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Abstract

This thesis investigates vehicle control techniques for rollover prevention in a collision
avoidance scenario. The zero-moment point (ZMP) is used to evaluate the vehicle’s
current and near-future rollover propensity with the purpose of predicting and correcting
an impending rollover event. Low-order vehicle models inclusive of roll dynamics and
terrain effects are utilized to facilitate rapid, but accurate, calculation of the vehicle’s
current and predicted rollover threat. Results found in this thesis show that short-range
predictions, ranging from 0.1 seconds to 0.7 seconds, are sufficient to prevent nearly
all dynamics-induced rollovers in typical highway curves. These results are useful in
determining an appropriate preview horizon for predictive control techniques aimed at
rollover prevention. This thesis also investigates the minimum intervention distance
needed in a collision avoidance scenario to avoid an obstacle while also preventing wheel
lift. Subsequently, a linear-quadratic output regulator is designed to safely navigate the
vehicle through a collision avoidance maneuver, while employing a feedback scheme that
explicitly accounts for rollover prevention.
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Chapter 1 |

Introduction

1.1 Motivation

Safety has long been considered one of the primary concerns in automobile design due to

the inherent danger of vehicle travel. According to the National Highway Traffic Safety

Administration (NHTSA), in 2012 there were over 6.5 million reported crashes, resulting

in over 33,000 deaths [1]. While the number of fatal crashes has been steadily decreasing

over the past decade, vehicle-related accidents remain the leading cause of death for

people between the ages of 11 and 27 [1]. In particular with regards to this research,

vehicle rollover is a notoriously deadly form of automobile accident, accounting for over

35% of all fatalities [1].

Until recently, almost all safety mechanisms were reactive in nature; that is, designs

focused on keeping the occupant safe during a collision (seatbelts, air bags, etc.). Semi-

and fully autonomous vehicles, however, have the potential to greatly reduce the num-

ber of vehicle accidents by responding proactively to a situation, taking action before

it is too late. Examples of such technologies already appearing on production vehicles

are adaptive cruise control (ACC), lane departure warning (LDW) systems, electronic

stability control (ESC) [2], and rear-end collision braking systems [3]. Modern sensors
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and actuators that aid in the driving task are able to diagnose and respond to an emer-

gency faster than a human is capable. For this reason, the focus of many driver-assist

features has been safety-oriented with the hope of continuing to reduce human loss from

automobile accidents.

1.2 Research Goals

Several active safety systems in particular have seen growing interest in the intelligent

vehicles community: stability control, lane-keeping, collision avoidance, and rollover pre-

vention. Determining an effective trajectory (and subsequent vehicle control along this

trajectory) remains one of the greatest challenges in this research field. In an emergency

situation, all of these systems must work together seamlessly in order to avoid a tragedy.

Although these safety systems are heavily studied individually, there is limited lit-

erature on systems that consider stability control, lane-keeping, collision avoidance, and

rollover prevention simultaneously. An effective emergency maneuver not only requires

the vehicle to avoid an obstacle while remaining on the road, but to also prevent wheel

lift and maintain yaw stability. Therefore, it is the hope of this research to progress

the development of emergency vehicle control algorithms by investigating the effects of

rollover in a collision avoidance scenario. These effects are particularly important for

rollover-prone vehicles such as heavy trucks or SUVs.

Specifically, this research uses a linear-quadratic control framework to maneuver

a vehicle around an obstacle. During the evasion maneuver, the controller actively

adjusts for threats such as wheel lift and tire skid using previewed state information.

This research also presents key insights into the necessary preview horizons for effective

intervention maneuvers.
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1.3 Outline of Remaining Chapters

The remaining chapters in this thesis are organized as follows: Chapter 2 presents a re-

view of the relevant literature on the topics of this thesis, including vehicle path following,

collision avoidance, and rollover prevention. Naturally, many of the ideas reviewed in

Chapter 2 use notation and concepts related to vehicle dynamics. Therefore, if the reader

is unfamiliar with this subject, it is suggested that he/she read Chapter 3 first. Chapter

3 derives the vehicle models used in this thesis and defines standard vehicle dynamics

notation. This includes 2- and 3-degree-of-freedom models with consideration of terrain

and tire lag effects. Chapter 4 introduces the concept of the zero-moment point (ZMP)

as a vehicle rollover metric. Previewed information about the ZMP is then explored

and used to determine appropriate preview horizons for rollover prevention. Chapter 5

considers rollover prevention in a collision avoidance scenario with the purpose of deter-

mining the minimum intervention distance for a safe maneuver. Chapter 6 presents a

linear-quadratic output regulator that safely maneuvers the vehicle around an obstacle

while actively preventing rollover by weighting ZMP. The effects of ZMP weighting on

the performance of the controller are also examined. Finally, Chapter 7 presents the

conclusions made from this thesis and plans for future work.
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Chapter 2 |

Literature Review

2.1 Introduction

This chapter presents the relevant literature pertaining to autonomous vehicle control

and rollover prevention. First, external research on vehicle path following and colli-

sion avoidance is summarized, with particular focus on strategies using previewed state

information. Second, a review of vehicle rollover metrics and prevention strategies is

presented. It should be noted that much of the research presented in this chapter is

relevant in the aerospace field as well, for strategies to avoid aircraft collisions; however,

only work pertaining to automotive control is covered.

2.2 Vehicle Path Following Review

An excellent resource on the use of optimal control theory in vehicle dynamics applica-

tions is presented by Sharp and Peng [4]. In [4], the authors provide a review of opti-

mal control theories including the Linear-Quadratic Regulator (LQR), Linear-Quadratic

Gaussian (LQG) theory, Nonlinear-Quadratic Regulator, indirect/direct optimization,

model predictive control (MPC), and robust control. Literature applying these theo-

4



ries to vehicle dynamics problems is then discussed; specifically, the authors consider

applications regarding active suspensions, worst-case maneuvering, minimum-time ma-

neuvering, and driver modeling. Therefore, [4] provides a good starting point for the

reader interested in reviewing optimal control practice within the vehicle dynamics com-

munity.

One of the most promising methods of vehicle path following is to utilize previewed

information (what lies ahead of the vehicle) to predict vehicle behavior in the future. This

framework has much in common with how a human driver operates; the vehicle strives

to plan and execute a trajectory that not only reduces current error, but future error

as well. Thus, the review provided in this chapter focuses mainly on control strategies

utilizing previewed information.

2.2.1 Predictive Control Theory

The past decade has seen an explosion of research in the vehicle control field focusing

on model predictive control (MPC) techniques. MPC is a finite-horizon optimal control

structure in which plant dynamics are predicted over a fixed preview horizon to produce

an optimal sequence of future control inputs [5]. This technique has proven to be a useful

tool in path planning/following applications due to its ability to handle nonlinearities

and system constraints.

Figure 2.1 illustrates the general process used in MPC in a vehicle control setting. The

optimal control sequence is calculated by minimizing a user-defined objective function

while also satisfying user-defined performance and input constraints. This calculation is

iterative in nature; at every time step, the controller diagnoses the state of the system

and calculates an optimal sequence of control inputs from the current time (k) up to the

control horizon (k+Nu). This sequence directs the vehicle along the optimal trajectory

calculated up to the control horizon. Once the control sequence has been calculated, only

5



Time k
k+1

k+Nu

k+2

X

Y

Optimal
Trajectory

Figure 2.1. Illustration of model predictive control for vehicle path following. At each time
step, an optimal trajectory and optimal control sequence are calculated. The vehicle executes
the first control action and repeats the process.

the first input, corresponding to the control input at the current time step, is executed.

The process is then repeated at the next time step (k+ 1) to produce a different optimal

trajectory and control sequence.

The research field is rich with literature on MPC and general preview techniques

for vehicle path planning and collision avoidance [6]- [33]. These strategies range from

low complexity metrics that establish a time-to-line crossing [6], to higher complexity

frameworks based on elastic bands for path planning through stationary and moving

traffic [7]. Efforts have even been taken to combine haptic human-machine interaction

with MPC-based algorithms [8]. For the sake of a reasonably succinct discussion, only

a select few of the most relevant papers are subsequently discussed in detail throughout

the rest of the chapter. An MPC framework becomes especially valuable in emergency

situations; therefore, much of the discussion of work in this area is provided in Section

2.3.

Vehicle guidance and driver modeling using predictive control techniques is a rela-

tively mature concept, with some of the earliest work proposed by MacAdam [9]. In [9],

6



x
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Figure 2.2. Illustration of the MacAdam controller framework, which runs off of the error be-
tween the upcoming road trajectory (previewed input) and the predicted vehicle path (previewed
output) over a specified preview horizon.

MacAdam developed a linear, time-invariant, and unconstrained predictive controller.

Although this work can be viewed as a simplified subset of MPC techniques, it serves as

a building block for many of the more advanced predictive control structures. The goal

of MacAdam’s controller is simple: to minimize the error between the previewed input

(the road) and the previewed output (the predicted vehicle path), as seen in Fig. 2.2.

