the modeling error bound is minimized while the maximum probability

of error is bounded by a user-defined value ρ. The modeling error probability is

described by Φem(µem,k
, σ2

em
), where m denotes the model number, and k denotes

the data index in the underlying time series.

There are two resulting formulations used to segment an interval of data [dks ,dke].

The first, O1 shown in equation (5.5), finds a model whose segment end error ex-

ceeds a positive ε at the transition point τm. Then the second formulation, O2

shown in equation (5.6), determines a model whose end error is less than a negative

ε. The breaking up of these formulations is necessary to ensure convexity when

solving for the models. A more detailed derivation of the formulations is shown in

the Appendix.

O1 : minimize ε

s.t.

ε ≤ εmax

µem,k
> ε (5.5)

σemΦ−1

em
(1 − ρ) + µem,k

≥ ε

σem+1
Φ−1

em+1
(
ρ

2
+

1

2
) + µem+1 ,k ≤ ε

|dk − [dk−1, . . . , dk−N]A>

m| ≤ ε ∀k ∈ [ks, τm − 1)

|dk − [dk−1, . . . , dk−N]A>

m+1| ≤ ε ∀k ∈ [τm, ke]

106

O2 : minimize ε

s.t.

ε ≤ εmax

µem,k
< −ε (5.6)

σemΦ−1

em
(ρ) + µem,k

≤ −ε

σem+1
Φ−1

em+1
(
ρ

2
+

1

2
) + µem+1,k

≤ ε

|dk − [dk−1, . . . , dk−N]A>

m| ≤ ε ∀k ∈ [ks, τm − 1)

|dk − [dk−1, . . . , dk−N]A>

m+1
| ≤ ε ∀k ∈ [τm, ke]

Formulating the model extraction problem using this approach has some sig-

nificant advantages. First, when compared to previous work by the authors, this

approach provides a metric for model extraction. This metric quantifies the sig-

nificance of the dynamic discontinuities and solidifies the choice of model for each

segment. Furthermore, using this metric reduces the number of extracted seg-

ments, resulting in model structures that are significantly more compact than

previous structures [20, 23]. Lastly, the a priori specification of the expected noise

level reduces the need for add-on noise mitigation algorithms and transfers noise

mitigation to be performed mostly during the data representation extraction and

structure creation.

5.4.2 Canceling the Effects of Known Sinusoidal Noise

The approach used in the preceding section can be used for any noise distribution

whose inverse can readily be determined. White Gaussian noise is a great example

of this type of noise. However, as noted in the introduction there are also many

types of noise that are not stochastic. Two types of deterministic noise in IMUs

are sinusoidal noise and bias noise [186]. Bias noise, which can be considered a

very low frequency sinusoidal noise, can be addressed by working with the data

differences instead of the raw data. Indeed the approach we have taken here, is

the same as the approach in the previous chapter. However, this approach is not

107

adequate for higher frequencies sinusoidal noise.

One approach to reducing the effects of deterministic sinusoidal noise is to

employ the internal model principle. Using the internal model principle shows the

flexibility of using ARX models as data representations. To begin suppose that

the deterministic sinusoidal noise has a frequency ωn and is modeled as a complex

exponential e−jωnt. Now consider the ARX model in equation (5.1). Neglecting

the error term, the estimate of the time series can be expressed as,

d̂k = cm,1dk−1 + ... + cm,Ndk−N . (5.7)

Using the Z-transform, the system function of model can be expressed as a poly-

nomial in the delay operator z,

(cm,1z
−1 + ... + cm,Nz−N), (5.8)

(1 − λ1z
−1) . . . (1 − λN z−1),

where λ1, . . . , λN correspond to the zeros of the system function. When evaluating

the frequency response of the system function with respect to the locations of

the zeros, the delay operator z is set to ejω, resulting in the evaluation of the

system function equation on the unit circle in the z-plane. This means that for all

frequencies ωi such that 1/λi = ejωi, the system will produce on output of zero.

Combining this with the knowledge of the expected noise frequency ωn, if one

of the system zeros is set to ωn = 1/λn, the output of the system when excited by

this disturbance will be zero. There are two methods of achieving the placement

of this zero. The first, is to constrain some of the model coefficient magnitudes

in problems O1 and O2. The second, is to convolve a first order polynomial,

1 − λnz
−1, with the determined model. The second method is preferable because

it divides the tuning of the models into two steps, and provides the most flexibility

in finding transition points robust to stochastic noise.

[1, λn] ∗ [1, cm,1, . . . , cm,N−1] (5.9)

Using the latter method the updated optimization problems can be written as,

108

Ô1 : minimize ε

s.t.

ε ≤ εmax

µm,k > ε (5.10)

Am = [1, λn] ∗ [1, cm,1, . . . , cm,N−1]

Am+1 = [1, λn] ∗ [1, cm+1,1, . . . , cm+1,N−1]

σemΦ−1

em
(1 − ρ) + µem,k

≥ ε

σem+1
Φ−1

em+1
(
ρ

2
+

1

2
) + µem+1,k

≤ ε

|dk − [dk−1, . . . , dk−N]A>

m| ≤ ε ∀k ∈ [ks, τm − 1)

|dk − [dk−1, . . . , dk−N]A>

m+1
| ≤ ε ∀k ∈ [τm, ke]

Ô2 : minimize ε

s.t.

ε ≤ εmax

µm,k < −ε (5.11)

Am = [1, λn] ∗ [1, cm,1, . . . , cm,N−1]

Am+1 = [1, λn] ∗ [1, cm+1,1, . . . , cm+1,N−1]

σemΦ−1

em
(ρ) + µem,k

≤ −ε

σem+1
Φ−1

em+1
(
ρ

2
+

1

2
) + µem+1,k

≤ ε

|dk − [dk−1, . . . , dk−N]A>

m| ≤ ε ∀k ∈ [ks, τm − 1)

|dk − [dk−1, . . . , dk−N]A>

m+1| ≤ ε ∀k ∈ [τm, ke]

5.4.3 Data Structure Extraction Algorithm

The formulations described in the previous sections are then incorporated into a

top-down, sliding window algorithm that builds the robust data structure. This

algorithm is described in table 5.1. While the algorithm in table 5.1 is a multi-

109

tier algorithm, the description here is focused on one tier and can be extrapolated

beyond by the reader.

First, the algorithm begins by choosing the beginning point, ks, and end point,

ke, of the segmentation. The data is partitioned into the initial set of segments

about a candidate transition point t and the optimization problem O1 and O2 are

solved. Feasible solutions containing models A1, A2, and a transition point, τ1 are

saved to a solution structure.

Next one data point is transferred from the longer data segment to the shorter

data segment. The optimization is performed again and the resulting solutions

are recorded. Iterating this procedure through all possible transition points identi-

fies the locations of dynamics discontinuities, because each time the optimization

problems O1 and O2 have a solution, a change in the dynamics is observed. The

point chosen as a transition point is the candidate transition point that has the

smallest probability of a missed transition. In other words, this is the point at

which the dynamic discontinuity is greatest.

Having chosen this transition point, the resulting segments are recorded in the

first data structure level, L = 1. The procedure is then iterated at the next level,

for each of the segments that were identified above. Enforcing the constraint of

increasing model fidelity, ε is limited to be smaller than the modeling error bound

of the parent segment from the previous level.

This partitioning procedure continues for successive levels until no more tran-

sition points can be found. When this happens, the next tier of the structure

is started. This loop continues until all transition points on all data tiers are

identified. The resulting data structure has L levels and NML segments per level.

5.4.4 In-Sequence Localization Procedure

The in-sequence localization procedure used in this chapter is an evolution from

the previously used matching procedure. While in previous work the localization

procedure was performed for a fixed size data sequence, the matching procedure

illustrated here automatically determines the length of data sequence needed for

algorithm convergence. This approach illustrates the strengths, weaknesses, and

limitations of the proposed data representation and structuring.

110

In short, following the initial acquisition of a small set of data, the initial

data matrices ztp and Ω are formed. Using these matrices, model agreement for

each model in the data structure is evaluated using equation (5.2). Models that are

feasible are retained in a tree structure and models that are infeasible are discarded.

With each consecutive acquired data point, the models are re-evaluated and the

result tree is redrawn. The result tree itself is flexible, maintaining feasible paths

instead of simply feasible models. Because each feasible model represents a range

of possible data locations, this means that several branches could contain the same

model but different data sequence start points. The localization procedure ends

when a single feasible segment remains at the last level of the data structure. The

resulting error of localization is thus the uncertainty in data sequence start points

among all surviving paths in the resulting tree. This localization procedure is

illustrated in more detail in table 5.2.

5.4.5 Online Noise Mitigation During Localization

The dynamical models that are extracted for this work are optimized at transition

points to minimize the probability of error. However, in order to maintain a low

complexity of implementation, throughout each segment the model agreement is

evaluated in a deterministic fashion2. This can lead to model agreement errors on

the segment following the addition of Gaussian noise. To mitigate this effect during

localization, each acquired data point is expected to have a bounded perturbation

|ηk| ≤ ηB, where ηB is two times the standard deviation of the expected noise. A

model is then said to agree with the data if a set of constants η̄ = [ηk−1, ...ηk−N−1]

can be found such that,

|dk − cm,1(dk−1 + ηk−1) + . . .

+ cm,N(dk−N + ηk−N−1)| ≤ εm. (5.12)

Because the probability that a noise sample will exceed the perturbation bound

ηB is not zero, there is a small set of noise realization for which the localization

2More elaborate (and more computationally complex) approaches that include information
about the noise can also be developed. However, we leave this promising area of research to
future work.

111

procedure will eliminate the correct model. When this happens, it rapidly leads to

the elimination of all models on the particular level where the correct model was

removed. In this event the tree structure is designed to re-activate all segments on

the eliminated level and repeat localization procedure.

5.5 Simulation Results Demonstrating the Ro-

bust Model-Based Data Structure Effective-

ness

The approach presented in this chapter is tested in three applications. First,

continuing the development of a vehicle localization approach using dynamical

models, section 5.5.1 presents results using inertial vehicle data. Then section

5.5.2 expands the applications for this approach to economic forecasting using

real-life inflation data. Finally, section 5.5.3 demonstrates that our approach can

be applied to any set of data by applying the algorithms to data generated using

a random walk.

5.5.1 Vehicle Data

Using a data set of inertial vehicle data, the data sequence to be localized is

corrupted with 12dB of noise corresponding to the fidelity of a mid-priced sensor

[146]. Then a series of experiments starting at a random point are conducted.

Each experiment performs the in-sequence localization procedure until a match

has been determined. A match is defined as a single feasible segment at the lowest

level of the tree structure and a matching error that is less than a pre-determined

error bound - for the vehicle localization experiments, that bound was 100 m. In

other words, the localization length depends on the initial start point, and not a

predetermined test length chosen by the designer.

The results of these experiments are presented in Fig. 5.4. This figure is

presented in a standard format that we will use across different data sets. The top

subplots quantify the wall clock convergence time, the localization length expressed

in number of localization steps, and the distance to the nearest transition at the

112

localization instant.

Time [s]

N
u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

of Steps

Steps to
Convergence

Conv. Pt. [km]

Final Location

Start Point [km]

A
n
gl

e
R

at
e

1 1.5 2.5 3.5 4.5 5.5

0 2 4 60 500 10000 50 100

-0.5

0

0.5

0

5

10

15

20

0

2

4

6

8

0

5

10

15

20

Figure 5.4. In-sequence Localization Results using Vehicle Data using Robust One

Dimensional Models.

The subplot representing the computer wall clock time [s] conveys the speed

of the in-sequence localization algorithm when using a single 2.66 GHz node of

the Penn State super-computing cluster with 4 GB of ram. The subplot showing

the localization length demonstrates the number of data sequence points needed

to determine the location. The third histogram informs the reader about the fi-

nal instant of localization when a match has been determined. This plot shows

how close the final matching data point is to the nearest transition point, empha-

sizing the importance of transition points for localization using our model-based

approach. To better understand all three plots together, the bottom plot shows

the time series data with an overlay of the transition points shown as vertical bars

at their respective locations. Note here that the distance between transition points

and localization points is typically small, which means that the localization length

is directly related to the distance between consecutive transition points on the

map. This also means that there will be some road segments that are so plain that

localization using this method is not possible.

In the context of vehicle data, the figure demonstrates the speed of convergence

of the vehicle location estimate. For example, to determine the length of travel

required for localization, the localization length should be multiplied by the map

decimation of 5 m. The wall clock convergence time can be interpreted as the

113

maximum speed a vehicle can drive in order for the localization algorithm to keep

up with the incoming data. For example, if a vehicle is traveling the 6 km stretch

of road described by this map at highway speeds, the vehicle will cross the map in

3 minutes and 45 seconds. Therefore convergence times under 1 minute are more

than enough to accommodate vehicle localization. It should be noted that these

times are dependent on the size of the map on which localization is occurring,

opening an interesting new research avenue of how to best structure millions of

data points without slowing down the localization process.

5.5.2 Economic Data

The algorithms developed in the context of vehicle localization need not be con-

strained only to this application. One interesting application area is economic data

that is used by economists and traders to inform decisions on policy and business.

Fig. 5.5, using the same format as before, shows the localization results using

the monthly consumer price index (CPI) time series3. In these experiments, the

data is corrupted with 12dB for consistency among our experiments. Heading the

importance of transition points, all trials begin before point 400 m in the data to

ensure at least one transition point in the data sequence. There are two important

Time [s]

N
u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

of Steps

Steps to
Convergence

Conv. Pt.

Final Location

Start Point

In
fl
at

io
n

[%
]

0 200 400 600 800 1000 1200

0 200 4000 200 4000 5 10

−20

0

20

40

0

10

20

30

0

2

4

6

0

2

4

6

8

Figure 5.5. In-sequence Localization Results using Economic Data and Robust One

Dimensional Data Models.

3This data is publicly available, ex. see http://www.usinflationcalculator.com/ for a complete
table of monthly inflation numbers from 1914-present.

114

observations in this figure. First, using the same constants as the vehicle data, the

probability of a missed transition point was constrained to 2%. The resulting data

structure is quite small, with only 4 significant transition point locations. This is a

consequence of the dynamics in the data that invites the question, in physical data

is there a significance to the transition points that are identified using our segmen-

tation algorithm? This idea will be further discussed in section 5.6.3. Second, in

data sets with few transition points, passing through even a single transition point

is sufficient for localization. Note here that all trials converged at the passing of a

transition point.

5.5.3 Random Data

Lastly, in Fig. 5.6 which is shown in the same format, we show that this approach

can work even if the underlying phenomena is truly random. Here the data set

is a Gaussian random walk generated in MATLAB with a standard deviation of

1. Applying the 12dB, the resulting convergence plots are shown below. Note

that fixing the probability of a missed transition to 2% yielded a sufficiently fine

segmentation for in-sequence localization over the entire data set. One interesting

observation about this data set is that while many experiments converge closely to

a transition point, a sizable number of experiments do not. We did not observe this

in vehicle data or CPI data. This suggests that there may be underlying physical

phenomena that change at transition points in the real-world data that do not

occur in random data. A possible avenue of future research is to determine which

data attributes influence convergence outside of transition points, as this may be

a source of discovery of the significance of underlying dynamics in physical data

sets.

5.6 Discussion

The preceding numerical results highlight the strengths of the presented approach

to data structuring and representation. It is notable that despite the low number of

transition points in some sets such as the economic data, a data sequence starting

at any point preceding the last transition point was correctly identified.

115

Time [s]
N

u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

of Steps

Steps to
Convergence

dist. [x1000]

Final Location

distance from start [x1000]

R
an

d
om

W
al

k

1 2 3 4 5 6 7 8 9 10

4 6 80 2500 50000 50 100

−100

0

100

200

0

10

20

30

0

5

10

15

0

5

10

Figure 5.6. In-sequence Localization Results using Random Data using Robust One

Dimensional Data Models.

5.6.1 Compactness of Data Representation

The strength of the approach in compacting the data is evident when comparing

the new data representation to past results. In particular for vehicle data, when

comparing the size of the data representation in this chapter with the size of the

data representation in Chapter 4 [23], we observed a 16 fold reduction in the

number of extracted models. In addition each model is designed to be more robust

to noise so the result is a lower computational burden and a faster convergence

time. These strengths are shown in Fig. 5.7 using vehicle data.

This figure shows the wall clock time of localizing a fixed length, noisy data

sequence with a random start point to a pre-established dynamical model data

structure. The histograms in the figure depict the number of experiments that

were completed at the corresponding time, which is measured in seconds. The

grey bars demonstrate the performance of a data structure created using the prob-

abilistic optimization of transition points, while the blue bars demonstrate the

performance of the data structure constructed for [23]. Using the data structure

and representation that is probabilistically optimized for stochastic noise, we ob-

serve a two to three order of magnitude decrease in the convergence time versus a

data structure that is iteratively built for localization. While the actual improve-

ment may vary from one set to another, this test case demonstrates the inherent

advantages of our quality measure on the extracted models.

116

Experiment time [s]

N
u
m

b
er

of
E

x
p
er

im
en

t

iterated
probabilistic

−500 0 500 1000 1500
0

10

20

30

40

50

60

Figure 5.7. Experiment Run Time Comparison for Localization Maps Created in Chap-
ters 4 and 5.

5.6.2 Uniqueness of Transition Points

The strength of the approach in correctly localizing variable length data sequences

rests on the uniqueness of the extracted transition points, i.e. the significance of the

change in the underlying data dynamics that is observed at each such transition.

For the vehicle data, Fig. 5.8 illustrates this significance by plotting the uniqueness

of each transition point on the map at the respective transition point location.

The figure shows the transition points separated by tier to emphasize that higher

tiers are inherently more robust because of the reduced standard deviation of the

Gaussian noise.

To create this figure, transition point uniqueness is determined by counting the

number of transitions that are satisfied by a given data sequence. For example,

taking the data sequence that satisfies the first transition point on the second level,

each transition point in the first tier is tested. If a subsequent transition point

criteria is satisfied by this data sequence, then the number of similar transition

points, trs, is increased by one.

Normalizing this metric, the number of similar transitions is divided by the

total number of transitions, trT , on the tier. Furthermore, to express the number

of unique transitions, the ratio trs/trT is subtracted from one, 1 − trs/trT . Then

from Fig. 5.8, one can see that both of the transitions on tier 1 are unique. Then

on tier 2, the high uniqueness scores show that at most a few transitions have one

117

to two other similar points.

point location from start [m]
U

n
iq

u
en

es
s

S
co

re

Tier 1
Tier 2

0 1000 2000 3000 4000 5000 6000
0

0.5

1

Figure 5.8. Uniqueness of Robust Transition Points in Vehicle Data

5.6.3 Physical Interpretation of Transition Points

Given the small number of unique transition points, it is interesting to ask whether

each point carries with it a physical significance in real-world data. Although this

was not the object of this study, it appears that at least in the CPI data the

transition points are correlated to significant financial events in US history.

For example, the US government began collecting data on the consumer price

index in 1914. Our first transition point was detected 80 months later, which

roughly corresponds to the sharp financial depression in the US following WWI.

This depression was followed by strong growth, and a second depression in 1923,

corresponding to transition point 2, occurring about 110 months after January of

1914. The same pattern is observed following the end of WWII: a deep depression

resulting from spending restraint following the war results in a transition point

in our data at 392 months. The US economy then began growing in 1947, which

corresponds to the final transition point.

Similar comparisons can be made in the vehicle data collected by some of the

authors over 6000 miles of US roadways. In particular vehicle pitch was observed

to be correlated with road construction times, construction equipment, and the

actual construction company. This type of information could prove to be useful

when building larger maps that require more information for localization.

5.6.4 Limitations

As with any approach and algorithm there are some limitations that affect the

performance of the presented algorithm. In the case of this dynamical model-based

118

localization approach, the performance depends strongly on the interplay between

the data dynamics, the chosen model order, and the user defined probability of

success at a transition point. In other words, the dynamics of the data must exhibit

periodic changes that can be quantified using various model orders. For example,

in the vehicle data it was determined that a model order of five produced transition

points throughout the time series, allowing data sequences to start almost anywhere

on the map. Similar results were found in the random data. However, the economic

data showed that only four transitions could be found that satisfy the probability

criteria. This implies that the underlying dynamics of the economic data set are of

low order and not changing sufficiently to produce transitions of high probability

throughout the data set.

M
S
E

model order

%
fi
t

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

83.5

84

84.5

85

85.5

0.55

0.6

0.65

0.7

0.75

Figure 5.9. Inflation Data Model Order Fit for Robust One Dimensional ARX Models.

Fig. 5.9 shows a closer examination of the inflation data. To generate this

figure, a model of each order was generated using the ar command in MATLAB,

which chooses the model to minimize the mean square error (MSE) or a similar

criterion. The figure represents the collected percent fit and MSE from the com-

mand for ten different model orders. We use percent fit because it is the standard

MATLAB method of comparing data sets. Given that µxtp is the data mean of a

given segment, percent fit is defined as:

%fit = 1 − ‖z̃tp − ztp‖2

‖z̃tp − µxtp‖2

. (5.13)

119

Observe that the percent fit and MSE are relatively unchanged across model orders.

This suggests that the underlying data dynamics are of very low order and do not

vary sufficiently throughout the data set. Thus, for in-sequence localization on the

whole data set, the approach suggested in this thesis is not an optimal approach

to building a data representation. However, in light of the physical meaning of

the transition point, our approach could be used to determine probabilistically

important events in time.

5.7 Conclusions and Future Development

This chapter addressed the requirement that data representations used for in-

sequence localization need to be robust to the presence of noise in the data collec-

tion process. To accommodate the manifestations of noise, a probabilistic approach

to model extraction was taken, where models were determined by formulating a

stochastic programming approach. In this approach the probability of success

about each transition point was lower bounded and appropriate models were de-

termined. In addition, this chapter demonstrated the use of the internal model

principle to mitigate the effects of a known sinusoidal noise.

When compared to the model representations from the previous chapter, the

identified models here were more robust, and the corresponding transition points

were more readily tied to real-world events. The final chapter of this thesis will

build on this work and create a multi-dimensional representation whose identi-

fication is again formulated in the chance constrained framework. Developing

multi-dimensional representations is critical to ensure robustness, accuracy and

redundancy for in-sequence localization applications.

120

Reference Map Creation Algorithm
Initialization
L = 0
τ0 = 1
τ1 = NML
tierflag = 0
σ2

η = to expected noise level
FOR tier = 1:Max tier
obtain data at the tier resolution

WHILE tierflag == 0
L = L + 1
FOR m = 1:NML

n = 0
k0 = τm−1 + N
ke = τm

τn = k0

FOR t = k0:ke

Solve O1
IF O1 is feasible

record t, Am, Am+1 in a structure S
iterate the transition point counter: n = n + 1

END IF
Solve O2
IF O2 is feasible

record t, Am, Am+1 in a structure S
iterate the transition point counter: n = n + 1

END IF
END FOR

IF n == 0 && m == M
tierflag = 1

ELSEIF m < M && n > 0
add n to the total number of transitions on the level
from S choose τn s.t. τn minimizes Perror

record the new segments on L
END IF
END WHILE

END FOR

Table 5.1. Data Structure Extraction Algorithm for Robust One Dimensional Models

121

In-Sequence Localization Algorithm

Initialization
Collect N + 1 data points:
set loop index: k = N + 1
initialize data matrices: xTj

and Xj

Begin Localization Loop
FOR l = 1:L

FOR m = 1:ML − 1
IF the parent segment ofAm is feasible:

Find a set η̄m s.t. |em,k| ≤ εm

Find a set η̄m+1 s.t. |em+1,k| ≤ εm+1

IF η̄m exists
Am is feasible, add to its counter
add the mth segment to the result tree

ELSEIF η̄m does not exist AND η̄m+1 exists
then the data point dk is a transition point
add the mth segment to the result tree in case of error,
add the m + 1st segment to the result tree,

ELSE
remove the mth segment from the result tree

END IF
END IF

END FOR
END FOR
Collect an additional data point
iterate the index: k = k + 1
iterate the data matrices: xTj

and Xj

Following Each Detected Transition Point
FOR l = 1:L

FOR m = 1:NML

IF (τm belongs in the segment &&
segment m is not in the result tree)

add the mth segment to the result tree
END IF

END FOR
END FOR

Table 5.2. In-Sequence Localization Algorithm for Model Structures Using Robust One

Dimensional Models.

Chapter 6

Robust Data Structures for

In-Sequence Localization using

Multiple Time Series

This chapter builds on the in-sequence localization data representations developed

in chapters 4 and 5. In these previous chapters, ARX models were introduced as

data representations for the application of in-sequence localization. The models

were then tuned to improve the robustness of the localization process in the pres-

ence of noise that was both deterministic and stochastic. By extracting robust

model representations, the mitigation of noise is off-loaded onto the map-building

process (which is usually performed in an environment that has unlimited compu-

tational power).

In this chapter, the linear model representations are extended to include multi-

ple time series. The particular case is considered where the observed time series are

correlated and act as “attributes” of an unknown process to be inferred after lo-

calization. For example, this situation arises in vehicle localization, when multiple

data time series are collected from several sensors that describe attributes of the

road. The inclusion of multiple parallel time series is shown to increase the speed

of in-sequence localization. Furthermore, through several examples, the domain of

the approach is expanded to include environmental health monitoring and energy

generation management. Including these examples demonstrates the versatility of

the approach presented in this thesis and opens new avenues of post-dissertation

123

research.

Preliminary work in this chapter was presented in the 2014 Penn State College

of Engineering Research Symposium [26], where the work was awarded the best

paper award. In addition, further work will be presented in the 2014 IEEE Con-

ference on Decision and Control. A journal manuscript of the complete chapter is

currently under development for submission to IEEE Transactions on Knowledge

and Data Engineering.

6.1 Introduction

Tailoring data representations to the problem in-sequence localization, the previous

chapters in this thesis proposed the use of linear dynamical models to reduce the

dimension of stored data and enable rapid in-sequence localization (see Chapter 4

or publications [20, 22]). These models can be further tuned to increase the ro-

bustness of the representations to certain quantified and known process noises (see

Chapter 5 or publications [24, 23]). However, the approach to data representation

and in-sequence localization in these chapters was limited to one-dimensional time

series such that a reference data sequence was mapped and new noisy data from this

sequence was used for localization within the reference sequence. Continuing the

development of this work, this chapter presents a self-contained description of the

design of a multiple time series data representation that is used for in-sequence

localization. This representation retains the properties of dimension reduction,

computational simplicity in localization and noise robustness that are necessary

for in-sequence localization on a mobile platform.

Because we find the application of vehicle localization to be most intuitive, the

work presented here often refers to this application to convey concepts and ideas.

However, the solutions proposed here are not limited to this domain. In fact, results

are presented in two other applications: variable generation forecasting [193, 194],

and stream health monitoring [195, 196, 197]. Thus the numerical experiments

hint at future work that will be performed in subsequent publications.

124

6.1.1 Vehicle Localization Using Multiple Time Series

The previous chapters in this thesis proposed a dynamical model-based solution

to the problem of in-sequence localization, where dynamical models are used to

represent the data and the model predictions are used to eliminate feasible location

regions. This work demonstrated the ability of IMU data to localize a vehicle and

also demonstrated the limitation of using a single dimension of the IMU sensor

for localization (see Chapter 5), namely the relatively small subset of points on

any given map that are robust to noise. Thus, to implement the approach on a

practical vehicle, the localization maps must be generated using multiple sensors

that complement each other, adding information to the localization process in

regions of the map that are at best complimentary and, at worst, only overlapping

with a few other sensors. This chapter presents one approach to building multiple-

time series representations for the purpose of building localization maps for vehicle

localization.

In the realm of vehicle localization, multiple time series can have in one of

two configurations with respect to real world road geometry: the time series could

represent the data from a single sensor on multiple roads, or the time series could

represent the sensory output from multiple sensors simultaneously measuring the

same road. To make the description clearer, the former case is termed multi-

dimensional data because one can imagine the 3-dimensional world in which roads

exist, and the latter case is termed multi-attribute data because the output of

each sensor is an attribute of the particular road that is being traversed. These

attributes are related to one another via the spatial location of the readings in the

world.

The focus of this chapter is multiple-attribute time series, leaving the devel-

opment of multi-dimensional time series structures to future work. The multiple-

attribute time series representation presented here can accommodate any number

of time series necessary to ensure highly accurate maps. The following is a more

precise definition of in-sequence localization using multiple-attribute time series.

In this definition, the number of time series is denoted by Nts and the particular

time series is indexed by γ. As defined in Chapter 3, the length of the complete

historical time series is i, and the length of the noisy subset collected some time T

later is k + 1. The problem of multi-attribute time series in-sequence localization

125

can now be mathematically defined.

Multi-attribute time series in-sequence localization: Given a multi-attribute

time series with Nts-component time series (D1,D2,. . .,DNts) ∀γ = 1 : Nts, where

Dγ = {dγ,1, dγ,2, . . . , dγ,i}, and a noisy subset (of length k+1) of the series collected

with some time delay T , x̄ = {dγ,T + ηγ,T , dγ,T+1 + ηT+1, . . . , dγ,T+k + ηγ,T+k} ∀γ =

1 : Nts, find the index j such that the subset of the original time series d̄ =

{dγ,j, dγ,j+1, . . . , dγ,j+k} ∀γ = 1 : Nts most closely matches the collected time series

subset.

6.2 Multi-Dimensional Data Representations Sur-

vey

This section overviews some work published in the domain of data representa-

tion for subsequence matching. This area is the closest published analogue to

in-sequence localization.

6.2.1 Multi-Attribute Time Series

In the literature, multi-attribute time series research has focused heavily on clus-

tering. For example Povinelli and Feng [81] develop a clustering algorithm for

stock volume and price data. This algorithm concatenates the data attributes and

forms clusters in the data phase space. Another clustering approach by Kahveci

et. al. [82] focuses on the identification of shift and scale invariant clusters in

multi-attribute time series. Uniqueness in the clustered patterns is addressed by

Lee et. al. [83]. This uniqueness is obtained by stacking 1-dimensional patterns

to find the smallest unique multidimensional representation.

6.2.2 Multidimensional Time Series

Some authors have focused on discovering patterns in truly multidimensional time

series. An interesting subproblem here is determining the number of useful di-

mensions. Minnen et. al. [84] address this problem of identifying sub-dimensional

patterns with an efficient algorithm. Simultaneous work by these authors [85] also

126

explores the use of Hidden Markov Models (HMM) in the multidimensional motif

discovery. An interesting aspect of this work is that it is scalable from one to many

dimensions.

6.2.3 Clustering

Both works by Minnen et. al. [84, 85] follow the general pattern of published

work addressing clustering. In addition, published results by Plant et. al. [86]

focus specifically on clustering multidimensional time series based on the interac-

tion between the dimensions. This is an interesting approach because it preserves

additional information in multiple dimensions.

Clustering can also be based on temporal similarities between frequency pat-

terns, as shown by Tatavarty et. al. [87]. In the spectral domain, i.e. using the

eigenvalues of the similarity matrix, clustering is demonstrated by Wang et. al.

[88]. Key aspects of clustering such as similarity searching and structuring are

addressed by Matsubara et. al. [90] and Moreira et. al. [91] respectively.

Yet another interesting application of multidimensional time series analysis is

prediction. Shibuya et. al. [89] and the references within demonstrate the use

of multidimensional time series to predict behavior. A key component in this

research is determining the causality of one dimension on another. In other words,

researchers are looking to determine whether the fluctuation in one time series can

be used to predict the behavior of a second time series. This is yet another method

of determining the importance of additional dimensions.

A similar application in vehicular technology is accident prediction by Gonzalez

et. al. [92]. In this work, multidimensional traffic data is mined for early anomaly

detection. These anomalies are used by traffic engineers to detect accidents early

and re-route traffic to maintain flow along the nation’s highways.

6.3 Dynamical Model Representations of Multi-

Attribute Time Series

The multiple-attribute time series are represented using multi-input, multi-output

(MIMO) AutoRegressive models with an eXogenous input (MIMO ARX). These

127

models are particularly convenient for the problem of in-sequence localization be-

cause they can reduce the size of the stored data, they can begin localization at

any time inside the domain of the model, and they retain the sequential infor-

mation that is encoded in the data. In addition, localization procedures based

on MIMO ARX models only evaluate the most recently collected data point for

localization and thus reduce the computational costs of localization for mobile

platforms. Lastly, the model parameters can be tuned to improve the robustness

of the representations and the localization mechanism to noise. This tuning will

be described in detail in section 6.4. The N th order MIMO ARX model with Nts

inputs is described in equations (6.1).

zn = Aωn−1 + e(n) (6.1)

zn =









x1,n

...

xNts,n









A =

(

c1,11
. . . c1,N1

. . . c1,1Nts
. . . c1,NNts

...
. . . cNts,1Nts

. . . cNts,NNts

)

ωn−1 =
(

x1,n−1 . . . x1,n−N . . . xNts,n−1 . . . xNts,n−N

)

e(n) =









ex1,n

...

exNts,n









, ε =









εx1

...

εxNts









,

where zn is the vector of simultaneous measurements described by the model A

using the set of previous measurements ωn−1 up to a modeling error, the set of

which is collected in the vector e(n). The modeling errors are bounded to the

positive and negative side by modeling error bounds which are collected in the

vector ε.

In some of the equations below we refer to the magnitude of the modeling error

in each model output. In these cases, the notation |e(n)| is used to denote a vector

128

of modeling error magnitudes at the nth instant in time such that

|e(n)| =
(

∣

∣ex1,n

∣

∣ , . . . ,
∣

∣exNts,n

∣

∣

)T

. (6.2)

Describing the equations in short, the nth point in the multi-attribute time series,
(

x1,n, . . . , xNts,n

)T

, is approximated using the previous N data points. The nth

point is referred to as the test point because when the model prediction is eval-

uated against the modeling error bound, equation (6.2), models that agree with

their bound are feasible, and models that do not agree with their error bound are

infeasible. The modeling error bound is automatically chosen such that the model

describes the data with the tightest possible error bound given the fixed model

order. The modeling error bound applies to both the negative and the positive

side of the modeling error.

Because the model order is fixed such that at least some data compression

is observed and because the modeling error bound should be tight to enable in-

sequence localization, multiple sequential models are needed to describe an entire

data set. That is, the data set is subdivided into sequential sets which are defined

by model agreement or disagreement. In the section to follow, the definition of

model agreement in this chapter is clarified and extensions for future work are

shown.

6.3.1 Model Agreement

Recall that the points that separate the intervals supporting each model are called

transition points and are denoted by τm, where m is the transition point index

denoting that this transition point belongs to the mth model. Transition points

are the points in the data where the underlying dynamics are changing such that

the model that previously described the data is no longer valid. In the case of

multiple attribute time series this change in dynamics can occur on all time series

or a subset of the time series. This change in dynamics (across multiple time series)

is described by a model disagreement of the data for the data subset that is ending,

and a model agreement for the new data subset that is beginning. Describing the

event where all model outputs disagree with the data at a transition point, τm,

129

there are 3Nts inequalities that hold:

em(τm) = zτm−1 − Amωn−2, s.t. |em(τm−1)| ≤ ε

em(τm) = zτm − Amωn−1, s.t. |em(τm)| > ε (6.3)

em+1(τm) = zτm+1
− Am+1ωn−1, s.t. |em+1(τm)| ≤ ε

In these inequalities |em(τm)| is the vector of the mth model’s modeling error mag-

nitudes at the transition point τm. The first inequality shows that the mth model

agrees with the data in the previous time instant (and all instances in the corre-

sponding data segment). The second inequality shows that at the current data

point the mth model does not describe the acquired data. The third inequality

shows that the next model, m + 1st, agrees with the new data that is being ac-

quired. Together these inequalities demonstrate that the underlying dynamics are

changing and that the pair of models that describe the data on each side of the

transition point captures this change.

On the other hand in the case where only some of the time series disagree with

the models, the transition point inequalities will have the following form below,

where the symbol ≷1 denotes the fact that some of the time series exceed their

modeling error bound and some do not.

em(τm) = zτm−1 − Amωn−2, s.t. |em(τm−1)| ≤ ε

em(τm) = zτm − Amωn−1, s.t. |em(τm)| ≷ ε (6.4)

em+1(τm) = zτm+1
− Am+1ωn−1, s.t. |em+1(τm)| ≤ ε

This latter form of the equations is more complex to implement but more applicable

in cases where a large number of uncorrelated time series are used. This is because

as the number of time series increases, one can expect that the number of transition

points as defined by equation (6.3) will decrease.