The previewed road input is assumed to come from mapped information or external

measurements using sensors such as cameras or radar. The future state evolution that

estimates the predicted vehicle path, meanwhile, is governed by the general solution of

a linear dynamic system over a preview interval, T :

~y(t+ T ) = C(t)Φ(t+ T, t)~x(t) +
∫ t+T

t
C(τ)Φ(t+ T, τ)B(τ)u(τ)dτ (2.1)

where Φ is the system’s state transition matrix, B is the system’s input matrix, and

C is the system’s output matrix [9]. Equation 2.1 can then be simplified by assuming

a time-invariant system and that the steering input remains constant over the preview

interval.

Additionally, the model is subject to the following local performance index on the

7



vehicle’s lateral position:

J ,
1
T

∫ t+T

t
{[f(η)− y(η)]W (η − t)}2 dη (2.2)

where f is the previewed input, y is the previewed output, andW is an arbitrary weight-

ing function over the preview interval. This structure seeks an optimal solution to Eq.

2.2, resulting in a steering input trajectory for different specifications of the weighting

function. If the weighting function is specified such that only the point at the end of the

preview horizon is considered, known as single point preview, the steering control input

reduces to an intuitive proportional controller as such:

δf (t) = f(t+ T )− y(t+ T )
TK

(2.3)

This control structure can be limited, however, by the fact that only a single point

of previewed information is used, while no weight is given at the current time step.

This results in a controller that prematurely steers the vehicle through the specified

path, especially for severe maneuvers. Further, one has to predict into the future for a

duration of T seconds, a process which assumes an accurate vehicle dynamic model.

In [10], Peng extended the MacAdam model with the goal of developing a model to

represent a range of drivers with different characteristics. The following modifications

were made to the MacAdam model: vehicle orientation errors were included in the cost

function, the model was identified in real-time, and non-constant steering angle control

was allowed over the preview horizon. Simulation results showed improved path following

over the MacAdam model due to the inclusion of heading error and non-constant steering

predictions.
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2.2.2 Feedforward/Feedback Control with Preview

An alternative implementation of previewed information is to use projected road geome-

try to augment controller performance. Several variations of this strategy exist including

a Proportional-Integral-Derivative (PID) controller developed by Taylor et al. [11] that

combines projected lateral position error feedback with a projected road geometry feed-

forward term. Additionally, as part of the Partners for Advanced Transportation Tech-

nology (PATH) program, Peng and Tomizuka [12] combined an LQ feedback framework

on lateral tracking error with two feedforward control terms: projected road curvature

and projected road superelevation. Researchers on the PATH program then continued

similar research in this area in the following years [13,14].

Yet another implementation, similar to [12], was introduced by Sharp and Valtetsi-

otis [15]. In this work, the authors use previewed road information in a discrete LQR

framework for path following. This idea is illustrated in Fig. 2.3, where both the road

and vehicle are described by their lateral position and heading with respect to a global

axis. The previewed road information then consists of a vector of road position points

specified from the current time step (k) up to the preview horizon. At every time step,

the previous road position is removed from this vector and a new road position (yri,

treated as an input) is appended, creating a shift register operation:

~yr(k + 1) = D~yr(k) + Eyri (2.4)

9



Road

yr0

y

ψ

ψr

UT

yr1 yr2 yr3 yr4 yr5

Figure 2.3. Illustration of the road preview concept in [15]. The road and vehicle coordinates
are described by their lateral position and heading with respect to a fixed axis.

where

D =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

0 0 0 . . . 0


E =



0

0
...

0

1


(2.5)

The road preview vector is then combined with the state equations for the vehicle

model to create an augmented state space model of the following form:

 ~x(k + 1)

~yr(k + 1)

 =

A 0

0 D


 ~x(k)

~yr(k)

+

0

E

 yri +

B
0

 δf (2.6)

where A and B are simply the discrete state and input matrices, respectively, of the

vehicle model with state vector ~x(k) (the authors use a variant of the standard two-

degree-of-freedom model derived in Chapter 3).

The reader may notice from Eq. 2.6 that there is no relationship between the vehicle

dynamics and the road preview vector. The coupling between road motion and vehicle

dynamics occurs in the cost function specified for the discrete LQR problem:

J = lim
n→∞

n∑
k=0

[~zT (k)R1~z(k) + δf (k)R2δf (k)] (2.7)
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where

~z(k) =

 ~x(k)

~yr(k)

 R1 = CTQC R2 = 1 (2.8)

and

C =

1 0 0 0 −1 0 0 . . . 0

0 0 1 0 1
UT

−1
UT 0 . . . 0

 Q =

qy 0

0 qψ

 (2.9)

The Q matrix is arranged such that the controller penalizes the vehicle’s lateral position

deviation from the road and heading deviation from the road.

Minimization of Eq. 2.7 by solving the discrete algebraic Riccati equation for the

augmented system of Eq. 2.6 results in an optimal preview gain vector. The closed-loop

optimal steering input is then given by the following:

δf (k) = − ~K~z(k) = −[ ~K1 ~K2][~x(k) ~yr(k)]T (2.10)

The vector ~K1 represents the control gain associated with the state feedback, non-preview

LQR solution, while the vector ~K2 represents the preview control, i.e. how much steering

input is allocated to road positions ahead of the vehicle’s present position. This is an

important insight into how this control structure differs from that of [9] and [10]. The

authors do not predict the future state evolution of the vehicle, they simply augment the

state space model with previewed road information. Results from [15] of this relatively

simplistic model show excellent path following performance for a variety of road trajec-

tories and weighting combinations. Further, because the vehicle motion is decoupled

from future road position, there is not a need to predict vehicle dynamics in the future,

nor is there a need to specify a single look-ahead point.

Research by Cole et al. [16] aimed to compare the predictive controllers of MacAdam

[9], Peng [10], and Sharp [15], both in structure and in performance. In this work, an
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Figure 2.4. Illustration depicting the difference between the preview horizon and the control
horizon.

identical vehicle model was applied to controllers derived using unconstrained predictive

control theory and LQ control theory. In particular, the authors examined how the

choice of preview and control horizons affect the controller performance. The preview

horizon refers to how far into the future information is acquired, whereas the control

horizon refers to the horizon over which the objective function is calculated, or put

another way, how far into the future the optimal control sequence is calculated (Fig.

2.4). Results showed that when the control and preview horizons are sufficiently long,

the control gains derived from the different theories are identical. Deviations between

the two theories occur when the control horizon is shorter than the preview horizon due

to their different cost functions [16].

2.3 Vehicle Collision Avoidance Review

The vehicle path planning problem in the presence of threats consists of many different

parts, especially when attempting to share control with a driver. Figure 2.5 illustrates

a simplified architecture of how this problem is typically broken down [17]. The main

elements of this architecture include a trajectory generator, a control system, and the

vehicle/driver models.
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Figure 2.5. Simplified architecture for a semi-autonomous vehicle guidance system.

The trajectory generator typically calculates an offline nominal trajectory that the

vehicle will follow. This nominal trajectory, however, needs to be adjusted in real-time

with feedback from the vehicle states due to tracking errors, disturbances, obstacles,

etc. The control system module performs this function. The control system updates

the vehicle trajectory and sends commands to the vehicle (along with the driver in a

semi-autonomous vehicle).

As Fig. 2.5 shows, the control system can be broken down even further [18]. In

a semi-autonomous system, a threat assessment layer actively monitors the projected

trajectory, vehicle states, environment inputs, and driver behavior to assess the present

threat to the vehicle, as well as in the near future. The control system then needs to

decide if, when, and how much to intervene, as well as the most appropriate trajectory

adjustment. The final step in the control system is to provide the necessary intervention,

via a specified control law, to safely navigate the vehicle.
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2.3.1 Threat Assessment

Determining when a vehicle must intervene in an emergency scenario is a difficult prob-

lem. Too much intervention can be seen as intrusive, while not enough intervention can

result in an accident. Therefore, a very active research topic is not only how the vehicle

will intervene, but rather assessing the threat to determine when the vehicle will inter-

vene, especially in a semi-autonomous system. Jansson and Gustafsson approach this

problem using statistical analysis [19]. Sensor uncertainty inevitably affects the decisions

made by driver assist systems. The authors recognize this fact by formulating decision

rules on when the vehicle should apply a braking intervention based on Bayesian colli-

sion probabilities. These risk probabilities are determined from stochastic sensor error

models using Monte Carlo methods. The calculated risks are then combined with sim-

ple time-to-collision metrics to form decision rules. For the interested reader, Jansson

provides a more complete discussion of these methods, including tracking models for

multiple moving obstacles, in [20].

In [21], Falcone et al. introduce two model-based threat assessment methods. The

overall idea is to specify a set of constraints and vehicle states/inputs that satisfy a safe

trajectory. The threat assessment evolves over a future time horizon using a receding

horizon predictive analysis, with the system checking whether the vehicle’s current and

near future states are within this safe set. This safe set is calculated using reachability

analysis and set invariance theory; for example, the set must not contain states that

intersect with stochastic reachable sets (unknown future positions) of other vehicles,

pedestrians, etc. The two threat assessment methods then consist of 1) vehicle motion

described by a vehicle model only and 2) vehicle motion is described by a driver and

vehicle model.
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2.3.2 Intervention

An early formulation of the constrained MPC problem, applied to vehicle path plan-

ning on low-friction roads (rain, snow, ice, etc.), appeared by Falcone et al. [17]. In

this work two different controllers were derived, simulated, and tested: nonlinear MPC

using a nonlinear vehicle and tire model and linear time-varying MPC using successive

linearizations of the vehicle and tire model at each time step. The study found that the

computation time for the nonlinear controller becomes unacceptable at moderate and

high speeds (approximately 1.3 sec when traveling at 17 m/s). The linear time-varying

controller, however, did not suffer from this drawback and provided acceptable tracking

performance, even though the solution was suboptimal to that of the nonlinear opti-

mization. A key insight found by the authors showed that constraining tire slip angle

in the linear controller significantly enhanced the controller’s performance, an intuitive

result of keeping the tires away from highly nonlinear and possibly unstable regions. The

paper then shows close agreement between simulation results of the two controllers and

experimental data gathered on snow-covered roads. In [22], Falcone et al. extend this

work by supplementing the linear time-varying MPC model with the additional control

variables of braking and active differentials.

In [23], Madas et al. compared the the performance of linear MPC techniques against

two other path planning methods for collision avoidance: a state lattice planner and a

spline-based search tree algorithm. State lattice techniques create trajectories by con-

necting a grid of vertices with cubic spirals subject to vehicle kinematics. The spline-

based search tree method uses a search tree to generate optimal paths that run tangent

to all combinations of objects. Further discussion of these techniques is presented in [23].

The authors of [23] found that in collision avoidance simulations, all methods pro-

duced similar lateral position trajectories. Differences arose, however, in the lateral
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accelerations and lateral jerks of each path, implying different driver experiences during

the maneuvers. A “best” solution was not provided; rather, the authors discuss the many

trade-offs between the methods including ease of optimization/implementation, planning

completeness, computational complexity, etc.

2.3.3 Combined Threat Assessment and Intervention

Anderson et al. [24] proposed a model predictive controller that combines the problems

of trajectory planning, path following, and threat assessment in a collision avoidance

scenario. The work in [24] navigates the vehicle through an optimized safe operating

corridor by minimizing an objective cost function subject to lateral position and input

constraints. The lateral position constraints require the vehicle to remain between max-

imum and minimum lateral position values along the road edge (or around an obstacle),

while the input constraints define hard limits on the physical capabilities of the steering

actuator.

The work in [24] also addresses the issue of driver interaction in semi-autonomous

control by blending the driver input with the controller input. Thus, during low threat

situations, this blending gain gives full control to the driver, while during high threat

situations, full control is given to the controller. In order to provide a smooth control

transition, the blending gain increases linearly between full driver control and fully au-

tonomous. Two metrics were used to asses the instantaneous threat to the vehicle and

subsequent level of intervention: the maximum value of tire slip angle over the predic-

tion horizon, and a slightly more complicated quadratic cost function that penalizes large

inputs and input rates in addition to tire slip angle. Tire slip angle was chosen as an

output to minimize because small tire slip angles increase vehicle stability and result in

a safer, more comfortable ride.

The authors [24] then test the controller performance using simulation and full-scale
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experimental studies for a variety of collision avoidance scenarios. The results show that

the controller is able to keep the vehicle in the safe operating corridor for all scenarios and

threat functions; however, as expected, best performance is shown when the controller

operates in fully autonomous mode. The controller is also able to avoid all obstacles and

remain on the road while sharing steering with the driver. The authors extend this work

in [25] by placing more emphasis on minimally-invasive trajectories.

Work by Gray et al. in [26, 27] posed a similar problem to that of [24] by using

MPC to solve the threat assessment and intervention tasks as a combined optimization

problem for a semi-autonomous vehicle. The main goal of this work was to determine

the least intrusive intervention that will keep the vehicle in a safe operating state, only

supplementing driver control to avoid safety constraint violations. In addition to steering

control, the work in [26,27] also includes braking as a control input.

The task of optimizing the least intrusive intervention is accomplished by treating

lateral position deviation from the road as a safety constraint rather than a state that

is optimized. Thus, the cost function in the constrained optimization problem does not

include a penalty on tracking errors, but it is subject to the lateral position constraints.

Additionally, a driver model is employed to predict what the driver’s nominal behavior

will be in the future. If the predicted trajectory based on nominal driver behavior does

not satisfy the safety constraints, only then will the controller provide input; this ensures

minimum intervention [26,27].

One of the limitations seen in [26,27] was the assumption of a perfect driver model. In

reality, drivers behave in unexpected and unpredictable ways. This issue was addressed

by the authors in a follow-up paper [28], where an uncertain driver model was used. As a

result, rather than one predicted trajectory, sets of predicted trajectories were calculated

based on the spread of driver behavior. Robust MPC was then used to determine the

least intrusive intervention to keep the vehicle and driver safe using a similar but modified
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structure to that of [26,27].

Yet another strategy was proposed by Ali et al. [18], who built off the work in [17,22]

by combining the MPC controller with a threat assessment layer. Based on the detected

threat, the threat assessment layer decides the type of intervention the vehicle should

impose to achieve the least intrusive controller that does not violate safety constraints.

This ranges from a warning light for low-level threats (entering a curve too fast), to full

autonomous MPC control for high-level threats (navigating a curve at high speeds on a

low-friction surface).

2.4 Vehicle Roll Stability Review

Due to the high fatality rate of rollover incidents, investigating the roll stability of a

vehicle is important in improving overall safety. This is especially true in emergency sce-

narios, such as collision avoidance, where the vehicle experiences conditions that increase

rollover propensity.

2.4.1 Rollover Metrics

The most explicit method of analyzing a vehicle’s roll characteristics is full-scale testing.

While full-scale testing provides concrete results on vehicle behavior during worst-case

maneuvers, it is expensive and incomplete. It is impossible to test all driving scenarios

that could lead to wheel lift when considering factors such as speed, trajectory, vehicle

type, weather conditions, etc. Additionally, the National Highway Traffic Safety Admin-

istration (NHTSA) currently uses a rollover rating based on physical vehicle parameters

combined with an open-loop maneuver known as the “Fishhook” maneuver, where the

vehicle is given an initial rapid steering input followed by an overcorrection [34]. While

these tests provide important results, they do not represent the worse-case scenario for
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all vehicles under all conditions [4].

Therefore, much of the current research regarding roll stability aims to quantify a

vehicle’s rollover propensity by establishing model-based metrics. Many different rollover

metrics exist including static or steady state metrics, dynamic metrics, metrics relying

on ground-vehicle forces, and metrics utilizing vehicle state information.

A commonly used static metric is the Static Stability Factor [35]. The NHTSA

rollover rating system mentioned above relies on a vehicle’s SSF value, as well as dynamic

testing and crash data. The SSF can be interpreted as the lateral acceleration necessary

for wheel lift to occur on a flat road during steady state cornering [35]. By treating the

vehicle as a rigid body, as seen in Fig. 2.6, the SSF is derived by performing a sum of

moments about the right tire contact point as such:

∑
MRT = mayh−mg

Tr
2 = 0 (2.11)

Solving this moment balance and rearranging terms provides the SSF metric:

SSF = Tr
2h = ay

g
(2.12)

where ay is lateral acceleration, g is gravitational acceleration, Tr is the vehicle’s track

width, and h is the height of the center of gravity. The SSF is useful for a quick evaluation

of rollover propensity using physical parameters; however, because it is based on a static

moment balance, it cannot fully characterize roll stability during dynamic maneuvers.

More descriptive metrics that measure rollover propensity over a wide range of driving

conditions fall into the category of dynamic metrics. Examples include the Dynamic

Stability Index (DSI) [36], the Load Transfer Ratio (LTR) [37], and the Stability Moment

(SM) [38]. The first of these metrics, the DSI, once again performs a moment balance

about the right tire contact point of Fig. 2.6. However, now the vehicle’s inertia and
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Figure 2.6. Free-body diagram of a rigid vehicle model.

angular acceleration are considered as such:

∑
MRT = mayh−mg

Tr
2 = Ixxαx (2.13)

where Ixx is the vehicle’s x-axis moment of inertia and αx is the vehicle’s angular ac-

celeration about the x-axis. The vehicle is also assumed to be on the verge of wheel

lift, meaning the forces acting on the left tire contact point are negligible. Solving the

moment balance and rearranging terms yields the equation for the DSI:

DSI = Tr
2h = ay

g
− Ixxαx

mgh
(2.14)

Dynamic metrics can also be derived using vehicle-ground forces and moments. The

LTR [37], proposed by Ervin at the University of Michigan Transportation Institute, is

defined as a ratio: the difference in normal forces of the right and left tires divided by

the sum of the normal forces in the right and left tires. This metric can be written as

the following equation:

LTR = FzR − FzL
FzR + FzL

(2.15)
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where FzR is the right tire normal force and FzL is the left tire normal force. Equation

2.15 indicates that the LTR can only vary between 1 and -1, with a value of 1 indicating

wheel lift on the left side of the vehicle and a value of -1 indicating wheel lift on the right

side of the vehicle.