Assumption: In this chapter model disagreement is defined as shown in equa-

tion (6.3). In essence, all time series are required to disagree with a model simul-

taneously at each transition point τm.

1As defined in the symbols section, the symbol ≷ when used with vector quantities implies
that some of the row-wise inequalities are >, some are <.

130

This is a simplifying assumption that reduces the computational effort in the

creation of the in-sequence localization maps by simplifying the solution space and

allowing faster computation than the more complex (6.4). The goal of reducing

this computational effort is to increase the amount of incoming data that can be

processed and stored. However, it is important to note that requiring all time

series to disagree rests on the idea that this chapter is developed in the context of

multi-attribute time series, i.e. series that are correlated with one another via an

underlying process; a correlation readily observed in real data and demonstrated

in feasibility in the numerical results of this chapter.

The correlation in the time series leads to a coupling in the models such that

even when a transition point is not readily apparent by inspection, a jump in

one time series leads to a shift in the model parameters of the rest of the time

series. Thus the change in dynamics in one time series will trigger a shift in the

determined data model such that a transition point is generated across all time

series. This should be true provided that the time series are sufficiently coupled,

and judiciously chosen. However, as the number of time series grows and the time

series become more independent, we expect that it may be increasingly difficult to

find transition points. This will be further discussed at the end of the chapter in

the discussion section.

Thus the assumption above simplifies the problem to be solved at the cost of

limiting the number and independence of the time series. However, we feel that

this should not be a problem because this work is devoted to multiple attribute

time series which should be correlated. As seen later in the chapter, for a well

chosen set of localization sensors, an abundance of transition points is found and

the resulting in-sequence localization maps perform well given our assumptions.

6.4 Defining Robustness at Transition Points

Transition points are critically important for in-sequence localization because they

provide precise locations within the data. In contrast, a feasible model only shows

a possible set of locations. For this reason, this chapter and the previous chapter

focus on in-sequence localization using dynamical models whose underlying data

is determined by finding the most robust transitions. In essence, these are the

131

transition points at which model transitions are not obscured by the presence of

noise. To make the discussion below more general, assume that the mth model is

that whose data segment is ending and the m +1st model is the model whose data

segment is beginning.

The transition point at which the mth model segment is ending is the point at

which new dynamics are seen in the observed data, and these dynamics are being

represented by the m + 1st model. Practically this means that the modeling error

of the mth model exceeds its error bound ε, while the modeling error of the m+1st

model agrees with its error bound ε. This problem is defined by the inequalities2

as follows. Given two data adjoining data intervals [τm−1, τm] and [τm, τm+1], we

would like to find two models that disagree3 at the transition point τm,

em(τm) = zτm − Amωn−1, s.t. |em(τm)| > ε (6.5)

em+1(τm) = zτm − Am+1ωn−1, s.t. |em+1(τm)| ≤ ε

but agree with the data on their respective domains as represented by the data

indices t in the following equations,

em(t) = zt−1 −Amωt−2, s.t. |em(t)| ≤ ε

and (6.6)

em+1(t) = zt −Am+1ωt−1, s.t. |em+1(t)| ≤ ε

In the presence of noise, the output of each model is stochastic. In particular,

in the presence of the Gaussian noise, N (0, ση), observed in vehicle IMU data, the

output error of each model is Gaussian with a mean, µm, that corresponds to the

modeling error, em,

em(t) = zt − Amωt−1 (6.7)

em+1(t) = zt − Am+1ωt−1.

Then assuming that the noise component of each time series is independent4 of the

2These inequalities have corresponding polynomial equivalents.
3One model fits the data, and the other does not.
4The constraint of noise independence can be relaxed by modeling correlated noise as the

132

noise component of other time series, and that the standard deviation of noise, ση,

has been normalized5, then the covariance matrix, Σm, is related to the model by

the squared sum of the coefficients,

Σm = (I + Am · A>

m) · σ2

η (6.8)

Σm+1 = (I + Am+1 · A>

m+1
) · σ2

η.

Thus the events at a transition point |zτm−Amωτm−1| > ε and |zτm−Am+1ωτm−1| ≤
ε are described by the probabilities P(|em(τm)| > ε) and P(|em+1(τm)| ≤ ε), re-

spectively, where the distribution function of the error is multi-variate Gaussian

with an order equal to the number of time series used.

Consider the case of two time series, the 2-dimensional MIMO ARX models at

a transition point, whose errors are described by bivariate Gaussian distributions

that can be visualized as shown in Fig. 6.1. Visualizing the distributions in two

dimensions illustrates the source of error when detecting a transition point, that

is the region below the distributions about the modeling error bound ε where the

distributions overlap. Integrating over this region gives the probability of making

an erroneous decision about the transition point. This type of reasoning has long

been employed in radar detection theory, where the overlap in one-dimensional

Gaussian distributions is used to determine the optimal threshold location [190].

em1
em2

G
au

ss
ia

n
P

D
F

Figure 6.1. Example of the Uncertainty in Transition Points, Represented by the
Gaussian Distribution Overlap In Two Dimensions.

model output of a MIMO model whose input is i.i.d. noise.
5Each time series has been divided by the standard deviation of the noise. The reason for this

is described in the discussion section.

133

To minimize the probability of an error at a transition point in the presence

of noise, the two probability distributions must be maximally separated and the

covariance matrix of each distribution must be minimized. For a known noise

description, these distributions can be shaped during model extraction by choosing

the mth model such that its model output error in all dimensions is maximized at

the transition point, choosing the m + 1st model such that its model output error

is minimized at the transition point, and choosing both models such that their

respective covariance matrices, Σm and Σm+1, are minimized. Described in terms

of probabilities, a set of models that maximizes the probability of correct detection

at a transition is such that the probability of the mth model output error exceeding

ε is large, and the probability of the m+1st model output error being less than ε is

large. These probabilities, however, are not independent because the data vector

that is input into both models is identical. For this reason we want to maximize

the joint probability of success at a transition point.

6.4.1 Mathematical Formulation of the Model Extraction

Problem

Combining the probabilistic description of the transition point events with the

inequalities that define model agreement on the intervals about the transition point

results in the following problem formulation, that is needed to find the models Am

and Am+1.

Problem Formulation used in this Chapter:

maximize
Am,Am+1,ε

P(|em(τm)| > ε, |em+1(τm)| ≤ ε)

subject to (6.9)

em(t) = zt−1 − Amωt−2, s.t. |em(t)| ≤ ε, ∀t ∈ [τm−1, τm)

em+1(t) = zt − Am+1ωt−1, s.t. |em+1(t)| ≤ ε, ∀t ∈ [τm, τm+1)

Now for completeness, the problem described by the transition point inequal-

ities in (6.4) is also formulated. Here κ model outputs (time series) do not agree

with their modeling error bounds and Nts−κ model outputs agree with their mod-

eling error bounds. Even more importantly, it is unknown prior to searching for

134

transition points which time series will exhibit a shift in dynamics that leads to

model disagreement. Then the sets of model row indices denoting the two different

model agreements are defined as follows.

Π̃ = {γ, s.t.
∣

∣emγ (τm)
∣

∣ =
∣

∣

∣zτmγ
− [cγ,N1

. . . cγ,1Nts
. . . cγ,NNts

]ωτm

∣

∣

∣ > εγ}

Π̂ = {γ, s.t.
∣

∣emγ (τm)
∣

∣ =
∣

∣

∣
zτmγ

− [cγ,N1
. . . cγ,1Nts

. . . cγ,NNts
]ωτm

∣

∣

∣
≤ εγ} (6.10)

Where Π̃ is the set of indices denoting the model outputs whose output exceeds

the modeling error bound and Π̂ is the set of indices that denoting the model

outputs whose output agrees with the modeling error bound. Then using these set

definitions and equations (6.4), the original problem posed above can be rewritten

as follows.

Broader Problem Formulation:

maximize
Am,Am+1,ε

P(|emγ(τm)| ≤ εγ ∀γ ∈ Π̃,

|emγ(τm)| > εγ ∀γ ∈ Π̂,

|em+1|(τm)| ≤ ε)

subject to (6.11)

em(t) = zt−1 − Amωt−2, s.t. |em(t)| ≤ ε, ∀t ∈ [τm−1, τm)

em+1(t) = zt − Am+1ωt−1, s.t. |em+1(t)| ≤ ε, ∀t ∈ [τm, τm+1)

6.5 Identifying Models with Robust Transition

Points

Ideally, we would like to pose the problem of identifying robust transition points as

a convex problem so that we can take advantage of the reliable, efficient and fast

solving method that are available. However, as posed above, neither problem (6.9)

nor problem (6.11) are convex. This is because the problems are posed as several

coupled inequalities, where the coupling occurs through the noise. Moreover, in

each problem the realizations of the stochastic noise multiply the decision variables

[198]. A further complication is the fact that in contrast to previously published

135

work [199], the noise distribution is defined via the decision variables during the

problem solution, and is therefore initially unavailable.

Despite the high level of complexity in this problem, there exist approaches

that are capable of finding exact solutions. One approach developed by Jasour et.

al. [200, 201] finds a solution to the problem in terms of moments in the space of

measures, rather than explicitly in the space of model coefficients. The approach

is briefly described below and the reader is directed to the cited publication for

more detail.

The approach developed by Jasour et. al., while optimal in the sense that exact

solution can be found, is computationally expensive. For this reason in this thesis,

a more computationally efficient approximation is sought such that the models

and transition points can be identified across increasingly larger time series. This

approximation is described in this chapter beginning with section 6.5.2.

6.5.1 An Asymptotically Optimal Solution Approach

Solving a highly non-convex stochastic programming problem using the approach

in [200, 201] expands on the idea that the solution of such a problem can be

found if the problem is reformulated as an expected value problem. In essence,

the objective function of the problem is reformulated in terms of the probabilistic

moments, and solutions are numerically found in the moment space and then

converted to solutions of the original problem.

To find the solution, the designer first chooses the number of moments in the

approximation. Choosing the number of moments is important because choosing

large numbers of moments leads to an exact solution of the problem making this

approach asymptotically optimal. However for a large number of moments the

approach is computationally expensive, reducing the maximum practically feasible

size of the data set.

The moments are arranged in a vector of multidimensional moments that char-

acterizes a probability measure, µp. This probability measure has a support set, K,

that is defined by the parameters of the problem - in this case the uncertainty, η,

the models Am and Am+1, the modeling error bounds ε, and the linear constraints

above. Then using the vector of moments and the support set K, a localization

136

matrix and a moment matrix are created. Now the original problem is restated

as a semidefinite programming (SDP) problem (shown below in equation (6.12))

whose solutions are a positive definite moment matrix, MM, and a positive defi-

nite localization matrix, LM. In essence, in the moment space, we maximize the

zeroth moment, α0, of the measure µp such that we can find a positive semi-definite

localization matrix and a positive semi-definite moment matrix. This approach is

proved and described in greater detail in [202, 203].

maximize
LM,MM

α0

subject to (6.12)

LM ≥ 0, MM ≥ 0

Once a solution to the problem is found, the decision variables (linear model

coefficients in this thesis) can then be extracted from the moment vector. In the

case where the moment vector belongs to a set of feasible solutions, an appropriate

solution vector is chosen based on the parameters of the problem being solved. The

full description of this approach and the attached proofs can be found in [200, 201].

6.5.2 An Approximate Solution Approach

While the approach above leads to an exact solution for large numbers of moments,

it is computationally expensive (i.e. the number of computations grows quickly

with the size of the data set). This is further complicated by the fact that the

problem must be solved for each possible transition point on the whole data set.

As the data set scales to a size such as the one needed to describe an entire road

network, the cost of this algorithm becomes prohibitive. For this reason, this text

proposes a faster approximation, such that the problem can be solved iteratively

and the data set size can be increased.

6.5.3 Approximation Procedure

The procedure to obtain the approximation to problem (6.9) is complex and for this

reason it is outlined here prior to explaining the details of this chapter. The first

step is to approximate the objective function by describing the uncertainty using an

137

approximated uncertainty model and taking the log of the resulting probabilistic

expression. Optimizing over the approximation of the objective function requires

the identification of several preliminary parameters including the covariance of

the approximated noise term, and the model agreement bound for the expected

models. To obtain estimates for these quantities, the problem is idealized using the

approach outlined in Chapter 5, and the rows of the MIMO models are determined

separately using the procedure outlined in section 5.4. Lastly, the solution space of

the problem is divided into convex subsets, each of which is searched for a solution

of the approximated problem.

The table below summarizes the approximation steps that will be described

in the sections to follow. The approximation is also followed by a summary of

implementation to guide the reader.

Building the Problem Approximation
1. Approximate the objective function by using an approximated noise model
in the right hand side of the objective function inequalities, in problem (6.9),
and taking the log of the resulting expression (section 6.5.4).
2. Design a procedure to obtain preliminary values for ε

and the covariance of the approximated noise term (section 6.5.5).
3. Divide the solution space into convex subsets (section 6.5.6).

Table 6.1. Steps to Building the Problem Approximation

6.5.4 Approximating the Objective Function

The first step in approximating problem (6.9) is approximating the objective func-

tion. A common approach to approximating complex probabilistic expressions is to

assume that the events being modeled are independent6. In essence the probability

of the events of the mth model exceeding its error bound ε, and the m + 1st model

agreeing with its modeling error bound ε, is approximated by the multiplication

of the respective probabilities. This is an approximation because, at a transition

point, the same underlying data segment is input into each model. The problem

6This step is not strictly necessary, but it opens the path to future implementations using
problem formulation (6.11).

138

below describes the approximation.

maximize
Am,Am+1,ε

P(|em(τm)| > ε) · P(|em+1(τm)| ≤ ε)

subject to (6.13)

em(t) = zt−1 − Amωt−2, s.t. |em(t)| ≤ ε, ∀t ∈ [τm−1, τm)

em+1(t) = zt − Am+1ωt−1, s.t. |em+1(t)| ≤ ε, ∀t ∈ [τm, τm+1)

This problem is the first approximation to problem (6.9) and it is still not

convex because the realizations of the random noise multiply the decision variables.

To address this problem, a common approximation is to separate the random terms

in the objective and move these terms to the right hand side of the inequality. Here

we describe the estimates of the uncertainty (on the right hand side) as vectors ζm

and ζm+1. These vectors have Gaussian distributions centered at 0 with covariance

matrices Σm and Σm+1, respectively. To arrive at this approximation, first expand

the model error matrix terms in the model error bound comparison inequality7,

em(τm) > ε = zτm − Amωn−1 > ε (6.14)

=









d1,n + η1,n

...

dNts,n + ηNts,n









− Am









d1,n−1 + η1,n−1

...

dNts,n−N + ηNts,n−N









> ε.

Then using the expanded equations, move all terms containing noise to the right

hand side of the model error bound comparison inequality,

















d1,n

...

dNts,n









−Am









d1,n−1

...

dNts,n−N

















+

















η1,n

...

ηNts,n









− Am









η1,n−1

...

ηNts,n−N

















> ε, (6.15)

















d1,n

...

dNts,n









−Am









d1,n−1

...

dNts,n−N

















> ε −

















η1,n

...

ηNts,n









− Am









η1,n−1

...

ηNts,n−N

















.

7This set of equations is abridged because of space constraints. Please see page 129 for the
full matrix definitions.

139

Representing the left hand side of the equation as ēm and the expression containing

noise terms on the right hand side as ζm, the equation above can be compactly

rewritten as,

ēm > ε + ζm. (6.16)

To make the problem convex, the decision variables (model coefficients) are sep-

arated from the random terms by using an estimate of the model coefficients. In

essence ζm is approximated as,

ζm =









η1,n

...

ηNts,n









− Amest









η1,n−1

...

ηNts,n−N









. (6.17)

In practice, it is not possible to separate the noise from the data in such a fashion;

however approximating the problem in this form is well known to lead to convex

formulations with efficient solutions [204]. Using this approximation for both the

mth and m + sst model, the resulting reformulation is shown below in problem

(6.18).

maximize
Am,Am+1,ε

P(|ēm(τm)| − ε > ζm) · P(|ēm+1(τm)| ≤ ε + ζm+1)

subject to (6.18)

em(t) = zt−1 − Amωt−2, s.t. |em(t)| ≤ ε, ∀t ∈ [τm−1, τm)

em+1(t) = zt − Am+1ωt−1, s.t. |em+1(t)| ≤ ε, ∀t ∈ [τm, τm+1)

The final approximation of the objective function employs results shown in

Chapter 2 of [204]. The results showed that non-convex probabilistic objective

functions can be optimized if the probabilities are described by log-concave dis-

tributions. To find the solution, the optimization is carried out with respect to

the log of the probabilistic objective. The properties of the log function also show

that the multiplication of log-concave distributions is also log-concave. Using these

results, problem (6.18) is transformed into that of form (6.19).

140

minimize
Am,Am+1,ε

− log (P(|ēm(τm)| − ε > ζm)) − log (P(|ēm+1|(τm)| ≤ ε + ζm+1))

subject to (6.19)

em(t) = zt−1 − Amωt−2, s.t. |em(t)| ≤ ε, ∀t ∈ [τm−1, τm)

em+1(t) = zt − Am+1ωt−1, s.t. |em+1(t)| ≤ ε, ∀t ∈ [τm, τm+1)

6.5.5 Finding Preliminary Terms

The approximation presented above in problem (6.19) is still not solvable. The

solution of this problem requires an estimate of the distribution of the random

vectors ζm and ζm+1, and the estimation of the modeling error bound vector ε.

To develop this estimate in this section, recall from Chapter 5 that Φem is the

Gaussian cumulative distribution of the modeling errors, σ2
m is the variance of the

error distribution of the mth model, and ρ is the minimum probability of success

used to find deterministic equivalents of probabilistic expressions. In addition

from earlier in this chapter, we recall that the number of time series in the multi-

attribute representation is Nts, with each time series denoted by γ.

Then to estimate the distribution of the random vectors ζm and ζm+1, here we

need an initial estimate of the model coefficients. In this thesis, this estimate is

determined by idealizing the problem and assuming independence among the Nts

dimensions. Constraining each row, γ, of the vector em(t) to be independent, the

probabilities describing a transition point are:

P(|emγ (t)| > εγ) ∀γ = 1 : Nts (6.20)

P(|em+1γ
(t)| ≤ εγ) ∀γ = 1 : Nts

In the case of Gaussian distributions, considering the rows independently allows

each probabilistic expression to be expressed as a deterministic equivalent [192].