A similar rollover metric which also uses information about vehicle-ground forces is

the Stability Moment (SM) [38], proposed by Peters and Iagnemma. The SM is defined

as the moment produced by the vehicle-ground contact forces about the tip-over axes

of the vehicle, where the tip-over axes are the lines connecting the contact points of

the tires. Rollover propensity is then measured by calculating the ratio of the stability

moment difference to the stability moment sum between the left and right side of the

vehicle. This metric can be written as the following equation:

RSM = SML − SMR

SML + SMR
(2.16)

where SML and SMR are the stability moments on the vehicle’s left and right side,

respectively. Once again, Eq. 2.16 indicates that this metric only varies between -1 and

1 with the same implications as those for LTR.

There are many additional rollover metrics used in the literature, including those

used for tripped rollover [39]. Tripped rollover, although it is not considered in this

thesis, refers to when a vehicle encounters some external tripping mechanism, such as a

curb, with sufficient lateral velocity to cause rollover. A comprehensive list and summary

of all types of rollover metrics is provided by Lapapong in [40].

2.4.2 Rollover Prevention with Preview

While predictive control approaches are very common for path following and collision

avoidance applications, there is limited literature with regards to rollover prevention. In
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Figure 2.7. Flowchart of the Time-to-Rollover (TTR) algorithm.

order to correct dangerous maneuvers and avoid future wheel lift, the vehicle needs to

predict the impending roll threat. Several approaches implement previewed information

in the design of active suspensions for rollover prevention [33,41,42]. Since this thesis does

not investigate active suspensions, however, the following discussion will focus mainly

on steering- and braking-based approaches.

One of the earlier predictive rollover metrics introduced by Chen and Peng was the

Time-to-Rollover (TTR) metric [43, 44]. The predicted TTR is defined as the time

it takes for the vehicle’s sprung mass to reach a critical, user-defined roll angle with

respect to the unsprung mass. Using the vehicle’s current state and assuming constant

steering and speed, this calculation integrates the vehicle model up to the end of the

prediction horizon. If the vehicle’s roll angle passes the threshold, the TTR is established.

Otherwise, the model recalculates at the next time step, as illustrated in Fig. 2.7.

The TTR metric is assessed by the authors in [44] with focus on model fidelity;

simple models offer real-time calculation while complex models offer a more accurate

TTR estimate. Specifically, a neural network (NN) approach is used to balance the

trade-off between the simple and complex models to generate a new NN-TTR metric

with increased accuracy. In [43], Chen and Peng use TTR to design a controller that
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prevents rollover using differential braking. Differential braking has several benefits when

considering control inputs for rollover prevention: 1) it is much less expensive than active

suspension/stabilizer systems and can be easily implemented on existing vehicles. 2) it is

considered to be a highly effective way to reduce lateral acceleration by simply saturating

the tire’s force capability in the longitudinal direction, thus reducing the tire’s ability

to produce lateral forces. 3) it can reduce the vehicle’s speed as well. The authors then

continue to provide simulation results of a vehicle’s roll threat (quantified using the LTR)

with and without the TTR-based controller.

Yu et al. [42] extended the use of the TTRmetric towards heavy-duty vehicles applica-

tions and claimed two improved variants of the TTR calculation based on a higher-order

vehicle model. The first variant assumes constant steering angle and constant vehicle

acceleration (rather than vehicle speed) in the future. This improves the TTR predic-

tion for maneuvers that experience large speed variations, such as braking. The second

variant assumes constant steering angular acceleration and constant vehicle acceleration

in the future. By assuming constant steering angular acceleration, the TTR prediction

becomes more aggressive, meaning it detects rollover-prone situations earlier, but also

increases the risk of false alarms. The authors then compare all three TTR calculations

in the performance of an active suspension predictive LQR controller.

Another approach to predictive rollover prevention was proposed by Carlson and

Gerdes [45]. This controller adopts an MPC framework to perform yaw rate tracking

while satisfying the constraint that the vehicle’s roll angle cannot pass a user-defined

threshold. The authors consider the two control inputs to be steering and differential

braking. Ultimately, this results in a controller that understeers the vehicle to prevent

rollover, but also accommodates yaw rate tracking through differential braking-induced

moments. Two different control laws are then derived and simulated: one which assumes

complete knowledge of the driver’s input in advance, and one that assumes no knowledge
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of the driver’s input in the future and thus holds the current inputs constant over the

preview horizon.

Similarly, work by Schofield and Hagglund [46] adopted an MPC-based approach

to limit the vehicle’s peak roll angle by using differential braking as the control ac-

tion. Rather than simply applying differential braking commands to individual wheels

as in [45], the authors implement a framework that optimally allocates control to the

four wheel simultaneously. This takes advantage of all available actuators to produce

optimized forces and moments that mitigate the rollover threat.

2.4.3 Zero-Moment Point

Many of the metrics discussed above are useful under certain conditions but can be lim-

ited by their inherent assumptions. Static metrics such as the SSF are easy to calculate,

but do not capture vehicle behavior during dynamic maneuvers. Meanwhile, dynamic

metrics such as the LTR and SM rely on information that is difficult to obtain. Sensors

capable of measuring the forces and moments acting on the tires are expensive and un-

common on passenger vehicles. Finally, metrics that use state prediction models such

as the TTR do not account for environmental factors such as terrain. Terrain effects

greatly influence a vehicle’s rollover propensity and are often ignored in the literature.

Several of these metrics also saturate at the onset of wheel lift, meaning they are unable

to predict the severity of certain maneuvers beyond this point.

To address these limitations, Lapapong applied the concept of the zero-moment point

(ZMP) as a vehicle rollover metric [40, 47, 48]. The ZMP is defined as the point on the

ground where the summation of tipping moments, due to gravity and inertia forces,

equals zero [49]. The concept surrounding the ZMP is that roll stability analysis can

be performed using inertial responses rather than force measurements. Vukobratovic

originally introduced this idea [50] and it has been widely used to maintain the dynamic
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stability of bipedal robots. The concept of the ZMP as it relates to vehicle rollover is

further discussed in Chapter 4, including a full derivation.

When applied as a vehicle rollover metric, the ZMP presents several advantages over

the metrics discussed above. First, the ZMP explicitly accounts for terrain effects in

its derivation, a feature that is extremely useful when evaluating worst-case scenarios

for rollover. The inclusion of terrain effects results in a more descriptive rollover metric

when compared to other metrics such as the DSI, which is also derived through a moment

balance. Second, the ZMP can be expressed as a linear combination of the vehicle’s

states, allowing it to be included as an output of any vehicle model. For these reasons,

the ZMP was chosen as the rollover metric used in this work.

Lapapong’s work has proven that, as a design parameter, the ZMP is an accurate

indication of rollover [48]. It has not, however, been applied in a predictive manner

with the intention of preventing future rollover in a collision avoidance scenario using

closed-loop control. This is the focus of this thesis.
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Chapter 3 |

Derivation of Vehicle Models

3.1 Introduction

This chapter derives the dynamic vehicle models and nomenclature used throughout

the rest of the thesis. First, a two-degree-of-freedom (2DOF) rigid model is presented.

Section 3.3 then derives a three-degree-of-freedom (3DOF) vehicle model that includes

roll dynamics. These models are then extended in Sections 3.2.1 and 3.3.1 to account

for terrain effects. Finally, these models are further extended in Sections 3.2.2 and 3.3.2

to account for tire lag dynamics.

All of the models derived in this chapter are linear in nature. These descriptive, but

relatively simplistic, vehicle models facilitate exhaustive simulation of various maneuvers.

In addition, they can ultimately be implemented on a vehicle-borne microprocessor for

vehicle control.

26



X, i 

Z, k

Y, j

^

^
^

Figure 3.1. SAE body-fixed vehicle coordinate system.

3.2 Two-Degree-of-Freedom “Bicycle Model”

One of the most commonly used models in the vehicle dynamics community is a 2DOF

model commonly referred to as the bicycle model.1 The bicycle model only considers

the vehicle’s lateral and yaw dynamics. The body-fixed coordinate system used in the

derivation follows the Society of Automotive Engineers (SAE) convention [51]. This

coordinate system defines the positive body-fixed x, y, and z directions to point forward,

right, and down respectively, as shown in Fig 3.1. An illustration of the free-body

diagram for the bicycle model is shown in Fig 3.2 and the nomenclature used in the

derivation is presented in Table 3.1.

The bicycle model relies on the following key assumptions that aid in the derivation:

• The vehicle is assumed to be symmetrical along its longitudinal axis.

• No motion exists in the roll and pitch directions.
1It should be noted that the naming of this model is one of convention, it does not actually describe

the dynamics of a bicycle.

V

U

r

-Fr-Ffαf

αrδf

a b

Figure 3.2. Free-body diagram of bicycle model in body-fixed coordinates.
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Table 3.1. Parameters and nomenclature for the bicycle model. Nominal values used in simu-
lation are presented in Section 3.4.