A deterministic equivalent is a linear expression that can be found if there exists

a lower bound on the probability ρ such that ρ is at least 1/2.

P(|emγ (t)| > εγ) ≥ p ∀γ = 1 : Nts, ρ ≥ 1/2, (6.21)

141

P(|em+1γ
(t)| ≤ εγ) ≥ ρ ∀γ = 1 : Nts, ρ ≥ 1/2. (6.22)

Expression (6.21) can then be reformulated as the deterministic equivalent for an

error exceeding the modeling error bound to the positive side,

1 − Φem(
εγ − emγ(t)

σ2
m

) ≥ ρ, (6.23)

and a deterministic equivalent for a modeling error exceeding the modeling error

bound to the negative side,

Φem(
−εγ − emγ (t)

σ2
m

) ≥ ρ (6.24)

Similarly, expression (6.22) can be reformulated as follows,

Φem+1
(
εγ − em+1γ

(t)

σ2
m+1

) − Φem+1
(
−εγ − em+1γ

(t)

σ2
m+1

) ≥ ρ. (6.25)

As previously shown in Chapter 5 and the Appendix, in these equations the stan-

dard deviation of the modeling error is equal to one plus the squared sum of model

coefficients. In addition, the modeling error is defined as the current data point

minus the model output. Thus the reformulated equations taken into account all

optimization variables: Am, Am+1, ε.

6.5.6 Convexity of the Solution Space

When solving for the preliminary terms, the solution must be sought over a convex

solution space. In the case of Nts dimensions, or time series, the solution space of

the problem is made up of 2Nts convex subspaces. Thus to search for a solution,

the problem has to be evaluated on each of these subspaces, and then the best

solution must be chosen out of all possible solutions. In this thesis, the best

solution is always chosen to be the solution with the highest probability of success

at the transition point.

As an example, consider the case of two dimensions for which there are 22

subspaces: (em1
> 0, em2

> 0),(em1
> 0, em2

< 0),(em1
< 0, em2

> 0),(em1
< 0,

em2
< 0). These subspaces are quadrants that can be depicted in the plane as

142

shown in Fig. 6.2. Then in two dimensions, the problem must be solved four times

to determine the number of feasible solutions at a given transition point.

Figure 6.2. Solution Space Illustration for the Case of Two Dimensions (Time Series).

6.5.7 Finding the Approximation in Each Subspace

For each subspace, equations (6.23) - (6.25) are used to formulate a convex problem,

the solution of which is an approximation of an initial set of models, Am and Am+1,

and the modeling error bound vector, ε. In equations (6.23) - (6.25), the symbol

Φem is the Gaussian cumulative distribution function (CDF) of the γth row of the

mth MIMO ARX model output. The variances σ2
m and σ2

m+1 are determined by

finding the squared sum of the coefficients of a given row and multiplying the result

by the variance of the observed process noise.

The model determination constraints are then obtained by rearranging equa-

tions (6.23) - (6.25). When identifying a set of transition point models with one

model output error exceeding the modeling error bound to the positive side, the

constraints are,

σmγΦ
−1

em
(1 − ρ) + emγ (τm) ≥ εγ

σm+1γ
Φ−1

em+1
(
ρ

2
+

1

2
) + em+1γ

(τm) < εγ . (6.26)

Then, when identifying a set of transition point models with one model output

error exceeding the modeling error bound to the negative side the constraints are,

σmγΦ
−1
em

(ρ) + emγ (τm) ≤ −εγ

143

σm+1γ
Φ−1

em+1
(
ρ

2
+

1

2
) + em+1γ

(τm) < εγ . (6.27)

Because there are Nts time series (dimensions), there are 2Nts possible deter-

ministic problems. One formulation showing the case where all modeling errors of

the mth model exceed the modeling error bound to the positive side is shown here.

The remaining formulations can be similarly derived by the reader.

minimize
Am,Am+1,ε

‖ε‖2

subject to (6.28)

Absolute constraints :

emγ > εγ ∀γ = 1 : Nts

Probabilistic constraints :

σmγΦ
−1

em
(1 − ρ) + emγ (τm) ≥ εγ ∀γ = 1 : Nts

σm+1γ
Φ−1

em+1
(
ρ

2
+

1

2
) + em+1γ

(τm) ≤ εγ ∀γ = 1 : Nts

Model fit constraints :

em(t) = zt−1 − Amωt−2, s.t. |em(t)| ≤ ε, ∀t ∈ [τm−1, τm)

em+1(t) = zt − Am+1ωt−1, s.t. |em+1(t)| ≤ ε, ∀t ∈ [τm, τm+1)

For each possible transition point, a solution is sought for all possible subspaces.

A solution to any one of these problems is an estimate of the models Am and Am+1

at a particular candidate transition point. The set of identified models is then used

to obtain estimates for the covariance matrices Σm and Σm+1 of the random vectors

ζm and ζm+1 using equation (6.8). This estimate is fixed for the remainder of the

solution, and the models Am and Am+1 are optimized using problem (6.19) and

starting from the initial set.

6.5.8 Implementing the Approximation

Having completed the approximation of the problem it is now useful to summarize

the approach that will be used at each candidate transition point. The procedure is

summarized below in table 6.2. The first step is to choose the candidate transition

point. Then for each of the M subspaces, we attempt to find a solution to the

144

idealized problem of type (6.28). If for any problem a solution is found, then the

initial set of models Am and Am+1 is used to find and fix the covariance matrices

Σm and Σm+1 using equation (6.8). Then the solution set of models is tuned

using problem (6.19). The final transition point chosen is the transition point that

maximizes the probabilities described in problem (6.13).

Approximation Procedure for Problem (6.13)
1. Choose a candidate transition point from the data.
2. Try to find a solution to each of the Nts problems of form (6.28).
3. For each solution found, determine Σm and Σm+1 using equation (6.8).
4. Approximate the solution to problem (6.13) by problem (6.19).
5. Choose the transition point with the highest probability of success.

Table 6.2. Approximation Procedure When Representing Multiple Time Series

Because the exact solution to the problem is computationally expensive, and

the computational resources are usually limited, an approximation to the problem

is needed to enable the representation of data using linear models. Furthermore,

this approximation serves to make the problem scalable such that new data can

be added to a pre-built reference map.

6.6 Data Representation Extraction Algorithm

The approximation procedure described in table 6.2 is part of an iterative pro-

cess that creates a data structure to be used for in-sequence localization. The

full process is described below in table 6.3. Categorizing the approach in terms of

data representation approaches, the algorithm presented here is a top down, slid-

ing window approach. This means that data segmentation is performed starting

from a single segment and ending with the largest number of segments below. The

segmentation can be considered a sliding window method because every possible

segmentation end point is tested before the most robust point is chosen as the

segmentation point. The following is a more precise description of the data struc-

ture/representation algorithm that is followed by a summarized algorithm in table

6.3.

Data Segmentation: When beginning to segment a data set, D, the start

and end points are defined as ks and ke, respectively. These points can also be

145

adjusted if only a subset of the data is to be segmented. Once ks and ke are

set, two initial segments are formed: the smallest possible segment starting at ks

and the rest of the data. The size of the smallest segment in this chapter was

chosen to be 2N . The end point of the first segment is a candidate transition

point, t, about which the approximations described in the preceding section are

attempted. There are 2Nts approximations that are attempted. For each successful

optimization solution, the feasible solutions are saved. The saved data includes the

models A1, A2, the transition point, τ1, the modeling error bound vector, ε, and

the probabilities of success for each model.

Next one data point is transferred from the longer data segment to the shorter

data segment. The new candidate transition point is t+1, and the 2N
ts optimizations

are again performed, seeking any solutions to the problem. The solutions are then

saved at candidate transition point τ2. This process is iterated until all possible

transition points have been evaluated. Then from among all possible transition

points, the point chosen is that which maximizes the probabilities shown in problem

(6.13).

Having chosen the most robust transition point, the resulting segments are

recorded in the data structure. Because the first level of the structure is a model

that describes all data (used to calibrate the ε value), the first partition is recorded

at the second structure level, L = 2. At the next level, the procedure is iterated,

but this time a transition point is found in each of the two segments determined

at L = 2. The models found have tighter ε bounds, and the shift in dynamics is

usually smaller than in the previous level. The data segmentation continues until

no more transition points can be found that satisfy the minimum probability of

error p.

Data Tiering: To fully take advantage of the properties of Gaussian noise,

the data is also tiered by averaging the observed data by orders of magnitude.

Averaging the Gaussian noise reduces its standard deviation by the square root

of the number of averages. Thus for in-sequence localization, averaging the data

reduces the uncertainty caused by additive sensor noise and correspondingly it

increases the certainty of the location estimate.

Data representation on tiered data is performed starting with the largest data

decision. When all possible transition points have been identified for a given tier,

146

the next tier is started. Segmentation is performed on the segments from the

last level of the previous tier’s model structure. The new, finer data decimation

introduces new dynamics on which to segment and a finer data decimation on

which to localize. When all tiers are segmented, the final data structure has L

levels with ML segments per level.

Reference Map Creation Algorithm
Initialization
L = 0
τ0 = 1
τ1 = NML

tierflag = 0
σ2

η = to expected noise level

FOR tier = 1:Max tier
obtain data at the tier resolution

WHILE tierflag == 0
L = L + 1
FOR m = 1:NML

n = 0
k0 = τm−1 + N
ke = τm

τn = k0

FOR t = k0:ke

Attempt each of the convex approximations
IF a solution is found

record t, Am, Am+1 in a structure S
iterate the transition point counter: n = n + 1

END FOR
IF n == 0 && m == M

tierflag = 1
ELSEIF m < M && n > 0

add n to the total number of transitions on the level
from S choose τn s.t. τn maximizes:

P(|em| (τm)γ > εγ) · P(|em+1| (τm)γ > εγ)
record the new segments on L

END IF
END WHILE

END FOR

Table 6.3. Data Structure Extraction Algorithm for Multiple Time Series.

147

6.7 In-Sequence Localization Algorithm

The data structure containing MIMO ARX model representations of segments of

data is used now for in-sequence localization. In practice, in-sequence localization

is the sequential elimination of possible data locations until a single viable location

remains. The model-based representation described in this chapter is specifically

tailored to this application. In particular, at first, a small set of data points

(corresponding to the length of a data model) is collected. This data is stored in

matrices called xtp and X. The data is then sequentially input into each model

in the data structure starting with model 1 on level 1. Only models whose parent

models8 are feasible are evaluated.

Model feasibility is evaluated by bounding the noise observed on each data

point as |ηk| ≤ ηB
9 and attempting to find a set of constants η̄ = [ηk−1, ...ηk−N−1]

such that the resulting modeling error is smaller than the modeling error bound

ε, as described in equation (6.2). Models whose errors fall outside of the modeling

error bound are considered infeasible, and models whose errors fall inside of the

modeling error bound are feasible.

The feasible models are saved in a tree structure such that each possible vehicle

path has its own branch leading to a single leaf at the bottom of the tree, termed

the result tree.. After each consecutive data point is acquired, the result tree is

reevaluated and a new tree is re-created. Thus the result tree is flexible and is

continuously reduced by the elimination of models. The localization algorithm

ends when a single feasible model remains at the bottom level of the result tree.

This in-sequence localization algorithm is described below in table 6.4.

6.8 Numerical Experiments

The MIMO ARX data representation trees that are proposed here can be used to

identify a fragment of data acquired after a complete process has been recorded.

This section demonstrates that the proposed approach can work on a variety of

8Parent refers to the data segment on the previous level from which the current segment is
extracted.

9Here ηB is twice the standard deviation of the expected Gaussian noise. This standard
deviation is typically provided by the sensor manufacturer.

148

diverse data sets. Three different data sets are used in this section such that

possible applications of this work are presented and the efficiency of the developed

algorithms is demonstrated.

The first subsection, section 6.8.1, shows numerical experiments that validate

the main motivation of this thesis, vehicle localization. In these experiments, the

time series of vehicle pitch, representing road grade, and vehicle roll, representing

the cross-sectional profile of the road, are used for localization. The localization

results are displayed and the results format is described to aid the remaining

problem descriptions.

The second subsection, section 6.8.2, presents numerical simulations using wind

speed and solar irradiation data that are collected at the National Renewable En-

ergy Lab in Golden, CO USA. This data is used to facilitate variable generation

forecasting [194], which is the estimation of power generation capabilities of re-

newable energy sources. The goal of this section is not to present a method of

variable generation forecasting, but to propose a method of selection of the domi-

nant renewable generation source such that generation strategies can be optimized

in sequence of greatest potential instead of via complex local models. This section

introduces the problem to be solved and shows that in-sequence localization is a

good candidate for the identification of power generation patterns in data.

The last subsection, section 6.8.3, demonstrates via numerical simulations the

applicability of the in-sequence localization algorithms in the environmental do-

main. In particular, we focus on the problem of stream temperature monitoring.

This is a significant problem in the western parts of the United States, where so-

phisticated water management methods are used to supply water to arid regions.

This section introduces the problem and then develops a reference map and local-

ization experiments on the available time series of stream flow and air temperature.

These experiments demonstrate the feasibility of using in-sequence localization to

estimate an upper bound on the stream temperature.

6.8.1 Vehicle Localization

This section provides the numerical experiments to show that the proposed method

is an effective vehicle localization method and to verify that the experiments are

149

correctly coded with respect to the previously described work in chapters 4 and

5. The vehicle localization results are shown below in Fig. 6.3. To generate this

figure, a simulated vehicle localization experiment was performed at each possible

starting point on the map, and the localization data was corrupted with 12 dB of

White Gaussian noise, which matches the work presented in chapters 3-5.

The results in Fig. 6.3 demonstrate the outcomes of these experiments. The

first plot in the top left of the figure shows a histogram of the wall clock time for

each experiment. In other words, this plot shows the computation time in seconds

of each localization experiment. We note that most localization experiments ended

by finding the correct location within 50 seconds. The middle subplot in the top

row of the figure shows the localization distance in terms of the steps taken during

the localization process. In this case, each step was 0.25 m, resulting in a maximum

localization of 250 m. We note here that the majority of the experiments were

completed in half this distance. The final subplot in the top row of the figure

shows the distance of the final localization point from the nearest transition point.

This subplot shows the significance of transition points in localization. Values

of distance close to 0 m signify important transition points that lead to rapid

localization. Values that are spread further from the origin signify less important

transition points.

The final subplot in the bottom of the figure shows the IMU data time series

on which the localization experiments were performed. The pitch time series is

represented with the dashed line, and the roll time series is represented with the

solid line. The identified transition points are shown as vertical lines that intersect

the time series at a given distance from the first point in the time series. This

distance is expressed in meters. Overall, these experiments show that localization

was rapid, efficient, and accurate. In these experiments, accurate was defined to be

within 100 m of the correct location, but the practical convergence was often much

closer. The comparison of these results to previous single time series localization

results will be further discussed below in section 6.9.1.

150

Time [s]
N

u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

dist=steps/4 [m]

Localization
Distance

Dist. [m]

Distance to
Transition

Start Point [m]

A
n
gl

e
R

at
e pitch

roll

0 5000 10000 15000

0 1000 20000 1000 20000 100 200

-2

0

2

4

0

10

20

30

0

10

20

30

0

20

40

60

Figure 6.3. Example of Localization Using Multiple Time Series of Vehicle Data.

6.8.2 Dominant Source Localization in Power Generation

The inclusion of multiple new and renewable sources introduces instability in the

power grid [194]. This instability is inherent in wind and solar energy because

this to energy being harvested from natural, cyclical phenomena10 that occur in

a somewhat unpredictable fashions. This instability creates a new challenge for

power grid managers who need to dynamically alter the generation mix using

conventional sources that may switch on and off at rates slower than the change

rate in the power derived from the renewable source.

To address this problem, researchers have sought to develop models that predict

(forecast) the power production of each renewable source. Examples of this include

models for solar irradiation and wind power [193, 205]. In each case, the generated

power is predicted from the change in the underlying phenomenon (wind speed,

solar irradiation, or cloud cover) because the power output is proportional to the

environmental constants of instantaneous solar irradiation and wind speed.

For wind speed, two different types of forecasting models are used. The first is

a meteorological model that predicts long-term trends in the data, and the second

is a short-term model (typically linear) that predicts the near term11 switching of

wind power [206, 207]. In solar data numerical models termed Numerical Weather

Prediction are necessary because the key predictor of solar power is cloud cover

10yearly wind patterns, solar patterns, cloud cover
11This is typically in the 1-12 hour time horizon.

151

[208].

The use of wind speed data is particularly complex because it has both deter-

ministic components and random, non-stationary, and non-Gaussian components.

Seeking to mitigate the effects of non-stationary and non-Gaussian components,

researchers have often stationarized the data [207] and used a power transform re-

turning the data to a Gaussian form [209]. The number of models generated in this

manner has been large because each model must be tuned to the local prediction

application [194].

The large number of publications that tune both wind speed and solar irra-

diation prediction models for specific sites suggests that the current approach in

forecasting is too local to create a cohesive theory of electric source integration.

This is generally problematic for two reasons. First, changing climate conditions

may require a re-calibration of models without adequate historical data. Second,

grid operation has been historically performed by skilled operators whose intuition

filled the gaps in generation understanding. Many local and imperfect models add

confusion in the grid operation and therefore introduce further instability.

Exploiting the in-sequence localization approach, one possible alternative is

to rank the energy sources according to their power generation potential on any

given day. This would enable a clearer approach in optimizing the generation source

mixture. The main advantage here is the decoupling of cyclical (seasonal) patterns

in the solar and wind data from the stochastic elements that make forecasting

difficult.

To be clear, this limited example does not aim to show that these algorithms

outperform previous forecasting approaches, but rather shows an application of

in-sequence localization, in which dominant power sources can be determined and

previously used models can be used to forecast the precise power generation po-

tential. For this demonstration, a four year set of solar irradiation and wind speed

data is used. This data set obtained from the National Renewable Energy Lab12 in

Golden, CO USA is run through a ten-day moving average to smooth the stochastic

effects in the data.

Fig. 6.4 demonstrates a series of in-sequence localization experiments that are

performed on the time series of data. The top left hand plot shows that in-sequence

12http : //www.nrel.gov/midc/nwtcm2/

152

Time [s]
N

u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

Num Days

Steps to
Convergence

Dist. [days]

Distance to
Transition

Start Point [day]

W
in

d
S
p
ee

d
[m

/s
]

S
ol

ar
Ir

r.
[k

W
-h

r/
m

2
]

Wind Speed
Solar Irr.