Parameter Definition Unit
U Longitudinal velocity of CG (body-fixed) m/s
y Lateral position of vehicle m
V Lateral velocity of CG (body-fixed) m/s
ψ Yaw angle (heading) with respect to a global frame rad
r Yaw rate rad/s
m Vehicle mass kg
Izz Mass moment of inertia about vehicle z-axis kg-m2

a Distance from CG to front axle along vehicle x-axis m
b Distance from CG to rear axle along vehicle x-axis m
L Length of vehicle (a+ b) m
Tr Track width of vehicle m
Ff Front tire force N
Fr Rear tire force N
Cαf Front tire cornering stiffness N/rad
Cαr Rear tire cornering stiffness N/rad
αf Front tire slip angle rad
αr Rear tire slip angle rad
δf Front steering angle rad

• The vehicle is steered by the front wheels.

• The vehicle has a constant longitudinal velocity, U .

• Small angle approximations apply such that sin(θ) ≈ θ and cos(θ) ≈ 1.

• A linear tire model is applied such that F = Cαα; thus, the lateral force on the

tire is linearly proportional to the tire slip angle.

• The tires are assumed to roll without slipping in the longitudinal direction.

• Aerodynamic effects are negligible.

Using the SAE body-fixed coordinate system described previously, the angular ve-
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locity, ~ω, and angular acceleration, ~α, of the vehicle can be written as the following:

~ω = rk̂ (3.1)

~α = ṙk̂ (3.2)

The linear velocity of the vehicle’s center of gravity, meanwhile, can be expressed as

~vo = Uî+ V ĵ (3.3)

To apply Newton’s equations, however, the accelerations of the vehicle must be writ-

ten with respect to a global, fixed-frame coordinate system. The fixed-frame acceleration

of a moving object can be written by the general equation

~a = ~̇vo,moving + ~ω × ~vo,moving (3.4)

Solving this equation using Eq. 3.1 and Eq. 3.3 yields the following for the acceleration

of the vehicle in body-fixed coordinates:

~a = U̇ î+ V̇ ĵ + Urĵ − V rî (3.5)

~a = (−V r)̂i+ (V̇ + Ur)ĵ (3.6)

where U̇ = 0 due to the constant velocity of the vehicle in the body-fixed longitudinal

direction. Referring back to Fig. 3.2, a sum of forces in the lateral direction and a sum of

moments about the z-axis yield the following equations of motion for the bicycle model:

ΣFy = may = m(V̇ + Ur) = Ff + Fr (3.7)
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ΣMz = Izz ṙ = aFf − bFr (3.8)

Applying the assumption of the linear tire model, the front and rear tire forces can

be expressed as Ff = Cαfαf and Fr = Cαrαr respectively. Substituting these forces into

Eq. 3.7 and Eq. 3.8 yields the following:

m(V̇ + Ur) = Cαfαf + Cαrαr (3.9)

Izz ṙ = aCαfαf − bCαrαr (3.10)

The geometry of Fig. 3.2 allows the tire slip angles to be written as functions of the tire

velocities and the front steering angle in the form

αf = arctan
(
vfy
vfx

)
− δf ≈

(
vfy
vfx

)
− δf ≈

V + ar

U
− δf (3.11)

αr = arctan
(
vry
vrx

)
≈ vry
vrx
≈ V − br

U
(3.12)

Small angle approximations assume that the inverse tangent function is approximately

equal to the angle itself. Substituting Eq. 3.11 into Eq. 3.9 and Eq. 3.12 into Eq. 3.10

yields the final equations of motion for the bicycle model.

m(V̇ + Ur) = Cαf

(
V + ar

U
− δf

)
+ Cαr

(
V − br
U

)
(3.13)

Izz ṙ = aCαf

(
V + ar

U
− δf

)
− bCαr

(
V − br
U

)
(3.14)

Rearranging to solve for V̇ and ṙ produces the following:

V̇ =
(
Cαf + Cαr

mU

)
V +

(
aCαf − bCαr

mU
− U

)
r −

(
Cαf
m

)
δf (3.15)
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ṙ =
(
aCαf − bCαr

IzzU

)
V +

(
a2Cαf + b2Cαr

IzzU

)
r −

(
aCαf
Izz

)
δf (3.16)

Finally, Eq. 3.15 and Eq. 3.16 can be represented in matrix notation. This produces

a state space model with states of V and r as such:

V̇
ṙ

 =


Cαf+Cαr

mU
aCαf−bCαr

mU − U
aCαf−bCαr

IzzU
a2Cαf+b2Cαr

IzzU


V
r

+


−Cαf
m

−aCαf
Izz

 δf (3.17)

If the lateral position and heading of the vehicle are of interest, the state space model

of Eq. 3.17 can be modified to include these states with a state vector of the form

~x =



y

V

r

ψ


(3.18)

The A and B matrices of the state space model then become

A =



0 1 0 U

0 Cαf+Cαr
mU

aCαf−bCαr
mU − U 0

0 aCαf−bCαr
IzzU

a2Cαf+b2Cαr
IzzU

0

0 0 1 0


(3.19)

B =



0
−Cαf
m

−aCαf
Izz

0


(3.20)
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3.2.1 Bicycle Model with Terrain Input

In many cases, the road profile is not perfectly flat in the lateral direction. This is

also true just outside the road boundaries, as the terrain typically slopes down as it

moves away from the road. Therefore, it is necessary to take the road bank angle into

consideration for many driving scenarios. The terrain angle, φt, as seen in Fig. 3.3, is

now considered when developing the equations of motion.

For the 2DOF bicycle model with small angle approximations, the terrain angle

affects the equations of motion (Eq. 3.7 and Eq. 3.8) in the following manner:

ΣFy = Ff + Fr +mg sin(φt) = Ff + Fr +mgφt (3.21)

ΣMz = Izz ṙ = aFf − bFr (3.22)

Only the sum of forces along the vehicle’s y-axis is affected by the inclusion of terrain;

it has no contribution towards the sum of moments about the vehicle’s z-axis.

To preserve linearity, the terrain angle is treated as a linear input to the system

dynamics. Although this “input” cannot be controlled, it can be treated as known with

ϕt

X
Y

Z

G

Figure 3.3. Bicycle model on a banked slope.
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mapped information of the vehicle’s surroundings. The equations of motion with bank

angle input result in the following state space representation of the bicycle model:

V̇
ṙ

 =


Cαf+Cαr

mU
aCαf−bCαr

mU − U
aCαf−bCαr

IzzU
a2Cαf+b2Cαr

IzzU


V
r

+


−Cαf
m g

−aCαf
Izz

0


δf
φt

 (3.23)

The terrain bank angle is typically defined in units of degrees or as a percent su-

perelevation. When defined as a percent superelevation, this paper uses the following

equation:

φt,percent = 100 ∗ tan (φt,deg) (3.24)

3.2.2 Bicycle Model with Tire Lag Dynamics

An assumption of the models above was that the tires are able to generate lateral force

instantly from changes in steering input. In realistic driving situations, however, this is

not true; there is lag between the steering input and force generation due to deformation

of the tire sidewall. Tire lag can affect the roll characteristics of a vehicle and is important

to model.

Tire lag is most commonly modeled as a first-order differential equation [52] in the

form

Ḟf = U

σf
(Fss,f − Ff ) (3.25)

Ḟr = U

σr
(Fss,r − Fr) (3.26)

where Fss,f = Cαfαf and Fss,r = Cαrαr are the steady-state tire forces and σf , σr are

the front and rear tire relaxation lengths, respectively. Substituting Fss,f , Fss,r, and the

slip angles defined in Eq. 3.11 and Eq. 3.12 we obtain the following:

Ḟf = U

σf

[
Cαf

(
V + ar

U
− δf

)
− Ff

]
(3.27)
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Ḟr = U

σr

[
Cαr

(
V − br
U

)
− Fr

]
(3.28)

Inclusion of tire lag dynamics is done by adding the front and rear tire forces as states

in the vehicle model. Using Eq. 3.7 and Eq. 3.8, with the addition of Eq. 3.27 and Eq.

3.28, results in the augmented state space model



V̇

ṙ

Ḟf

Ḟr


=



0 −U 1
m

1
m

0 0 a
Izz

−b
Izz

Cαf
σf

aCαf
σf

−U
σf

0

Cαr
σr

−bCαr
σr

0 −U
σr





V

r

Ff

Fr


+



0

0
−UCαf
σf

0


δf (3.29)

When bank angle input is also included, the model given in Eq. 3.29 becomes



V̇

ṙ

Ḟf

Ḟr


=



0 −U 1
m

1
m

0 0 a
Izz

−b
Izz

Cαf
σf

aCαf
σf

−U
σf

0

Cαr
σr

−bCαr
σr

0 −U
σr





V

r

Ff

Fr


+



0 g

0 0
−UCαf
σf

0

0 0



δf
φt

 (3.30)

3.3 Three-Degree-of-Freedom “Roll Model”

Although the 2DOF bicycle model is useful for understanding the lateral and yaw ac-

celerations of the vehicle, it does not provide any information about the vehicle’s roll

dynamics. This section introduces a 3DOF roll model mathematically consistent with

the vehicle model developed by Mammar [53], with the exception of the coordinate sys-

tem location. This model is considered an extension of the bicycle model to understand

the vehicle’s roll dynamics.

An illustration of roll model and its coordinate system is shown in Fig. 3.4, while

the nomenclature used in the derivation is shown in Table 3.2. The equations of motion
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Figure 3.4. Free-body diagram of roll model in body-fixed coordinates.

are derived and written in mass-damper-spring form, then converted to a state space

representation.

The roll model relies on all of the assumptions listed in Section 3.2 for the bicycle

model with the addition of the following:

• No motion exists in the pitch direction (roll motion is now allowed).

• The torsional spring and torsional damper acting at the roll center are linear.

• The roll center is fixed with respect to the vehicle’s body.

• The unsprung mass only rotates about the vehicle z-axis.

Referring to Fig. 3.4, the roll model can be described as dividing the vehicle mass into

a sprung mass, Gs, and an unsprung mass, Gu. The sprung mass represents the mass

of the vehicle that sits on top of the suspension, while the unsprung mass represents the

mass of the vehicle that is located under the suspension. These two masses are connected

at a joint called the roll center, which is defined as a virtual point about which the sprung

mass rolls with respect to the unsprung mass. A torsional spring and torsional damper
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Table 3.2. Parameters and nomenclature for the roll model. Nominal values used in simulation
are presented in Section 3.4.

Parameter Definition Unit
U Longitudinal velocity of CG (body-fixed) m/s
y Lateral position of vehicle m
V Lateral velocity of CG (body-fixed) m/s
ψ Yaw angle (heading) with respect to a global frame rad
r Yaw rate of vehicle rad/s
φr Roll angle of sprung mass rad
θ Pitch angle of vehicle rad
m Total vehicle mass kg
mu Unsprung vehicle mass kg
ms Sprung vehicle mass kg
Ixx Mass moment of inertia about vehicle x-axis kg-m2

Izz Mass moment of inertia about vehicle z-axis kg-m2

Ixz Product mass moment of inertia kg-m2

a Distance from CG to front axle along vehicle x-axis m
b Distance from CG to rear axle along vehicle x-axis m
L Length of vehicle (a+ b) m
Tr Track width of vehicle m
hr Height of the roll center m
hs Height of sprung mass CG m
hsr Height of sprung mass from roll center m
Ff Front tire force N
Fr Rear tire force N
Cαf Front tire cornering stiffness N/m
Cαr Rear tire cornering stiffness N/m
αf Front tire slip angle rad
αr Rear tire slip angle rad
δf Front steering angle rad
Kφ Roll stiffness N-m/rad
Dφ Roll damping constant N-m-s/rad
g Gravitational acceleration m/s2

have been included at the roll center to simulate the vehicle’s suspension dynamics.

As indicated in the model assumptions, the roll center only allows rotation about the

vehicle’s body-fixed x-axis. For this derivation, the vehicle coordinate system is attached

to the unsprung mass.

Considering the coordinate system shown in Fig. 3.4, the angular velocity of the
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unsprung mass, ~ωu, can be written as

~ωu = rk̂ (3.31)

while the angular velocity of the sprung mass, ~ωs, can be expressed as

~ωs = φ̇r î+ rk̂ (3.32)

Similarly, the linear velocity of the unsprung mass, ~vu, can be written as

~vu = Uî+ V ĵ (3.33)

while the linear velocity of the sprung mass, ~vs, can be expressed as

~vs = Uî+ (V + hsrφ̇r)ĵ (3.34)

Equation 3.34 was derived utilizing relative velocity and assuming a small roll angle. To

determine the accelerations of the sprung and unsprung masses, the velocities must be

converted to a global, fixed-frame coordinate system. This allows Newton’s equations to

be used to describe the system. The fixed-frame acceleration of a moving object can be

written by the general equation

~a = ~̇vo,moving + ~ω × ~vo,moving (3.35)

where ~a is the fixed-frame acceleration of the object. Solving this equation for the

unsprung mass and assuming the roll center is coincident with the unsprung mass’s CG

37



yields the following equation:

~au = U̇ î+ V̇ ĵ + Urĵ − V rî (3.36)

~au = (−V r)̂i+ (V̇ + Ur)ĵ (3.37)

where U̇ = 0 due to the constant velocity of the vehicle in the body-fixed longitudinal

direction. The acceleration of the sprung mass can be calculated as

~as = U̇ î+ (V̇ + hsrφ̈r)ĵ − r(V + hsrφ̇r )̂i+ Urĵ + V φ̇rk̂ (3.38)

~as = −r(V + hsrφ̇r )̂i+ (V̇ + Ur + hsrφ̈r)ĵ + V φ̇rk̂ (3.39)

When compared to the bicycle model, the addition of roll dynamics adds another

equation of motion by performing a sum of moments about the vehicle’s x-axis. There-

fore, the three equations are obtained through a sum of forces along the vehicle’s y-axis,

a sum of moments about the vehicle’s z-axis, and a sum of moments about the vehicle’s

x-axis. Summing the forces along the vehicle’s y-axis yields the following equation:

ΣFy = muay,u +msay,s = Ff + Fr (3.40)

m(V̇ + Ur) +mshsrφ̈r = Ff + Fr (3.41)

The next equation is obtained by summing the moments about the roll center in the

x-direction. Assuming the vehicle’s roll center is close to the ground, this equation of

motion can be written as

ΣMx,RC = Ixxφ̈r − Ixz ṙ +ms

(
(−hsrk̂)× ~as

)
· î (3.42)
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Ixxφ̈r − Ixz ṙ +mshsr(V̇ + Ur + hsrφ̈r) = −Dφφ̇r + (mshsrg −Kφ)φr (3.43)

The last equation of motion is developed by summing the moments about the sprung

mass in the z-direction to produce the following:

ΣMz,s = Izz ṙ − Ixzφ̈r +ms

(
(−hsrk̂)× ~as

)
· k̂ = aFf − bFr (3.44)

Izz ṙ − Ixzφ̈r = aFf − bFr (3.45)

Equations 3.41, 3.43, and 3.45 are the three equations of motion for the roll model.

These can be organized in the standard mass-damper-spring (MDK) form of

M~̈q +D~̇q +K~q = F~u (3.46)

where

~q =


y

ψ

φr

 (3.47)

defines the states of the MDK equation. These are the three degrees-of-freedom of

the roll model: y is the lateral position, ψ is the yaw angle, and φr is the roll angle.

By rearranging the three equations of motion, the mass, damper, and spring matrices

become

M =


m 0 mshsr

mshsr −Ixz Ixx +msh
2
sr

0 Izz −Ixz

 (3.48)
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D =


0 mU 0

0 mshsrU 0

0 0 0

 (3.49)

K =


0 0 0

0 0 Kφ −mshsrg

0 0 0

 (3.50)

The input to the model is defined as the front and rear tire forces in the lateral direction

such that

~u =

Ff
Fr

 (3.51)

and the force matrix is defined as

F =


1 1

a −b

0 0

 (3.52)

The equations of motion for the roll model can also be represented in state space form,

facilitating numerical simulation of the system. The state space form can be derived from

the MDK form by first rewriting the lateral forces of the system. Under the linear tire

model assumption, these forces are defined as Ff = Cαfαf and Fr = Cαrαr. As shown

in Section 3.2, the tire slip angles can be written as functions of the velocities of each

and front steering angle as follows:

αf = arctan
(
vfy
vfx

)
− δf ≈

(
vfy
vfx

)
− δf ≈

V + ar

U
− δf (3.53)

αr = arctan
(
vry
vrx

)
≈ vry
vrx
≈ V − br

U
(3.54)
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Substituting Eq. 3.53 and Eq. 3.54 in the lateral force equations and rearranging

produces three equations of motion in the following form:

mV̇ +mshsrφ̈r +
(
mU + bCαr − aCαf

U

)
r −

(
Cαf + Cαr

U

)
V = −Cαfδf (3.55)

(Ixx +msh
2
sr)φ̈r +mshsrV̇ − Ixz ṙ +mshsrUr +Dφφ̇r − (mshsrg −Kφ)φr = 0 (3.56)

Izz ṙ − Ixzφ̈r −
(
a2Cαf + b2Cαr

U

)
r +

(
bCαr − aCαf

U

)
V = −aCαfδf (3.57)

By introducing a fourth equation (which adds φr as a vehicle state),

φ̇r = φ̇r (3.58)

an intermediate MDK model can be introduced in the form

Mint~̇x+Nint~x = Fintδf (3.59)

The state vector of this intermediate model, and ultimately the state space model, is

then defined as

~x =



V

r

φ̇r

φr


(3.60)
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Writing the equations of motion in the form of Eq. 3.59 results in the following matrices:

Mint =



m 0 mshsr 0

mshsr −Ixz Ixx +msh
2
sr 0

0 Izz −Ixz 0

0 0 0 1


(3.61)

Nint =



−Cαf−Cαr
U mU + bCαr−aCαf

U 0 0

0 mshsrU Dφ Kφ −mshsrg

bCαr−aCαf
U

−a2Cαf−b2Cαr
U 0 0

0 0 −1 0


(3.62)

The input to the intermediate model is the front steering angle, δf , with a force matrix

of

Fint =



−Cαf

0

−aCαf

0


(3.63)

The general state space form of

~̇x = A~x+B~u (3.64)

with a state vector defined in Eq. 3.60, can be obtained from this intermediate form

through the following relationship:

A = −M−1
intNint (3.65)

B = M−1
intFint (3.66)
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If the lateral position and heading of the vehicle are of interest, the A and B matrices

can be modified to include these states with a state vector of the form

~x =



y

V

r

φ̇r

φr

ψ



(3.67)

The A and B matrices of the state space model then become

A =


0

[
1 0 0 0

]
U

04×1 [Aint] 04×1

0
[
0 1 0 0

]
0

 (3.68)

B =


0

[Bint]

0

 (3.69)

where Aint and Bint are the matrices of Eq. 3.65 and Eq. 3.66 respectively.