0 200 400 600 800 1000 1200

0 100 2000 5000 50

0

5

10

15

0
5

10
15
20
25

0
5

10
15
20
25

0

5

10

15

20

Figure 6.4. Example of In-Localization in Wind Speed Data and Solar Irradiation

Data.

localization was computationally efficient, completing the task in less than 50 s of

wall clock time for each performed experiment. On average the number of days

of data needed to identify the seasonal location in the data is 250, reflecting the

observed spacing of the transition points in the reference map. The significance of

these points can be seen in the top right hand plot, where localization is seen to

occur within 100 days of a transition point. The bottom plot shows the wind speed

data and the solar irradiation data with the identified transitions throughout.

6.8.3 Localization Using Air Temperature and River Dis-

charge

Another application that can benefit from in-sequence localization is environmental

monitoring. Monitoring stream temperature is necessary because the diversion

of water from regions with a higher level of water supply to arid regions in the

western United States leads to reduction in the water levels of streams and rivers

on the supply side. Streams and rivers with lowered water depths have a decreased

thermal buffering capacity and are therefore at risk for overheating, killing off cold

water fish species that are the cornerstone of their ecosystems [210].

Unfortunately stream temperature is a quantity that is rarely measured because

of a lack of sensors in the field. Instead, water managers have focused on using

153

aerial images and image recognition techniques to estimate the water temperature

[210, 211]. The drawback of this is two-fold. First the resolution in first and second

order streams13 is poor [212], leading to false estimates, and second, aerial images

suffer from occlusions by tree covers similar to blockages of the GPS signal by

trees and tall buildings. To remedy these problems, several authors have proposed

an estimation of the stream temperature using models (often linear) and available

inputs such as stream flow and air temperature, which are commonly available

[197, 196]. Special interest is paid to approaches that are computationally efficient

such that water managers can incorporate them into online planning tools that can

be expeditiously used to make adjustments in the fields, i.e. the release of water

from reservoirs to impact downstream depth [195, 213].

In this thesis, we do not propose a method to estimate the stream temperature.

Instead, we take note of two facts observed in the prior publications. First, the

calculable quantity of interest is not the per minute stream temperature but rather

the upper bound on the estimate of the maximum daily stream temperature. Sec-

ond, the previously published approaches [210, 211, 195, 213] show that at least

some streams have recorded flow, air temperature and water temperature data.

Therefore, if all three time series (flow, air temperature, water temperature) are

available for a given depth in a stream little or no tree cover, then the maximum14

stream temperature can be indexed by the flow and air temperature. To show that

this indexing is possible, we use data from the gauges at the Gordon Gluch Stream

near Boulder, CO. that is part of the Boulder Critical Zone Observatory15. Stream

flow and air temperature data are smoothed using a 24-hour moving average to

reduce the effects of sensor noise in the data. The data are indexed in a reference

map, and the approximate location of the stream in the cycle is identified for a

random start point. The results of the localization experiments are shown in Fig.

6.5.

In the top of Fig. 6.5, the results show that computationally, the in-sequence

localization was efficient, taking less than 50 seconds to complete. This is a highly

desirable outcome for real-time stream temperature monitoring implementation

13First and second order streams are at the top of the stream network, with no tributaries, i.e.
these are streams formed by primary mechanisms of water runoff - rain and snow melt.

14Maximum stream temperature is the result of full solar irradiation in the absence of shade.
15http : //czo.colorado.edu/query/GGUSW0.shtml

154

because numerous models are simultaneously running to monitor many aspects

of the water system. In addition, less than 300 hours (12 days) of stream data is

needed to locate the current stream state. This shows that the approach minimizes

the number of data points stored in between monitoring sessions. As a comparison,

this means that less than 7% of the historical record needs to be sampled in order

to estimate the current flow and temperature state.

The bottom plot of the figure shows the water flow (discharge) and the asso-

ciated air temperature near the Gordon Gulch Stream. The air temperature time

series is represented with dashed lines. The identified transition points are shown

as vertical lines. Note that the transition points clearly capture hydrologically sig-

nificant events such as the “falling limb” of stream flow before a subsequent peak

and a drop in temperature.

Time [s]

N
u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

Num Hrs

Steps to
Convergence

Dist. [hrs]

Distance to
Transition

Start Point [hrs]

D
is

ch
ar

ge
[1

0−
3
m

3
)/

s]
T
em

p
[1

0
C

] discharge
temp

500 1500 2500 3500 4500

0 1000 20000 200 4000 50 100

0

50

100

150

200

0

5

10

15

0

2

4

6

0

5

10

15

Figure 6.5. An Example of In-Localization For Stream Health Monitoring.

6.9 Discussion

6.9.1 Contribution of Additional Time Series

A pivotal question in this chapter is whether the introduction of additional dimen-

sions adds to the in-sequence localization performance. This is particularly impor-

tant because the reference map is enlarged, and correspondingly the computational

cost of localization is increased. In this study, it was found that localization does

155

benefit from the addition of multiple time series to the reference map. This finding

is illustrated below in Fig. 6.6 and Fig. 6.7. The first figure, Fig. 6.6, shows the

segmentation and localization results using the probabilistic method developed in

[24]. These in-sequence localization experiments are performed on the vehicle pitch

data. The second figure, Fig. 6.7, is a repeat of the localization figure shown above

for the vehicle experiments.

time [s]

N
u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

dist = steps x 25m

Localization
Distance

distance [m]

Distance to
Transition

start point on map [m]

A
n
gl

e
R

at
e pitch

0 1250 2500 3750

0 5000 50 1000 2 4

-2

-1

0

1

2

0

20

40

60

0

5

10

0

5

10

15

Figure 6.6. Segmentation and Convergence using Only Vehicle Pitch Data.

Time [s]

N
u
m

b
er

of
E

x
p
er

im
en

ts

Exp Time

dist=steps/4 [m]

Localization
Distance

Dist. [m]

Distance to
Transition

Start Point [m]

A
n
gl

e
R

at
e pitch

roll

0 5000 10000 15000

0 1000 20000 1000 20000 100 200

-2

0

2

4

0

10

20

30

0

10

20

30

0

20

40

60

Figure 6.7. Vehicle Segmentation and Convergence Results Using Both Vehicle Pitch

and Roll Data.

These figures illustrate the advantages and disadvantages of multiple time series

in a reference map. On one hand, the experiment time is clearly longer by at least

156

an order of magnitude. On the other hand, the localization distance is drastically

reduced by a factor of 3, and the significance of individual transition points is

dramatically reduced. Furthermore, new transition points are found in areas of

the time series that were previously constrained to a single segment, such as, in

the interval of distances 0 m to 1250 m. Thus these figures show that localization

is improved and the map reliability is improved by the addition of time series. The

cost of this is the increased computational power required for localization.

It is important to note that these time series clearly contributed information to

the map. The new information introduced in the map is represented by the newly

determined transition point. From a theoretical point of view, there is no a-priori

approach to determining whether a time series will contribute to the in-sequence

localization map. Instead the multi-attribute representation must be determined,

and the contribution of the new time series can then be evaluated. From a practical

point of view, it is often possible to identify new information by considering the

placement of sensors in space, e.g. the vehicle pitch and roll which are inertial

measurements in orthogonal directions. Lastly, note that adding time series with

redundant information yields no benefit and only increases the computational cost

without improving the in-sequence localization results.

6.9.2 Limitations on Adding Time Series

The main limitation of this work with respect to additional time series is the need

for correlation among the time series. In this chapter it is assumed that the time

series are correlated and can be considered “attributes” of an underlying process.

For example, in the case of vehicle localization using inertial measurements, the

time series of pitch measurements and roll measurements are used to demonstrate

the creation of localization maps and the in-sequence localization process. Addi-

tional correlated time series could also help the localization process. In contrast,

adding time series that are not correlated leads to the inability generate a reference

map.

For example in vehicle data, in addition to pitch and roll measurements, a

third axis of the IMU exists. This axis is called yaw and it describes the left

to right motion of the vehicle (eg. turns). One can assume that the time series

157

describing vehicle yaw is uncorrelated or weakly correlated to the road profile

since an arbitrary number of turns can be taken by a driver and these turns do not

have to be related to the road surface geometry. Indeed, additional experiments

performed for this thesis tested the inclusion of the yaw measurements during the

reference map building. The results showed that no transition points could be

found across all three time series: pitch, roll and yaw; and therefore, no reference

map could be built.

This shows that the yaw measurements did not contribute meaningful local-

ization information. On the other hand, these three time series could be used in

a reference map if the relaxed problem in (6.11) is used. This formulation would

allow the identification of the transition points on the pitch, roll, and yaw time

series to be identified independently. However, the solution to relax the initial

problem formulation could lead to the problem that an arbitrary stop by the map-

ping vehicle would lead to a reference map that is not useful to subsequent drivers.

6.9.3 Reference Map Creation Without Time Series Nor-

malization

In the beginning of this chapter when the assumptions in this algorithm were

stated, equation (6.8) was shown with a standardized (identical) noise variance

for each time series. This standardization of the noise variances enabled the iden-

tification of transition points across all time series. If the noise variance is not

standardized, the resulting segmentation will find the transition points associated

with the less noisy time series. For example, using vehicle data, the standard

deviation of the noise in the vehicle pitch time series was set to be an order of

magnitude greater than the standard deviation of the noise in the vehicle roll time

series. The segmentation procedure was executed and a reference map was created.

This reference map is visualized below in Fig. 6.8.

Note that in contrast to the transition point map shown in Fig. 6.7, the map

here shows only two transition points that corresponds to the changes seen in

the vehicle roll time series. Thus, as expected, the time series with the smaller

noise variance was used as the primary reference. This brief experiment shows the

necessity of normalizing all time series such that their noise standard deviation is

158

Data Point Index

Pitch
Roll

0 2000 4000 6000 8000 1000012000 14000
-2

0

2

4

Figure 6.8. Segmentation Results With Different Noise Variances.

equal.

6.10 Conclusions and Future Development

This chapter presented an approach to incorporating multiple (attribute) time se-

ries into a data representation. The approach builds on the chance constrained

framework used in chapter 5 and allows even greater flexibility in defining the

stochastic disturbance. The multiple attribute time series are represented using

multi-input multi-output models. Each model represents an interval of data and

the robustness of the models to process noise is optimized about the transition

points between the models. The resulting solutions to the chance constrained pro-

gram and to the larger in-sequence localization problem are tested in three separate

applications: vehicle localization, renewable energy generation, and environmental

health monitoring. These applications showed the versatility of the approach and

new avenues of research following the completion of this thesis.

159

In-Sequence Localization Algorithm

Initialization
Collect N + 1 data points:
set loop index: k = N + 1
initialize data matrices: xTj

and Xj

Begin Localization Loop
FOR l = 1:L

FOR m = 1:ML − 1
IF the parent segment ofAm is feasible:

Find a set η̄m s.t. |em,k| ≤ εm

Find a set η̄m+1 s.t. |em+1,k| ≤ εm+1

IF η̄m exists
Am is feasible, add to its counter
add the mth segment to the result tree

ELSEIF η̄m does not exist AND η̄m+1 exists
then the data point dk is a transition point
add the mth segment to the result tree in case of error,
add the m + 1st segment to the result tree,

ELSE
remove the mth segment from the result tree

END IF
END IF

END FOR
END FOR
Collect an additional data point
iterate the index: k = k + 1
iterate the data matrices: xTj

and Xj

Following Each Detected Transition Point
FOR l = 1:L

FOR m = 1:ML

IF (τm belongs in the segment &&
segment m is not in the result tree)

add the mth segment to the result tree
END IF

END FOR
END FOR

Table 6.4. In-Sequence Localization Algorithm for Model Structures Using MIMO ARX

Models.

Chapter 7

Concluding Remarks

Concluding this thesis, this chapter provides a concise overview of the material

that has been presented in the form of contributions that have been made to the

scientific literature. We review the contributions that each chapter has made with

respect to previously published work in the literature and to the previous chapters

in the dissertation. Lastly, the final section of this chapter discusses future work

that can grow out of this dissertation and that will enable even more realistic

applications of the problem of in-sequence localization.

7.1 Contributions

7.1.1 The Introduction of In-sequence Localization

The opening (third) chapter of this dissertation begins with the introduction of the

problem of in-sequence localization. This is a new problem that is made possible

by the ability to collect large data sets. In-sequence localization is the location of

the most recently collected data point inside of a previously recorded time series.

To provide a context for the development of the dissertation, this chapter ex-

plores seven previously published data representations that are feasible candidates

for in-sequence localization. These representations are the Piecewise Aggregate

Approximation [28, 29], the Discrete Wavelet Transform Representation [161], the

Symbolic Aggregate Approximation [54], the Discrete Fourier Transform [47], the

Chebyshev Polynomial Representation [162], the Piecewise Linear Representation

161

[56], and the Adaptive Piecewise Constant Approximation [163]. Each method is

described in the chapter and an in-sequence localization algorithm is presented for

fixed data window representations and adaptive data window representations.

We note that a primary factor in the performance of in-sequence localization

algorithms is the sensor noise that is added during data collection. For this reason,

the representations are tested both for fidelity in representation in the presence

of noise and for in-sequence localization performance. Four different data sets are

used for the testing: two vehicle data sets and two synthetic data sets. The chapter

concludes by hinting at two possible approaches to creating dimension reducing

representations for in-sequence localization. The contributions in this chapter are

the introduction of the problem of in-sequence localization, the survey of available

representations, and the detailed testing of the published data representations

with respect to both sensor noise and the in-sequence localization problem. The

results presented in this chapter are under preparation for submission to IEEE

Transactions on Knowledge and Data Engineering.

7.1.2 An ARX Model-based Approach to In-Sequence Lo-

calization

The forth chapter introduces ARX models as data representations that address

some of the weaknesses of previously published data representations in the context

of in-sequence localization. In essence, using the models eliminates the need for

the computation of a model agreement metric and instead compares each model

output to its modeling error bound. Agreement or disagreement with this bound

determines the segment feasibility. Using linear models allows the data acquisition

to begin in the middle of a data segment and the model parameters to be tuned

to counteract the effects of noise. In addition the models are also structured in

a tree-like fashion to reduce the computational burden of the online in-sequence

localization process. Thus this chapter shows that detailed linear models are ad-

vantageous in reducing the complexity of both the mapping and the localization

mechanisms for in-sequence localization.

In this chapter, the testing of the developed algorithms is performed on vehicle

terrain data and is focused on the application of vehicle localization. However, the

162

algorithms can also be used in fields such as data mining where large databases

need to be efficiently represented for subsequence identification. In contrast to

authors who have also used linear models in data management [122, 93, 53], this

chapter uses models of greater dimension that retain more detail from the data.

These models of greater fidelity eliminate the need for a matching metric during

the localization process, reducing the computational complexity and algorithm

design uncertainty. Preliminary work in this chapter appears in the proceedings

of the 2012 IEEE Conference on Decision and Control. The work presented in the

chapter is currently in press in IEEE Transactions on Intelligent Transportation

Systems.

7.1.3 A General Approach to Robust ARX Data Repre-

sentations

A key aspect in data representation and time series analysis is noise. However, noise

is frequently ignored when formulating a data representation. The contribution

of the fifth chapter of this thesis is to present one approach to building robust

data representations that take into account two types of noise. The first type of

noise is a deterministic noise that is observed due to interference between devices

[185] or vibrations in the recording sensors [186], and the second type of noise is

stochastic sensor noise that is observed in any practical data collection device. The

consideration of both types of noise is critical in data representation [187].

The deterministic noise considered in this chapter is sinusoidal noise. Sinusoidal

noise, which occurs in IMU data [186] and is of interest in many other applications

including speech processing [185], is particularly destructive to data representa-

tions because strong cyclic noise components can obscure the data points about

which representations are determined. To address this problem, the internal model

principle is used to remove sinusoids of a known frequency automatically during the

in-sequence localization. Stochastic noise can be equally destructive. In particular

in IMU data, the effects of the noise are accentuated when the data is integrated

to obtain quantities such as position and velocity [146]. In this chapter, the data

representations are tuned to automatically reduce the effects of stochastic noise,

provided that the distribution of the sensor noise is known.

163

Our approach is to choose robust models that mitigate the effects of both

deterministic and stochastic noise such that the overall computational burden of

in-sequence localization is reduced by increasing the speed at which erroneous

paths are eliminated. In addition, in this chapter the localization process itself is

optimized. An in-sequence localization process that terminates itself after a user

defined accuracy is presented. This localization mechanism, which is based on the

robust data representations, demonstrates the effectiveness of the representations

for in-sequence localization. In addition, when viewing the results of localization

in parallel with the representation map, the adaptive approach to in-sequence

localization reveals the strengths and weaknesses of the data sensor, which leads

to the logical method of evaluating the addition of sensors with respect to the

amount of information they contribute to in-sequence localization.

Lastly, this chapter introduces a new domain for the problem of in-sequence

localization: financial data. Financial data provides an interesting domain for in-

sequence localization because it is readily available and finely sampled. In particu-

lar, this chapter shows that when using US inflation data the robust segmentation

points that are determined are points in time that delineate the beginning and end

of major US recessions and depressions. The algorithms are also applied to random

data to demonstrate that any time series can be segmented using our algorithms.

7.1.4 A Robust Multiple-Time Series Representation Method

The final chapter in this dissertation contributes to the body of literature by ex-

panding the developed data representations to multiple dimensions, i.e. including

an arbitrary number of time series in the data representation and in-sequence

localization algorithms. Multi-Input Multi-Output ARX models are used to si-

multaneously describe each collected time series, where each series represents data

from a new sensor. Each time series introduces a new dimension in the repre-

sentation, and thus the multiple time series representation in this chapter is a

multidimensional time series representation.

In general, the formulation of the problem in multiple dimensions results in

a highly non-convex problem. While solvable, the solutions to the non-convex

problem require considerable computational time and do not accommodate the

164

iterative search for robust points in the time series. This chapter presents a convex

approximation to the problem that can be rapidly solved for an increasing time

series size.

In addition to introducing this problem to simultaneous representation of mul-

tiple time series, this chapter also extends the use of the MIMO ARX data rep-

resentation into the fields of environmental science and energy production. In the

first case, this chapter shows that the algorithms presented in this dissertation can

be used to reference previously stored stream flow data and air temperature data

(over the same stream) with the goal of inferring the stream water temperature,

which is a typically unknown quantity. In the second case, we show an indexing of

solar irradiation data with wind speed data. The indexing of this historical data

can be used in variable [renewable energy] generation forecasting to predict the

switching points in time when solar energy is assigned a higher load percentage vs.

when wind energy is assigned a higher load percentage. These switching points

are critical in a dynamical generation system because other slower generators may

need to be ramped up or down to accommodate the variability in the renewable

resources.

7.2 Future Work

While the research in the final chapter of this dissertation ends one stage in the

development of the application of in-sequence localization, there are many further

avenues of research that one could take in developing this work. In particular,

the work presented in the dissertation follows the development of a data repre-

sentation on the map-making side of localization. Yet the optimization of the

online localization aspect of the in-sequence localization is also a promising area

of research.

7.2.1 Robust Model Trees

The development of the research presented in this dissertation used a bisection

tree, where each consecutive level bisected the data intervals from the previous

level. A natural end to the segmentation process was found by implementing a

165

probabilistic minimum of success about the model transition point in the presence

of sensor noise. However, no evidence exists that this bisection tree is the best

method of representation storage. In fact, there are numerous types of trees that

have been developed for database applications that may improve the robustness of

the developed algorithms [214]. Studying the available methods with respect to in-

sequence localization may yield a more suitable model structure for localization or

may suggest a new model structure to improve the current in-sequence localization

approach.

7.2.2 Simultaneous Optimization Across All Models on a

Tree Level

In addition to trees that have been specifically developed for noise robustness,

a larger optimization problem can be pursued that simultaneously optimizes all

models on a tree level. The optimization would be such that the models have

a maximum probability of success at their respective transitions and at most a

minimum probability of success at other transition points. This problem is highly

non-convex and the number of terms in the objective grows rapidly with increasing

model numbers, but an appropriate approximation would be of great interest to

the data mining community because the identified models would automatically

determine the most mutually unique set of models.

7.2.3 Robust Path Selection Methods

On the localization side of the problem, the in-sequence localization speed can

be dramatically increased with the advent of a path selection tool. In this dis-

sertation, localization was performed until a single viable path was left surviving.

However, there are clearly more metrics about particular applications (ex. sen-

sor placement, sequential nature of data, etc.) and about the model segments

themselves that can be utilized to estimate the best possible path (ex. length of

segment, uniqueness of models, etc.). Finding an appropriate estimation method

using additional known attributes of the application would make this model-based

in-sequence localization approach competitive with state-of-the-art stand-alone lo-

calization approaches. Thus extending the work in this direction would yield the

166

most immediate practical results for implementation.

7.2.4 New Application Areas

Lastly, the development of this thesis is centered on finding an approach to localize

a passenger vehicle using terrain data recorded by the vehicle. However, as shown

in Chapters 5 and 6, the algorithms developed in this dissertation can be readily

exploited in fields such as financial data, prediction of energy production, and

inference of environmental data. Even this subset of applications is limited when

considering the mountains of data that are currently collected from all aspects of

life. For this reason, there are innumerable applications to which this research

can be applied. The targeted implementation of in-sequence localization in any

particular field is a promising area of research that can open new doors of discovery.

Appendix

The One Dimensional Chance

Constrained Formulation

The material presented in this appendix was published in the 2014 American Con-

trol Conference [24]. This material is integral to the development in chapter 5 and

for this reason it has been attached here for completeness.

1 Developing the Chance Constrained Formula-

tion

Assuming additive white Gaussian noise, ηj ∼ N(0, σ2
η), this section derives the

probabilistic constraints used in the dynamical model extraction. First, we note

that the addition of Gaussian noise results in Gaussian modeling errors, em,k ∼

N(µm,k, σ
2
m). The mean µm,k and variance σ2

m of these errors is quantified in

equations (.1) and (.2).

µem,k
=E[(dk + ηk) − cm,1(dk−1 + ηk−1) + ...

+ cm,N (dk−N + ηk−N] (.1)

=dk − cm,1dk−1 + ... + cm,Ndk−N

σ2

em
= var[(dk + ηk) − cm,1(dk−1 + ηk−1) + ... (.2)

+ cm,N (dk−N + ηk−N] = ...

168

= σ2
η + c2

m,1σ
2
η + ... + c2

m,Nσ2
η

= σ2

η(1 +

N
∑

n=1

c2

m,n).

Given the mean and variance of the modeling errors, and the probability distri-

bution overlap shown in Fig. 5.3, the probabilities of error are shown in equations

(.3) and (.4) where the first equation in (.4) is the probability of the transition

point error exceeding ε to the positive side, and the second equation represents the

probability of exceeding ε to the negative side.

Pem+1
= P(−ε ≤ em+1,τm ≤ ε). (.3)

Pem = P(em,τm > ε), (.4)

Pem = P(em,τm < −ε),

Representing the probability of the new segment error in terms of the standard

normal distribution results in,

Φem+1
(
ε − µem+1,τm

σem+1

) − Φem+1
(
−ε− µem+1,τm

σem+1

). (.5)

Correspondingly, the probability of exceeding the ε modeling error bound to the

positive side can be expressed as,

1−Φem(
ε − µem,τm

σem

), (.6)

and to the negative side as,

Φem(
−ε − µem,τm

σem

). (.7)

Finally, these probabilities need to be expressed as constraints in optimization

for the dynamical model extraction procedure in this paper. Using the result by

169

Kataoka [192] we maximize the probability that |em+1,k| ≤ ε.

σm+1Φ
−1

em+1
(
ρ

2
+

1

2
) + µem+1,k

≤ ε. (.8)

Similarly, we express the transition point modeling error probabilities for the end-

ing segment as,

ε ≤ σemΦ−1

em
(1 − ρ) + µem,k

,

−ε ≥ σemΦ−1

em
(ρ) + µem,k

. (.9)

To maintain convexity in the problem, the variable p must be greater than 1/2.

Working with the vehicle data, it was determined that a value of .99 or a 1% failure

rate provided sufficient variety in the transition points. For this reason all figures

shown represent results for data structures extracted to a ρ = .99 probability of

correct detection.

Bibliography

[1] Dear, P. (1995) Discipline and Experience: The Mathematical Way in the
Scientific Revolution, University of Chicago Press.

[2] Smolan, R. and J. Erwitt (2012) The Human Face of Big Data, Against
All Odds Productions.

[3] Ahalt, S., D. Bedard, T. Carsey, J. Crabtree, K. Green, C. Jef-

fries, D. Knowles, H. Kum, H. Lander, N. Nassar, A. Rajasekar,
and S. Thakur (2012) Establishing a National Consortium for Data Sci-
ence, Tech. rep., University of North Carolina at Chapel Hill, Chapel Hill,
NC, USA.

[4] Anguita, D., A. Ghio, L. Oneto, L. Parra, F. Xavier, R. Ortiz,
and J. Luis (2012) “Human activity recognition on smartphones for mo-
bile context awareness,” in Proceedings of the Neural Information Processing
Conference, Lake Tahoe, NV, pp. 1–9.

[5] Chen, B. and H. Cheng (2010) “A Review of the Applications of Agent
Technology in Traffic and Transportation Systems,” Intelligent Transporta-
tion Systems, IEEE Transactions on, 11(2), pp. 485–497.

[6] Skog, I. and P. Handel (2009) “In-Car Positioning and Navigation Tech-
nologies - A Survey,” IEEE Transactions on Intelligent Transportation Sys-
tems, 10(1), pp. 4–21.

[7] Farrell, J. and M. Barth (1999) The Global Positioning System & In-
ertial Navigation, McGraw-Hill Companies.

[8] Drawil, N., H. Amar, and O. Basir (2013) “GPS Localization Accuracy
Classification: A Context-Based Approach,” IEEE Transactions on Intelli-
gent Transportation Systems, 14(1), pp. 262–273.

171

[9] Ochieng, W. Y., K. Sauer, D. Walsh, G. Brodin, S. Griffin,
and M. Denney (2003) “GPS Integrity and Potential Impact on Aviation
Safety,” The Journal of Navigation, 56, pp. 51–65.

[10] Dean, A. (2008) Terrain-based Road Vehicle Localization using Attitude
Measurements, Ph.D. thesis, Department of Mechanical and Nuclear Engi-
neering, Pennsylvania State University.

[11] Gustafsson, F., F. Gunnarsson, N. Bergman, U. Forssell, J. Jans-

son, R. Karlsson, and P. Nordlund (2002) “Particle Filters for Posi-
tioning, Navigation, and Tracking,” IEEE Transactions on Signal Processing,
50(2), pp. 425–437.

[12] Vemulapalli, P. K., V. Monga, and S. N. Brennan (2013) “Robust
Extrema Features for Time-Series Data Analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(6), pp. 1464–1479.

[13] Keogh, E. and S. Kasetty (2003) “On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration,” Data Mining
and Knowledge Discovery, 7(4), pp. 349–371.

[14] Ding, H., G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh

(2008) “Querying and mining of time series data: experimental comparison
of representations and distance measures,” Proceedings of the VLDB Endow-
ment, 1(2), pp. 1542–1552.

[15] Fu, T. (2011) “A review on time series data mining,” Engineering Applica-
tions of Artificial Intelligence, 24(1), pp. 164–181.

[16] Stoyanov, T., M. Magnusson, and A. J. Lilienthal (2013) “Compar-
ative Evaluation of the Consistency of Three-dimensional Spatial Represen-
tations used in Autonomous Robot Navigation,” Journal of Field Robotics,
30(2), pp. 216–236.

[17] Mullane, J., E. Jose, M. D. Adams, and W. S. Wijesoma (2007) “In-
cluding probabilistic target detection attributes into map representations,”
Robotics and Autonomous Systems, 55(1), pp. 72 – 85.

[18] Guerrero, J. L., J. Garcia, and J. M. Molina (2011) “Piecewise Linear
Representation Segmentation in Noisy Domains with a Large Number of
Measurements: The Air Traffic Control Domain,” International Journal on
Artificial Intelligence Tools, 20(02), pp. 367–399.

[19] Skauli, T. (2011) “Sensor noise informed representation of hyperspectral
data, with benefits for image storage and processing,” Opticas Express,
19(14), pp. 13031–13046.

172

[20] Laftchiev, E., C. Lagoa, and S. Brennan (2012) “Terrain-Based Ve-
hicle Localization from Real-Time Data Using Dynamical Models,” in IEEE
Conference on Decision and Control, Maui, HI, pp. 3366–3371.

[21] ——— (2012) “Terrain-Based Vehicle Localization from Real-Time Data Us-
ing Dynamical Models,” in The Pennsylvania State University College of
Engineering Research Symposium, State College, PA, pp. 1–7.

[22] ——— (2014) “Vehicle Localization using in-Vehicle Pitch Data and Dy-
namical Models,” IEEE Transactions on Intelligent Transportation Systems,
PP(99), pp. 1–15, in-Press.

[23] ——— (2013) “Robust Map Design by Outlier Point Selection for Terrain-
Based Vehicle Localization,” in IEEE Conference on Decision and Control,
Florence, Italy, pp. 2822–2827.

[24] ——— (2014) “Robust Data Map Design Using Chance Constrained Opti-
mization,” in American Control Conference, Portland, OR, pp. 4573–4580.

[25] ——— (2013) “Robust Map Design for Terrain-Based Vehicle Localization,”
in The Pennsylvania State University College of Engineering Research Sym-
posium, State College, PA, pp. 1–6.

[26] ——— (2014) “Multi-Attribute Data Dynamics Discontinuity Identifica-
tion: An Over-Bounding approach using One-Dimensional Probabilistic Con-
straints,” in The Pennsylvania State University College of Engineering Re-
search Symposium, State College, PA, pp. 1–7.

[27] Shatkay, H. and S. Zdonik (1996) “Approximate queries and representa-
tions for large data sequences,” in International Conference on Data Engi-
neering, New Orleans, LA, pp. 536–545.

[28] Keogh, E., K. Chakrabarti, M. Pazzani, and S. Mehrotra (2000)
“Dimensionality Reduction for Fast Similarity Search in Large Time Series
Databases,” Journal of Knowledge and Information Systems, 3, pp. 263–286.

[29] Yi, B. and C. Faloutsos (2000) “Fast Time Sequence Indexing for Ar-
bitrary Lp Norms,” in International Conference on Very Large Data Bases,
Cairo, Egypt, pp. 385–394.

[30] Chakrabarti, K., E. Keogh, S. Mehrotra, and M. Pazzani (2002)
“Locally adaptive dimensionality reduction for indexing large time series
databases,” ACM Transactions on Database Systems, 27(2), pp. 188–228.

[31] Keog, E. (1997) “Fast similarity search in the presence of longitudinal
scaling in time series databases,” in International Conference on Tools with
Artificial Intelligence, Washington DC, USA, pp. 578–584.

173

[32] Smyth, P. and E. Keogh (1997) “Clustering and Mode Classification of
Engineering Time Series Data,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 24–30.

[33] Oliver, J. and C. Forbes (1997) Bayesian Approaches to Segmenting A
Simple Time Series, Monash Econometrics and Business Statistics Working
Papers 14, Monash University, Department of Econometrics and Business
Statistics.

[34] Guralnik, V. and J. Srivastava (1999) “Event detection from time series
data,” in ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Diego, California, USA, pp. 33–42.

[35] Srivastava, A. and A. Wieigend (1996) “Improved time series segmen-
tation using gated experts with simulated annealing,” in IEEE International
Conference on Neural Networks, vol. 4, Washington, DC, pp. 1883–1888.

[36] Duncan, S. and G. Bryant (1996) “A new algorithm for segmenting data
from time series,” in Proceedings of the IEEE Conference on Decision and
Control, vol. 3, Kobe, Japan, pp. 3123–3128.

[37] Papadopoulos, V. (1992) Detection and Estimation of Abrupt Changes
in Singals and Systems: A Dynamic Programming Approach, Ph.D. thesis,
University of London.

[38] Gustafsson, F. (1992) Estimation of Discrete Parameters in Linear Sys-
tems, Ph.D. thesis, Linkoping Studies in Science and Technology.

[39] Chu, C. (1995) “Time series segmentation: A sliding window approach,”
Information Sciences, 85(13), pp. 147–173.

[40] Fancourt, C. and J. Principe (1996) “A Neighborhood Map of Com-
peting One Step Predictors for Piecewise Segmentation and Identification
of Time Series,” in Proceedings of the International Conference on Neural
Networks, vol. 4, Washington, DC, pp. 1906–1911.

[41] Keogh, E., S. Chu, D. Hart, and M. Pazzani (2001) “An online algo-
rithm for segmenting time series,” in Proceedings IEEE International Con-
ference on Data Mining, San Jose, CA, pp. 289–296.

[42] Pavlidis, T. and S. Horowitz (1974) “Segmentation of Plane Curves,”
IEEE Transactions on Computers, C-23(8), pp. 860–870.

[43] Jia, P., H. He, and T. Sun (2008) “Error Restricted Piecewise Linear
Representation of Time Series based on Special Points,” in World Congress
on Intelligent Control and Automation, Chongqing, China, pp. 2059–2064.

174

[44] Pratt, K. B. and E. Fink (2002) “Search for Patterns in Compressed Time
Series,” International Journal of Image and Graphics, 02(01), pp. 89–106.

[45] Fink, E., K. Pratt, and H. Gandhi (2003) “Indexing of time series by
major minima and maxima,” in Conference on Systems, Man and Cybernet-
ics, vol. 3, Washington, DC, pp. 2332–2335.

[46] Perng, C.-S., H. Wang, S. Zhang, and D. Parker (2000) “Landmarks:
a new model for similarity-based pattern querying in time series databases,”
in International Conference on Data Engineering, San Diego, CA, pp. 33–42.

[47] Agrawal, R., C. Faloutsos, and A. Swami (1993) “Efficient Similarity
Search In Sequence Databases,” in Proceedings of the International Confer-
ence on Foundations of Data Organization and Algorithms, Chicago, IL, pp.
69–84.

[48] Faloutsos, C., M. Ranganathan, and Y. Manolopoulos (1993) Fast
subsequence matching in time-series databases, Tech. rep., University of
Maryland at College Park, College Park, MD, USA.

[49] Moon, Y., K. Whang, and W. Loh (2001) “Duality-Based Subsequence
Matching in Time-Series Databases,” in Proceedings of the International
Conference on Data Engineering, Heidelberg, Germany, pp. 263–272.

[50] Kim, S. and B. Jeong (2007) “Performance bottleneck of subsequence
matching in time-series databases: Observation, solution, and performance
evaluation,” Information Sciences, 177(22), pp. 4841–4858.

[51] Kim, S., S. Park, and W. Chu (2001) “An index-based approach for sim-
ilarity search supporting time warping in large sequence databases,” in Pro-
ceedings of the International Conference on Data Engineering, Heidelberg,
Germany, pp. 607–614.

[52] Lim, S., H. Park, and S. Kim (2007) “Using multiple indexes for effi-
cient subsequence matching in time-series databases,” Information Sciences,
177(24), pp. 5691–5706.

[53] Morinaka, Y., T. Amagasa, and S. Uemura (2001) “The L-index:
An indexing structure for efficient subsequence matching in time sequence
databases,” in Proceedings of the Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, Hong Kong, China, pp. 51–60.

[54] Keogh, E., J. Lin, and A. Fu (2005) “HOT SAX: efficiently finding the
most unusual time series subsequence,” in IEEE International Conference
on Data Mining, Houston, TX, pp. 226–233.

175

[55] Wu, H., B. Salzberg, and D. Zhang (2004) “Online event-driven sub-
sequence matching over financial data streams,” in Proceedings of the ACM
SIGMOD international conference on Management of data, SIGMOD, Paris,
France, pp. 23–34.

[56] Wu, H., B. Salzberg, G. Sharp, S. Jiang, H. Shirato, and D. Kaeli

(2005) “Subsequence matching on structured time series data,” in Proceed-
ings of the ACM SIGMOD international conference on Management of data,
SIGMOD, Baltimore, Maryland, pp. 682–693.

[57] Gusfield, D. (1997) Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology, Cambridge University Press.

[58] Park, S., D. Lee, and W. Chu (1999) “Fast Retrieval of Similar Subse-
quences in Long Sequence Databases,” in Proceedings of the Workshop on
Knowledge and Data Engineering Exchange, KDEX, Chicago, IL, pp. 60–68.