3.3.1 Roll Model with Terrain Input

Similar to the bicycle model derivation of Section 3.2.1, the equations of motion for the

3DOF roll model can also be modified to include terrain angle, φt. A diagram of the roll

model on a banked slope is shown in Fig. 3.5.

For the 3DOF roll model with small angle approximations, the terrain affects the
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Figure 3.5. Roll model on a banked slope.

equations of motion (Eq. 3.41, Eq. 3.43, and Eq. 3.45) in the following manner:

ΣFy = Ff + Fr +mg sin(φt) = Ff + Fr +mgφt (3.70)

ΣMx = −Dφ −Kφφr +mshsrg(φr + φt) (3.71)

ΣMz = Izz ṙ = aFf − bFr (3.72)

Once again, the terrain angle does not affect the sum of moments about the vehicle’s

z-axis. These equations also assume a positive roll angle is measured clockwise from the

roll center.

The terrain angle is treated as a linear input to the system dynamics, which can be

written in the form

Mint~̇x+Nint~x = Fint

δf
φt

 (3.73)

where ~x is the state vector defined in Eq. 3.60. The matricesMint and Nint are identical

to those derived in for the standard roll model and are expressed in Eq. 3.61 and Eq.
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3.62 respectively. The new Fint matrix includes the effects of the terrain and is written

as

Fint =



−Cαf mg

0 mshsrg

−aCαf 0

0 0


(3.74)

The A and B matrices of the state space model are then obtained through the

relationship found previously:

A = −M−1
intNint (3.75)

B = M−1
intFint (3.76)

3.3.2 Roll Model with Tire Lag Dynamics

Similar to the bicycle model derivation of Section 3.2.2, tire lag effects for the roll model

can be expressed as the first-order differential equations of Eq. 3.25 and Eq. 3.26. The

front and rear tire forces are again added as states in the model.

Using Eq. 3.41, Eq. 3.43, Eq. 3.45, and Eq. 3.58, with the addition of Eq. 3.25 and

Eq. 3.26, the Mint, Nint, and Fint matrices of

Mint~̇x+Nint~x = Fintδf (3.77)
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can be modified in the following form:

Mint =



m 0 mshsr 0 0 0

mshsr −Ixz Ixx +msh
2
sr 0 0 0

0 Izz −Ixz 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(3.78)

Nint =



0 mU 0 0 −1 −1

0 mshsrU Dφ Kφ −mshsrg 0 0

0 0 0 0 −a b

0 0 −1 0 0 0
−Cαf
σf

−aCαf
σf

0 0 U
σf

0

−Cαr
σr

bCαr
σr

0 0 0 U
σr



(3.79)

Fint =



0

0

0

0
−CαfU
σf

0



(3.80)

When bank angle input, φt, is also considered as a second input, the Fint matrix is
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written as

Fint =



0 mg

0 mshsrg

0 0

0 0
−CαfU
σf

0

0 0



(3.81)

The state vector, ~x, of this intermediate model is given as

~x =



V

r

φ̇r

φr

Ff

Fr



(3.82)

Finally, the A and B matrices of the state space model are obtained through the

relationship found previously:

A = −M−1
intNint (3.83)

B = M−1
intFint (3.84)

3.4 Comparison of Vehicle Models

This section aims to compare the dynamics of the vehicle models presented above. Specif-

ically, four of the models were simulated: the 2DOF model with and without tire lag,

and the 3DOF model with and without tire lag. The agreement between these models

was studied at a low speed of 13.4 m/s (30 mph) and a high speed of 26.8 m/s (60 mph).
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Table 3.3. Vehicle parameters for 1989 GMC 2500 Pick-up Truck.

Symbol Value Unit
m 3255 kg
ms 2956 kg
a 1.459 m
b 1.895 m
h 1.234 m
hsr 0.781 m
Cαf -120,000 N/rad
Cαr -120,000 N/rad
Tr 1.615 m
Ixx 1830 kg-m2

Iyy 6488 kg-m2

Izz 7913 kg-m2

Ixz 500 kg-m2

Dφ 4500 N-m-s/rad
Kφ 145,330 N-m/rad
σf 0.7 m
σr 0.23 m
g 9.81 m/s2

The simulations for each speed were also conducted for both a flat road and an 8 deg

bank angle. An open-loop steering pulse was chosen as the input in order to visualize

the subtle differences between each model. In particular, the lateral velocity and yaw

rate were examined for each model due to their overall description of the vehicle motion.

Due to the focus of this thesis, vehicle parameters for a rollover-prone truck were

used in the simulations (Table 3.3). The parameters shown in Table 3.3 were also used

for all simulations and results obtained in subsequent chapters. The simulation results

for the steering pulse on a flat road are presented in Fig. 3.6, while the results on an 8

deg bank angle are presented in Fig. 3.7.

It can be seen from both Fig. 3.6 and Fig. 3.7 that the models are quite similar, but

do in fact exhibit small differences. The most evident difference is shown by the lateral

velocity of the 2DOF model versus that of the 3DOF model. The included roll dynamics
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Figure 3.6. Lateral velocity and yaw rate response of each vehicle model to an open-loop
steering pulse at 13.4 m/s and 26.8 m/s on a flat road. Note: “TL” in the legend denotes the
vehicle model with tire lag.

of the vehicle in the 3DOF model result in exaggerated lateral motion when compared

to the rigid 2DOF model. This is especially evident in the low-speed simulation, where

the roll dynamics of the vehicle have time to evolve given the sudden steering maneuver.

The influence of tire lag effects can also be seen from the lateral velocity and yaw

rate response of the vehicle models. While the effect of tire lag is indeed minimal, there

is noticeable lag in the vehicle response to changes in steering input. Once again, the

differences are more apparent in the low-speed simulation. At higher speeds, the tires

rotate faster and can respond to changes in steering more quickly; thus, the effect of

tire lag becomes less prominent. This is evidenced by the close agreement between the

models with and without tire lag in the high-speed simulation when compared to the

low-speed simulation. Small, often ignored dynamics such as these can in fact influence

vehicle behavior. Tire lag dynamics become especially important when considering situ-
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Figure 3.7. Lateral velocity and yaw rate response of each vehicle model to an open-loop
steering pulse at 13.4 m/s and 26.8 m/s on an 8 deg bank angle. Note: “TL” in the legend
denotes the vehicle model with tire lag.

ations such as rollover, where delay in the tire response can amplify the vehicle’s rollover

propensity.
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Chapter 4 |

Vehicle Rollover Detection

4.1 Introduction

This chapter introduces the vehicle rollover metric applied in this thesis, the zero-moment

point (ZMP) [40, 47, 48]. First, the concept of the zero-moment point is explained,

followed by its derivation for the vehicle models discussed in Chapter 3. Next, the theory

behind linear state preview is discussed and how this theory can be applied to predict

a vehicle’s roll behavior in the future. Finally, an analysis is performed to determine

the minimum state preview time needed to prevent rollover under worst-case driving

maneuvers.

4.2 Concept of Zero-Moment Point

This section discusses the concept behind the zero-moment point (ZMP) so that it can

be understood intuitively. The zero-moment point is defined as the point on the ground

where the summation of tipping moments, due to gravity and inertia forces, equals

zero [49]. For a general object, if the ZMP moves outside the object’s support polygon,

i.e., the contact points of the object on the ground, it will overturn. This concept is
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Figure 4.1. Free-body diagrams of a mass on a hinged surface.

illustrated in Fig. 4.1, where a mass is resting without slip on a hinged surface. In Fig.

4.1(a), the surface is perfectly level. This results in the reaction force acting directly

beneath the object’s center of mass in the middle of the object; this reaction point is the

ZMP. As the surface is inclined in Fig. 4.1(b), this reaction shifts to the right in order to

balance the object’s weight and satisfy the definition of ZMP. Eventually, there exists an

angle, as in Fig. 4.1(c), where the reaction force is no longer able to balance the object’s

weight (or inertial dynamics) and the ZMP moves outside the object’s support polygon.

This creates a tipping moment such that the mass is no longer stable and will overturn.