[59] Kim, S., J. Yoon, S. Park, and T. Kim (2002) “Shape-based retrieval of
similar subsequences in time-series databases,” in Proceedings of the ACM
symposium on Applied computing, SAC, Madrid, Spain, pp. 438–445.

[60] Fu, T., F. Chung, V. Ng, and R. Luk (2001) “Pattern Discovery from
Stock Time Series Using Self-Organizing Maps,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Disvoery and Data Mining
Workshop on Temporal Data Mining, San Francisco, CA, pp. 27–37.

[61] Kohonen, T. (2001) Self-Organizing Maps, Physics and astronomy online
library, Springer Berlin Heidelberg.

[62] ——— (1982) “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, 43(1), pp. 59–69.

[63] Ripley, B. (2007) Pattern Recognition and Neural Networks, Cambridge
University Press.

[64] Euliano, N. and J. Principe (1996) “Spatio-temporal self-organizing fea-
ture maps,” in IEEE International Conference on Neural Networks, vol. 4,
Washington,DC, pp. 1900–1905.

[65] Mörchen, F. and A. Ultsch (2005) “Optimizing time series discretization
for knowledge discovery,” in Proceedings of the ACM SIGKDD international
conference on Knowledge discovery in data mining, KDD, Chicago, IL, pp.
660–665.

[66] Ultsch, A. (1999) Data Mining and Knowledge Discovery with Emergent
Self-Organizing Feature Maps for Multivariate Time Series, Elsevier.

176

[67] Wang, X., K. Smith, and R. Hyndman (2005) “Dimension Reduction for
Clustering Time Series Using Global Characteristics,” in Computational Sci-
ence ICCS 2005, vol. 3516 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 792–795.

[68] Kuo, S., S. Li, Y. Cheng, and M. Ho (2004) “Knowledge discovery with
SOM networks in financial investment strategy,” in International Conference
on Hybrid Intelligent Systems, pp. 98–103.

[69] Guo, X., X. Liang, and N. Li (2007) “Automatically Recognizing stock
patterns using RPCL neural Networks,” in Proceedings of the International
Conference on Intelligent Systems and Knowledge Engineering, pp. 997–
1004.

[70] Kalpakis, K., D. Gada, and V. Puttagunta (2001) “Distance mea-
sures for effective clustering of ARIMA time-series,” in Proceedings IEEE
International Conference on Data Mining, San Jose, CA, pp. 273–280.

[71] Bagnall, A. and G. Janacek (2005) “Clustering Time Series with
Clipped Data,” Machine Learning, 58(2–3), pp. 151–178.

[72] Xiong, Y. and D. Yeung (2004) “Time series clustering with {ARMA}
mixtures,” Pattern Recognition, 37(8), pp. 1675 – 1689.

[73] Bettini, C., X. Wang, S. Jajodia, and J. Lin (1998) “Discovering fre-
quent event patterns with multiple granularities in time sequences,” IEEE
Transactions on Knowledge and Data Engineering, 10(2), pp. 222–237.

[74] Li, Y., X. Wang, and S. Jajodia (2001) “Discovering Temporal Pat-
terns in Multiple Granularities,” in Proceedings of the First International
Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining-Revised
Papers, TSDM ’00, pp. 5–19.

[75] Geurts, P. (2001) “Pattern Extraction for Time Series Classification,” in
Principles of Data Mining and Knowledge Discovery, vol. 2168 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 115–127.

[76] Zhang, H., T. Ho, and M. Lin (2004) “A Non-parametric Wavelet Fea-
ture Extractor for Time Series Classification,” in Advances in Knowledge
Discovery and Data Mining, vol. 3056 of Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, pp. 595–603.

[77] Povinelli, R., M. Johnson, A. Lindgren, and J. Ye (2004) “Time
series classification using Gaussian mixture models of reconstructed phase
spaces,” IEEE Transactions on Knowledge and Data Engineering, 16(6),
pp. 779–783.

177

[78] Rodŕıguez, J. J. and C. J. Alonso (2004) “Interval and dynamic time
warping-based decision trees,” in Proceedings of the ACM symposium on
Applied computing, SAC, Nicosia, Cyprus, pp. 548–552.

[79] Xi, X., E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana

(2006) “Fast time series classification using numerosity reduction,” in Pro-
ceedings of the 23rd international conference on Machine learning, ICML,
Pittsburgh, Pennsylvania, pp. 1033–1040.

[80] Wei, L. and E. Keogh (2006) “Semi-supervised time series classification,”
in Proceedings of the ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD, Philadelphia, PA, USA, pp. 748–753.

[81] Povinelli, R. and X. Feng (1999) “Data Mining Of Multiple Nonstation-
ary Time Series,” in Proceedings of Artifical Neural Netowrks in Engineering,
pp. 511–516.

[82] Kahveci, T., A. Singh, and A. Gurel (2002) “Similarity searching
for multi-attribute sequences,” in Conference on Scientific and Statistical
Database Management, Edinburgh, Scotland, pp. 175–184.

[83] Lee, A. J., H.-W. Wu, T.-Y. Lee, Y.-H. Liu, and K.-T. Chen (2009)
“Mining closed patterns in multi-sequence time-series databases,” Data &
Knowledge Engineering, 68(10), pp. 1071–1090.

[84] Minnen, D., C. Isbell, I. Essa, and T. Starner (2007) “Detecting
Subdimensional Motifs: An Efficient Algorithm for Generalized Multivari-
ate Pattern Discovery,” in IEEE International Conference on Data Mining,
Omaha, Nebraska, pp. 601–606.

[85] Minnen, D., C. L. Isbell, I. Essa, and T. Starner (2007) “Discovering
Multivariate Motifs Using Subsequence Density Estimation and Greedy Mix-
ture Learning,” in Conference on Artificial Intelligence, Vancouver, British
Columbia, Canada, pp. 615–620.

[86] Plant, C., A. Wohlschlager, and A. Zherdin (2009) “Interaction-
Based Clustering of Multivariate Time Series,” in IEEE International Con-
ference on Data Mining, Miami, Florida, pp. 914–919.

[87] Tatavarty, G., R. Bhatnagar, and B. Young (2007) “Discovery of
Temporal Dependencies between Frequent Patterns in Multivariate Time Se-
ries,” in IEEE Symposium on Computational Intelligence and Data Mining,
Honolulu, Hawaii, pp. 688–696.

178

[88] Wang, X., L. Wang, and A. Wirth (2008) “Pattern discovery in motion
time series via structure-based spectral clustering,” in IEEE Conference on
Computer Vision and Pattern Recognition, Anchorage, AK, pp. 1–8.

[89] Shibuya, T., T. Harada, and Y. Kuniyoshi (2009) “Causality quantifi-
cation and its applications: structuring and modeling of multivariate time
series,” in Proceedings of the ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD, Paris, France, pp. 787–796.

[90] Matsubara, Y., Y. Sakurai, and M. Yoshikawa (2009) “Scalable Algo-
rithms for Distribution Search,” in International Conference on Data Mining,
Miami, FL, pp. 347–356.

[91] Moreira, J., C. Ribeiro, J.-M. Saglio, and M. Scholl (2008) “A
model of approximations for representing time-varying multidimensional
data,” in International Conference on Data Engineering Workshop, Cancun,
Mexico, pp. 113–120.

[92] Gonzalez, H., J. Han, Y. Ouyang, and S. Seith (2011) “Multidimen-
sional Data Mining of Traffic Anomalies on Large-Scale Road Networks,” in
Transportation Research Record, pp. 75–84.

[93] Randen, T. and J. Husøy (1999) “Filtering for texture classification: a
comparative study,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(4), pp. 291–310.

[94] Zimmermann, K., J. Matas, and T. Svoboda (2009) “Tracking by an
Optimal Sequence of Linear Predictors,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(4), pp. 677–692.

[95] Al-Takrouri, S. and A. V. Savkin (2010) “A model validation approach
to texture recognition and inpainting,” Pattern Recognition, 43(6), pp. 2054–
2067.

[96] Ashraf, A. B., S. Lucey, and T. Chen (2010) “Reinterpreting the Ap-
plication of Gabor Filters as a Manipulation of the Margin in Linear Support
Vector Machines,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, 32(7), pp. 1335–1341.

[97] Turaga, P., R. Chellappa, and A. Veeraraghavan (2010) “Advances
in Video-Based Human Activity Analysis: Challenges and Approaches,” in
Advances in Computers, vol. 80 of Advances in Computers, Elsevier, pp.
237–290.

179

[98] Kandaswamy, U., S. Schuckers, and D. Adjeroh (2011) “Comparison
of Texture Analysis Schemes Under Nonideal Conditions,” IEEE Transac-
tions on Signal Processing, 20(8), pp. 2260–2275.

[99] Sekita, I., T. Kurita, and N. Otsu (1992) “Complex autoregressive
model for shape recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(4), pp. 489–496.

[100] Potocnik, P., E. Govekar, and I. Grabec (2006) “Application of psy-
choacoustic filtering for machine fault detection,” International Journal of
Materials and Product Technology, 27(3–4), pp. 229–237.

[101] Graciarena, M. and H. Franco (2003) “Unsupervised noise model esti-
mation for model-based robust speech recognition,” in IEEE Workshop on
Automatic Speech Recognition and Understanding, St Thomas, VI, pp. 351–
356.

[102] Shenoy, A., Y. Wu, and Y. Wang (2005) “Singing voice detection for
karaoke application,” in Visual Communications and Image Processing, vol.
5960, 1-4, Beijing, China, pp. 752–762.

[103] Johnsen, M. and A. Canterla (2012) “Joint feature and model train-
ing for minimum detection errors applied to speech subword detection,” in
IEEE International Workshop on Machine Learning for Signal Processing,
Santander, Spain, pp. 1–6.

[104] Jain, A., S. Prabhakar, L. Hong, and S. Pankanti (2000) “Filterbank-
based fingerprint matching,” IEEE Transactions on Image Processing, 9(5),
pp. 846–859.

[105] Bissacco, A., A. Chiuso, Y. Ma, and S. Soatto (2001) “Recognition of
human gaits,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2, Kauai, HI, pp. 52–57.

[106] Veeraraghavan, A., A. Roy-Chowdhury, and R. Chellappa (2005)
“Matching shape sequences in video with applications in human movement
analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(12), pp. 1896–1909.

[107] Mazzaro, C., M. Sznaier, O. Camps, S. Soatto, and A. Bissacco

(2002) “A model (In)validation approach to gait recognition,” in Interna-
tional Symposium on 3D Data Processing Visualization and Transmission,
Padua, Italy, pp. 700 – 703.

180

[108] Saisan, P., G. Doretto, Y. Wu, and S. Soatto (2001) “Dynamic tex-
ture recognition,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Kauai, HI, pp. 58–63.

[109] Bissacco, A., A. Chiuso, and S. Soatto (2007) “Classification and
Recognition of Dynamical Models: The Role of Phase, Independent Com-
ponents, Kernels and Optimal Transport,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(11), pp. 1958–1972.

[110] Ravichandran, A., R. Chaudhry, and R. Vidal (2013) “Categorizing
Dynamic Textures Using a Bag of Dynamical Systems,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(2), pp. 342–353.

[111] Li, R., T.-P. Tian, and S. Sclaroff (2012) “Divide, Conquer and Coor-
dinate: Globally Coordinated Switching Linear Dynamical System,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(4), pp. 654–
669.

[112] Martin, R. (2000) “A metric for ARMA processes,” IEEE Transactions on
Signal Processing, 48(4), pp. 1164–1170.

[113] Borenstein, J., H. R. Everett, L. Feng, and D. Wehe (1997) “Mobile
Robot Positioning: Sensors and Techniques,” Journal of Robotic Systems,
14(4), pp. 231–249.

[114] Abbott, H. and D. Powell (1999) “Land-vehicle navigation using GPS,”
Proceedings of the IEEE, 87(1), pp. 145–162.

[115] Borenstein, J. and F. Liqiang (1996) “Measurement and Correction
of Systematic Odometry Errors in Mobile Robots,” IEEE Transactions on
Robotics and Automation, 12(6), pp. 869–880.

[116] Doh, N., H. Choset, and W. Chung (2006) “Relative Localization using
Path Odometry Information,” Autonomous Robots, 21(2), pp. 143–154.

[117] Carlson, C., J. Gerdes, and J. Powell (2002) “Practical Position and
Yaw Rate Estimation with GPS and Differential Wheelspeeds,” in Proceed-
ings of the International Symposium on AVEC, Hiroshima, Japan, pp. 1–8.

[118] ——— (2004) “Error Sources When Land Vehicle Dead Reckoning with Dif-
ferential Wheelspeeds,” Journal of The Institute of Navigation, 51(1), pp.
13–28.

[119] Martini, R. (2006) GPS/INS Sensing Coordination for Vehicle State Iden-
tification and Road Grade Positioning, Master’s thesis, Department of Me-
chanical and Nuclear Engineering, Pennsylvania State University.

181

[120] Gupta, V. (2009) Vehicle Localization Using Low-accuracy GPS, IMU and
Map-aided Vision, Ph.D. thesis, Department of Mechanical and Nuclear En-
gineering, Pennsylvania State University.

[121] Borenstein, J. and L. Feng (1996) “Gyrodometry: A new method for
combining data from gyros and odometry in mobile robots,” in IEEE Inter-
national Conference on Robotics and Automation, vol. 1, Minneapolis, MN,
pp. 423–428.

[122] Bernstein, D. and A. Kornhauser (1996) An Introduction to Map
Matching for Personal Navigation Assistants, Tech. rep., Transportation Re-
search Board.

[123] Quddus, M. A., W. Y. Ochieng, and R. B. Noland (2006) “Integrity
of map-matching algorithms,” Transportation Research Part C: Emerging
Technologies, 14(4), pp. 283 – 302.

[124] ——— (2007) “Current map-matching algorithms for transport applications:
State-of-the art and future research directions,” Transportation Research
Part C: Emerging Technologies, 15(5), pp. 312–328.

[125] Smith, R., M. Self, and P. Cheeseman (1988) “A stochastic map for
uncertain spatial relationships,” in The fourth international symposium on
Robotics Research, MIT Press, Cambridge, MA, pp. 467–474.

[126] Quddus, M., W. Ochieng, L. Zhao, and R. Noland (2003) “A gen-
eral map matching algorithm for transport telematics applications,” GPS
Solutions, 7(3), pp. 157–167.

[127] Dean, A., R. Martini, and S. Brennan (2008) “Terrain-Based Road
Vehicle Localization Using Particle Filters,” in Proceedings of the American
Control Conference, Seattle, WA, pp. 236–241.

[128] Leonard, J. and H. Durrant-Whyte (1991) “Mobile Robot Localiza-
tion by Tracking Geometric Beacons,” IEEE Transactions on Robotics and
Automation, 7(3), pp. 376–382.

[129] Bosse, M., D. Koller, Z. Ghahramani, H. Durrant-Whyte, and
A. Ng (2009) “Keypoint design and evaluation for place recognition in 2D li-
dar maps,” Journal of Robotics and Autonomous Systems, 57(12), pp. 1211–
1224.

[130] Mikolajczyk, K. and H. Uemura (2008) “Action recognition with
motion-appearance vocabulary forest,” in IEEE Conference on Computer
Vision and Pattern Recognition, Anchorage, AK, pp. 1–8.

182

[131] Thrun, S. and R. Zlot (2004) “Reduced sift features for image retrieval
and indoor localization,” in Australian Conference on Robotics and Automa-
tion, Canberra, Australia, pp. 1–8.

[132] Smith, R. and P. Cheeseman (1986) “On the representation and esti-
mation of spatial uncertainty,” International Journal of Robotics Research,
5(4), pp. 56–68.

[133] Smith, R., M. Self, and P. Cheeseman (1990) Estimating uncertain
spatial relationships in robotics, chap. Autonomous Robot Vehicles, Springer.

[134] Moutarlier, P. and R. Chatila (1990) “An experimental system for in-
cremental environment modeling by an autonomous mobile robot,” in Pro-
ceedings of The First International Symposium on Experimental Robotics,
London, UK, pp. 327–346.

[135] Levinson, J. and S. Thrun (2010) “Robust Vehicle Localization in Urban
Environments Using Probabilistic Maps,” in IEEE International Conference
on Robotics and Automation, Anchorage, AK, pp. 4372–4378.

[136] Törnqvist, D., T. Schn, R. Karlsson, and F. Gustafsson (2009)
“Particle Filter SLAM with High Dimensional Vehicle Model,” Journal of
Intelligent & Robotic Systems, 55(4-5), pp. 249–266.

[137] Vemulapalli, P., A. Dean, and S. Brennan (2011) “Pitch-based Vehi-
cle Localization using Time Series Subsequence Matching with Multi-scale
Extrema Features,” in American Control Conference, San Francisco, CA, pp.
2405–2410.

[138] Kadetodat, S., P. Vemulapalli, S. Brennan, and C. Lagoa (2011)
“Terrain-Aided Localization using Feature-Based Particle Filtering,” in Dy-
namic Systems and Control Conference, Arlington, VA, pp. 725–731.

[139] Dissanayke, M., P. Newman, S. Clark, H. Durrant-Whyte, and
M. Csorba (2001) “A Solution to the Simultaneous Localization and Map
Building (SLAM) Problem,” IEEE Transactions on Robotics and Control,
17(3), pp. 229–241.

[140] Hasberg, C., S. Hensel, and C. Stiller (2012) “Simultaneous Local-
ization and Mapping for Path-Constrained Motion,” IEEE Transactions on
Intelligent Transportation Systems, 13(2), pp. 541–552.

[141] Brown, A. and Y. Lu (2004) “Performance Test Results of an Integrated
GPS/MEMS Inertial Navigation Package,” in Proceedings of the Interna-
tional Technical Meeting of the Satellite Division, vol. 17, Long Beach, CA,
pp. 825–832.

183

[142] Godha, S. and M. Cannon (2007) “GPS/MEMS INS integrated system
for navigation in urban areas,” GPS Solutions, 11(3), pp. 193–203.

[143] El-Sheimy, N., H. Hou, and X. Niu (2008) “Analysis and Modeling of In-
ertial Sensors Using Allan Variance,” IEEE Transactions on Instrumentation
and Measurement, 57(1), pp. 140–149.

[144] El-Sheimy, N., S. Nassar, and A. Noureldin (2004) “Wavelet de-
noising for IMU alignment,” IEEE Aerospace and Electronic Systems Maga-
zine, 19(10), pp. 32–39.

[145] Aydemir, G. and A. Saranli (2012) “Characterization and calibration
of MEMS inertial sensors for state and parameter estimation applications,”
Measurement, 45(5), pp. 1210–1225.

[146] Jerath, K. and S. Brennan (2011) “GPS-Free Terrain-based Vehicle
Tracking Performance as a Function of Inertial Sensor Characteristics,” in
Dynamics Systems and Control Conference, Arlington, VA, pp. 367–374.

[147] Aggarwal, P., Z. Syed, X. Niu, and N. El-Sheimy (2007) “Thermal
Calibration of Low Cost MEMS Sensors for Integrated Positioning Navi-
gation Systems,” in Proceedings of the National Technical Meeting of The
Institute of Navigation, vol. 1, San Diego, CA, pp. 343–349.

[148] Skog, I. and P. Händel (2006) “Calibration of a MEMS inertial measure-
ment unit,” in Proceedings of the IMEKO World Congress, vol. 17, Rio de
Janeiro, Brazil, pp. 1–6.

[149] Wang, L., Y. Hao, and F. Wang (2011) “Calibration of low cost MEMS
inertial Measurement Unit for an FPGA-based navigation system,” in IEEE
International Conference on Information and Automation, Shenzhen, China,
pp. 181–186.

[150] Isermann, R. and P. Ball (1997) “Trends in the application of model-
based fault detection and diagnosis of technical processes,” Control Engi-
neering Practice, 5(5), pp. 709–719.

[151] Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. Kavuri

(2003) “A review of process fault detection and diagnosis: Part I: Quantita-
tive model-based methods,” Computers & Chemical Engineering, 27(3), pp.
293–311.

[152] Venkatasubramanian, V., R. Rengaswamy, and S. Kavuri (2003) “A
review of process fault detection and diagnosis: Part II: Qualitative models
and search strategies,” Computers & Chemical Engineering, 27(3), pp. 313
– 326.

184

[153] Venkatasubramanian, V., R. Rengaswamy, S. Kavuri, and K. Yin

(2003) “A review of process fault detection and diagnosis: Part III: Process
history based methods,” Computers & Chemical Engineering, 27(3), pp.
327–346.

[154] Hwang, I., S. Kim, Y. Kim, and C. Seah (2010) “A Survey of Fault
Detection, Isolation, and Reconfiguration Methods,” IEEE Transactions on
Control Systems Technology, 18(3), pp. 636–653.

[155] Isermann, R. (2006) “Fault detection with parity equations,” in Fault-
Diagnosis Systems, Springer Berlin Heidelberg, pp. 197–229.

[156] Thrun, S., W. Burgard, and D. Fox (2005) Probabilistic Robotics (In-
telligent Robotics and Autonomous Agents), The MIT Press.

[157] Niedfeldt, P., D. Kingston, and R. Beard (2011) “Vehicle state esti-
mation within a road network using a Bayesian filter,” in Proceedings of the
American Control Conference, San Fransisco, CA, pp. 4910–4915.

[158] Worrall, S. and E. Nebot (2007) “Using Non-Parametric Filters and
Sparse Observations to Localise a Fleet of Mining Vehicles,” in IEEE Inter-
national Conference on Robotics and Automation, Rome, Italy, pp. 509–516.

[159] Tang, Z. and U. Ozguner (2003) “Sensor fusion for target track main-
tenance with multiple UAVs based on Bayesian filtering method and Hos-
pitability Map,” in IEEE Conference on Decision and Control, Maui, HI,
pp. 19–24.

[160] Jemmott, C., R. Culver, and N. Bose (2008) “Passive sonar target lo-
calization using a histogram filter with model-derived priors,” in Conference
on Signals, Systems and Computers, Pacific Grove, CA, pp. 283–287.

[161] Chan, K.-P. and A.-C. Fu (1999) “Efficient time series matching by
wavelets,” in Proceedings of the International Conference onData Engineer-
ing, pp. 126–133.

[162] Cai, Y. and R. Ng (2004) “Indexing Spatio-temporal Trajectories with
Chebyshev Polynomials,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Paris, France, pp. 599–610.

[163] Chakrabarti, K., E. Keogh, S. Mehrotra, and M. Pazzani (2002)
“Locally Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases,” ACM Transactions on Database Systems, 27(2), pp. 188–228.

[164] Kung, C.-P. and C.-S. Lin (1996) “Parallel sequence fault simulation for
synchronous sequential circuits,” Journal of Electronic Testing, 9(3), pp.
267–277.

185

[165] Tsai, C.-F. and Y.-C. Hsiao (2010) “Combining multiple feature selection
methods for stock prediction: Union, intersection, and multi-intersection
approaches,” Decision Support Systems, 50(1), pp. 258 – 269.

[166] Ni, J., C. V. Ravishankar, and S. Member (2007) “Indexing Spatiotem-
poral Trajectories with Efficient Polynomial Approximation,” IEEE Trans-
actions on Knowledge and Data Engineering, 19(5), pp. 1–16.

[167] Laftchiev, E., C. Lagoa, and S. Brennan (2014) “Noise Resistant AR
Model-Based Data Structures for In-Sequence Localization,” IEEE Transac-
tions on Intelligent Transportation Systems, #(#), p. #, in Review.

[168] Källhammer, J.-E., H. Pettersson, D. Eriksson, S. Junique,
S. Savage, C. Vieider, J. Y. Andersson, J. Franks, J. Van Nylen,
H. Vercammen, T. Kvisterø y, F. Niklaus, and G. Stemme (2006)
“Fulfilling the pedestrian protection directive using a long-wavelength in-
frared camera designed to meet both performance and cost targets,” in Pro-
ceedings of SPIE, vol. 6198, 09, pp. 619809–1 – 619809–11.

[169] Fang, H., M. Yang, R. Yang, and C. Wang (2009) “Ground-Texture-
Based Localization for Intelligent Vehicles,” IEEE Transactions on Intelli-
gent Transportation Systems, 10(3), pp. 463–468.

[170] Parra Alonso, I., D. Fernandez Llorca, M. Gavilan, S. Al-

varez Pardo, M. Garcia-Garrido, L. Vlacic, and M. Sotelo (2012)
“Accurate Global Localization Using Visual Odometry and Digital Maps on
Urban Environments,” IEEE Transactions on Intelligent Transportation Sys-
tems, 13(4), pp. 1535–1545.

[171] Sivaraman, S. and M. Trivedi (2013) “Integrated Lane and Vehicle De-
tection, Localization, and Tracking: A Synergistic Approach,” IEEE Trans-
actions on Intelligent Transportation Systems, 14(2), pp. 906–917.

[172] Jo, K., K. Chu, and M. Sunwoo (2012) “Interacting Multiple Model
Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time
Vehicle Positioning,” IEEE Transactions on Intelligent Transportation Sys-
tems, 13(1), pp. 329–343.

[173] Grewal, M., L. Weill, and A. Andrews (2007) Global Positioning Sys-
tems, Inertial Navigation, and Integration, Wiley.

[174] Wu, Z., M. Yao, H. Ma, and W. Jia (2013) “Improving Accuracy of the
Vehicle Attitude Estimation for Low-Cost INS/GPS Integration Aided by
the GPS-Measured Course Angle,” IEEE Transactions on Intelligent Trans-
portation Systems, 14(2), pp. 553–564.

186

[175] Schindler, A. (2013) “Vehicle self-localization with high-precision digital
maps,” in IEEE Intelligent Vehicles Symposium, Gold Coast, QLD, pp. 141–
146.

[176] Roth, J., T. Schaich, and G. Trommer (2012) “Cooperative GNSS-
based method for vehicle positioning,” Gyroscopy and Navigation, 3(4), pp.
245–254.

[177] Schleicher, D., L. Bergasa, M. Ocana, R. Barea, and M. Lopez

(2009) “Real-Time Hierarchical Outdoor SLAM Based on Stereovision and
GPS Fusion,” IEEE Transactions on Intelligent Transportation Systems,
10(3), pp. 440–452.

[178] Ramanandan, A., A. Chen, and J. Farrell (2012) “Inertial Navigation
Aiding by Stationary Updates,” IEEE Transactions on Intelligent Trans-
portation Systems, 13(1), pp. 235–248.

[179] Bosch, P. and A. Van der Klauw (1994) Modeling: identification and
simulation of dynamical systems, CRC Press.

[180] Ozay, N., M. Sznaier, C. Lagoa, and O. Camps (2012) “A Sparsification
Approach to Set Membership Identification of Switched Affine Systems,”
IEEE Transactions on Automatic Control, 57(3), pp. 634–648.

[181] Dissanayke, M., S. Williams, H. Durrant-Whyte, and T. Bailey

(2002) “Map Management for Efficient Simultaneous Localization and Map-
ping (SLAM),” Autonomous Robots, 12(3), pp. 267–286.

[182] Thrun, S., Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and
H. Durrant-Whyte (2004) “Simultaneous Mapping and Localization
With Sparse Extended Information Filters,” International Journal of
Robotics Research, 23(7-8), pp. 693–716.

[183] Guivant, J. and E. Nebot (2001) “Optimization of the Simultaneous
Localization and Map-Building Algorithm for Real-Time Implementation,”
IEEE Transactions on Robotics and Automation, 17(3), pp. 242–257.

[184] Board, I.-S. S. (1998) “IEEE Standard Specification Format Guide and
Test Procedure for Single-Axis Interferometric Fiber Optic Gyros,” IEEE
Std 952-1997, pp. 1–83.

[185] Washi, T., A. Kawamura, and Y. Iiguni (2006) “Sinusoidal Noise Re-
duction Method Using Leaky LMS Algorithm,” in International Symposium
on Intelligent Signal Processing and Communications, Yonago, Japan, pp.
303–306.

187

[186] Hou, H. (2004) Modeling Inertial Sensors Errors Using Allan Variance,
Tech. rep., University of Calgary.

[187] Grigorie, T. L., R. Obreja, D. G. Sandu, and J. I. Corcau (2012)
“Allan variance Analysis of the Miniaturized Sensors in a Strap-Down In-
ertial Measurement Unit,” in International Multidisciplinary Scientific Geo-
Conference, pp. 443–450.

[188] Ozay, N., M. Sznaier, C. Lagoa, and O. Camps (2008) “A Sparsifica-
tion Approach to Set Membership Identification of a Class of Affine Hybrid
Systems,” in IEEE Conference on Decision and Control, Cancun, Mexico,
pp. 123–130.

[189] Gama, J., R. Fernandes, and R. Rocha (2006) “Decision trees for min-
ing data streams,” Intelligent Data Analysis, 10(1), pp. 23–45.

[190] Van Trees, H. (2004) Detection, Estimation, and Modulation Theory, 1,
Wiley.

[191] Isermann, R. (2006) Fault-Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance, Springer.

[192] Kataoka, S. (1963) “A Stochastic Programming Model,” Econometrica,
31(1-2), pp. 181–196.

[193] Bouzgou, H. (2014) “A fast and accurate model for forecasting wind speed
and solar radiation time series based on extreme learning machines and prin-
cipal components analysis,” Journal of Renewable and Sustainable Energy,
6(1), pp. –.

[194] Giebel, G., R. Brownsword, G. Kariniotakis, M. Denhard, and
C. Draxl (2011) The State of the Art in Short-Term Prediction of Wind
Power, Literature Review 2.0, ANEMOS.plus.

[195] Neumann, D., B. Rajagopalan, and E. Zagona (2003) “egression
Model for Daily Maximum Stream Temperature,” Journal of Environmental
Engineering, 129(7), pp. 667–674.

[196] Kelleher, C., T. Wagener, M. Gooseff, B. McGlynn,
K. McGuire, and L. Marshall (2012) “Investigating controls on the
thermal sensitivity of Pennsylvania streams,” Hydrological Processes, 26(5),
pp. 771–785.

[197] Null, S. E., M. L. Deas, and J. R. Lund (2010) “Flow and water tem-
perature simulation for habitat restoration in the Shasta River, California,”
River Research and Applications, 26(6), pp. 663–681.

188

[198] Nemirovski, A. and A. Shapiro (2006) “Convex Approximations of
Chance Constrained Programs,” SIAM Journal on Optimization, 17(4), pp.
969–996.

[199] Ermoliev, Y. and R. J.-B. Wets (1988) Numerical techniques for stochas-
tic optimization, Springer-Verlag.

[200] Jasour, A. and C. Lagoa (2012) “Semidefinite relaxations of chance con-
strained algebraic problems,” in IEEE Conference on Decision and Control,
Maui,HI, pp. 2527–2532.

[201] Jasour, A., N. Aybat, and C. Lagoa. (2014) “Semidefinite programming
for chance optimization over semialgebraic sets,” arXiv, (1402.6382).

[202] Lasserre, J. B. (2000) “Global Optimization with Polynomials and the
Problem of Moments,” SIAM Journal on Optimization, 11(3), pp. 796–817.

[203] Lasserre, J. (2010) Moments, Positive Polynomials and Their Applica-
tions, no. 10 in Imperial College Press optimization series, vol. 1, Imperial
College Press.

[204] Kall, P. and J. Mayer (2010) Stochastic Linear Programming: Models,
Theory, and Computation, Springer.

[205] Lew, D., G. Brinkman, E. Ibanez, A. Florita, M. Heaney, B.-M.

Hodge, M. Hummon, G. Stark, J. King, S. Lefton, N. Kumar,
D. Agan, G. Jordan, and S. Venkataraman (2011) The Western Wind
and Solar Integration Study Phase 2, Literature Review 2.0, NREL.

[206] Bäıle, R., J. F. Muzy, and P. Poggi (2011) “Short-term forecasting of
surface layer wind speed using a continuous random cascade model,” Wind
Energy, 14(6), pp. 719–734.

[207] Brown, B., R. Katz, and A. Murphy (1984) “Time Series Models to
Simulate and Forecast Wind Speed and Wind Power,” Journal of Climate
and Applied Meteorology, 23(8), pp. 1184–1195.

[208] Hammer, A., D. Heinemann, E. Lorenz, and B. Lckehe (1999) “Short-
term forecasting of solar radiation: a statistical approach using satellite
data,” Solar Energy, 67(13), pp. 139 – 150.

[209] Daniel, A. and A. Chen (1991) “Stochastic simulation and forecasting of
hourly average wind speed sequences in Jamaica,” Solar Energy, 46(1), pp.
1 – 11.

189

[210] Kay, J., R. Handcock, A. Gillespie, C. Konrad, S. Burges,
N. Naveh, and D. Booth (2001) “Stream-temperature estimation from
thermal infrared images,” in IEEE Geoscience and Remote Sensing Sympo-
sium, vol. 1, Sydney, Australia, pp. 112–114.

[211] Jensen, A., B. Neilson, M. McKee, and Y. Chen (2012) “Thermal re-
mote sensing with an autonomous unmanned aerial remote sensing platform
for surface stream temperatures,” in IEEE Geoscience and Remote Sensing
Symposium, Munich, Germany, pp. 5049–5052.

[212] Handcock, R., A. Gillespie, K. Cherkauer, J. Kay, S. Burges, and
S. Kampf (2006) “Accuracy and uncertainty of thermal-infrared remote
sensing of stream temperatures at multiple spatial scales,” Remote Sensing
of Environment, 100(4), pp. 427 – 440.

[213] Kwasniok, F. and L. A. Smith (2004) “Real-Time Construction of Opti-
mized Predictors from Data Streams,” Phys. Rev. Lett., 92, p. 164101.

[214] Chen, Y. (2008) Towards a Unified Framework for Efficient Access Methods
and Query Operations in Spatio-Temporal Databases, Ph.D. thesis, Univer-
sity of Michigan.

Vita

Emil Laftchiev

Education:

• B.S. in Electrical Engineering, The Pennsylvania State University (Honors in Electrical
Engineering), May 2007

Professional Experience:

• Graduate Lecturer, The Pennsylvania State University, Summer 2014-Fall 2014.

• Graduate Teaching Assistant, The Pennsylvania State University, Fall 2010-Spring 2014.

• Graduate Research Assistant, The Pennsylvania State University, Fall 2007-Spring 2010.

• SAP America Support Intern, Newtown Square, PA Summer 2004

• SAP America Hosting Intern, Newtown Square, PA Summer 2006

Publications:

• Laftchiev, E., Lagoa, C., Brennan, S. 2014. “Vehicle Localization using in-Vehicle Pitch
Data and Dynamical Models” IEEE Transactions on Intelligent Transportation Systems,
In-Press.

• Laftchiev, E., Lagoa, C., Brennan, S. 2014. “Robust Data Map Design Using Chance
Constrained Optimization, Portland, OR, pp. 4573-4580.

• Laftchiev, E., Lagoa, C., Brennan, S. 2014. “Multi-Attribute Data Dynamics Discon-
tinuity Identification: An Over-Bounding approach using One-Dimensional Probabilistic
Constraints” The Pennsylvania State University College of Engineering Research Sympo-
sium, State College, PA, pp. 1-7.

• Laftchiev, E., Lagoa, C., Brennan, S. 2013. “Robust Map Design by Outlier Point Selec-
tion for Terrain-Based Vehicle Localization” IEEE Conference on Decision and Control,
Florence, Italy, pp. 2822-2827.

• Laftchiev, E., Lagoa, C., Brennan, S. 2013. “Robust Map Design for Terrain-Based Ve-
hicle Localization” The Pennsylvania State University College of Engineering Research
Symposium, State College, PA, pp. 1-6.

• Laftchiev, E., Lagoa, C., Brennan, S. 2012. “Terrain-Based Vehicle Localization from
Real-Time Data Using Dynamical Models” IEEE Conference on Decision and Control,
Maui, HI, pp. 3366-3371.

• Laftchiev, E., Lagoa, C., Brennan, S. 2012. “Terrain-Based Vehicle Localization from
Real-Time Data Using Dynamical Models” The Pennsylvania State University College of
Engineering Research Symposium, State College, PA, pp. 1-7.

Awards and Fellowships:

• Best Session Presentation American Control Conference 2014.

• Penn State Electrical Engineering Society Graduate Fellowship 2013.

• Best Paper Award - College of Engineering Research Symposium, 2013, 2014.

• Second Place Paper Award - College of Engineering Research Symposium, 2012.

• Nominated for Harold F. Martin Graduate Assistant Outstanding Teaching Award, 2013.

Teaching Courses:

• EE 210: Circuits and Devices - Instructor and TA.

• EE 350: Continuous-Time Linear System - TA