In the context of vehicle stability, the zero-moment point becomes very useful when

applied as a vehicle rollover metric [40,47,48]. There are several advantages inherent in

the zero-moment point that warrant its use in this research. First, the zero-moment point

explicitly accounts for terrain effects in its derivation, as will be shown in Section 4.3.

This is extremely valuable when evaluating the rollover propensity of a vehicle on realistic

driving surfaces. Second, zero-moment point analysis does not require knowledge of any

ground-vehicle forces. By treating the vehicle as a kinematic chain, the zero-moment

point can be calculated through each body’s net moment contribution. This allows the

ZMP to be calculated through inertial measurements of the vehicle.
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Although the location of the zero-moment point exists in three-dimensional space,

only its coordinate along the vehicle’s body-fixed y-axis is of interest for the application

to vehicle rollover [40]. This coordinate, termed yzmp, is measured on the ground from

the vehicle’s centerline and is the metric used to evaluate the vehicle’s rollover propensity.

Now, as mentioned in the example of Fig. 4.1, if the ZMP moves outside the object’s

support polygon, the object will overturn. For a vehicle, the support polygon is defined

by the points where the tires contact the ground (assumed to be at the center of the

wheel hub). Thus, if yzmp moves outside the tires (|yzmp| ≥ Tr
2 ), wheel lift will commence.

4.3 Formulation of Zero-Moment Point

4.3.1 Zero-Moment Point Derivation

This section derives the location of the ZMP for a vehicle. The derivation can be done for

both the 2DOF bicycle model and the 3DOF roll model. Lapapong showed in previous

work [40,47,48], however, that when applied to a real vehicle, the results of yzmp for the

bicycle model and roll model are nearly identical. Therefore, this paper only presents

the yzmp derivation for the simpler bicycle model. The reader is directed to [40] for full

derivations of yzmp for both models.

Consider the general kinematic chain shown in Fig. 4.2. In the illustration, the

middle body is assumed to have the following properties: a mass of mi, a translational

velocity of ~vi, a translational acceleration of ~ai, an angular velocity of ~ωi, an angular

acceleration of ~̇ωi, and an inertia tensor of Ii about its center of mass. Using the general

equations of motion of the chain [54–56] and D’Alembert’s principle [56], the sum of

moments about point A can be written as

~MA =
∑
i

(~pi ×mi~ai) +
∑
i

(Ii~̇ωi + ~ωi × Ii~ωi)−
∑
i

(~pi ×mi~g) (4.1)
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Figure 4.2. Generalized kinematic chain.

where ~pi = ~ri − ~rzmp. Point A then becomes the zero-moment point when ~MA =

[0 0 Mz]
T .

Now, the generalized kinematic chain of Fig. 4.2 can be applied to the 2DOF bicycle

model, as seen in Fig. 4.3. The notation used throughout the derivation can be referred

to back in Table 3.2. The location of the zero-moment point in three-dimensional space,

with respect to the vehicle’s body-fixed coordinate frame, is given by the vector

~rzmp = xzmpî+ yzmpĵ + zzmpk̂ (4.2)

Recalling that the zero-moment point must lie on the ground, zzmp can be expressed in

terms of the terrain and vehicle properties shown in Fig. 4.3. When φr > φt, zzmp is

calculated as such:

zzmp = h+
(
Tr
2 − yzmp

)
tan(φr − φt) (4.3)
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In the case where φr < φt, Eq. 4.3 is slightly modified to produce the following:

zzmp = h+
(
Tr
2 + yzmp

)
tan(−φr + φt) (4.4)

Combining Eq. 4.3 and Eq. 4.4 to account for all conditions results in the following:

zzmp = h+ Tr
2 | tan(φr − φt)| − yzmp tan(φr − φt) (4.5)

Thus, Eq. 4.2 can be rewritten as such:

~rzmp = xzmpî+ yzmpĵ +
[
h+ Tr

2 | tan(φr − φt)| − yzmp tan(φr − φt)
]
k̂ (4.6)

Equation 4.6 effectively removes zzmp from the vector describing the location of the

zero-moment point and defines it in terms of xzmp and yzmp.

The remaining terms of Eq. 4.1 will now be discussed. The body-fixed coordinate

system of the bicycle model is attached to the vehicle’s center of mass; this means that
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~ri = 0 and ~pi = −~rzmp. Additionally, because the vehicle is not constrained in any

direction, the velocities and accelerations of Eq. 4.1 can be expressed as the following:

~ω = φ̇r î+ θ̇ĵ + rk̂ (4.7)

~̇ω = φ̈r î+ θ̈ĵ + ṙk̂ (4.8)

~aG = aGxî+ aGy ĵ + aGzk̂ (4.9)

where ~aG is the linear acceleration of the center of mass. Due to the properties of the

vehicle, the inertia tensor is defined as

I =


Ixx 0 −Ixz

0 Iyy −Iyz

−Ixz −Iyz Izz

 (4.10)

where Ixy = 0 due to the assumption that the vehicle is symmetric about the xz-plane.

Finally, the acceleration due to gravity of Eq. 4.1, when expressed in the vehicle’s body-

fixed coordinates, takes the form

~g = −g sin(θ)̂i+ g sin(φr) cos(θ)ĵ + g cos(φr) cos(θ)k̂ (4.11)

Equations 4.6 - 4.11 can now be substituted into Eq. 4.1. Setting the x and y

components equal to zero ( ~MA = [0 0 Mz]
T ) and rearranging produces the nonlinear

solution for yzmp:

yzmp = {mg cos(θ) sin(φr)[Tr| tan(φr − φt)|+ 2h]−maGy[Tr| tan(φr − φt)|+ 2h]

− 2Ixxφ̈r + 2Ixz ṙ + 2Iyz(θ̇2 − r2) + 2(Ixz + Iyy − Izz)θ̇r}

/{2m[g cos(θ) cos(φt) sec(φr − φt)− aGy tan(φr − φt)− aGz]}

(4.12)
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A linearized version of yzmp, found in [48], is expressed as the following:

yzmp = −Ixx
mg

(φ̈r + φ̈t) + hsr(φr + φt)−
hsr
g
aGy (4.13)

Equation 4.13 is the formulation of yzmp that is used for the remainder of the paper.

4.3.2 Inclusion of yzmp in the Vehicle Model

The reader should now notice that Eq. 4.13 is essentially a linear combination of the

vehicle’s states and inputs for the roll model, where, as discussed in Chapter 3, the bank

angle of the road is treated as a linear input to the system. While φ̈r and ay are not

states themselves, they can be expressed as linear combinations of the states in the form

φ̈r = [0 0 0 1 0 0][A~x+B~u] (4.14)

ay = [0 1 0 0 0 0][A~x+B~u] + Ur (4.15)

where the state vector of interest for the roll model is

~x =



y

V

r

φ̇r

φr

ψ



(4.16)

and the input vector is

~u =

δf
φt

 (4.17)
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Substituting Eq. 4.14 and Eq. 4.15 into Eq. 4.13 and rearranging terms produces

yzmp as an explicit linear combination of states and inputs

yzmp =
[
0 −hsr

g
0 −Ixx

mg
0 0

]
[A~x+B~u] + hsr

(
φr + φt −

Ur

g

)
(4.18)

where φ̈t = 0 by assuming that the terrain bank angle is constant. Thus, Eq. 4.18 can

be used to add yzmp as an output of the system.

4.4 Formulation of Previewed Zero-Moment Point

4.4.1 Generalized Preview Solution of a Linear Dynamic System

The methodology for obtaining previewed state information will now be introduced.

Predicting the states of a dynamic system is done by extending the current states and

inputs over a specified preview horizon, i.e., the time interval into the future. Considering

the following linear system,

~̇x(t) = A~x(t) +B~u(t)

~y(t) = C~x(t) +D~u(t)
(4.19)

the general solution of the state vector at the preview time is given by the following:

~x(t+ T ) = Φ(t+ T, t)~x(t) +
∫ t+T

t
Φ(t+ T, τ)B(τ)u(τ)dτ (4.20)

where T is the preview interval and Φ is the system’s state transition matrix. The

state transition matrix is determined by the Peano-Baker series, which for a linear time-
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invariant system, reduces to the matrix exponential in the form

Φ(t+ T, t) =
∞∑
k=0

AkT k

k! = eAT (4.21)

The solution given by Eq. 4.20 and Eq. 4.21 produces the state vector over the pre-

view horizon given the current state vector and the input over the preview horizon. This

solution can be simplified by assuming that the system is time-invariant and that the

inputs remain constant over the (short) preview interval. Additionally, further simplifica-

tion is possible for the case in which only the state vector at time t+T is desired, known

as single point preview, rather than over the entire preview horizon. These assumptions

reduce Eq. 4.20 to the following:

~x(t+ T ) = Φ(t+ T, t)~x(t) + ΨTB~u(t) (4.22)

where Ψ is defined as

Ψ = I +
∞∑
k=1

(TA)k

(k + 1)! (4.23)

and I is the identity matrix. It should be noted that Eq. 4.23 does not quickly converge

when the elements of the A matrix are large. Therefore, an alternate calculation is

presented in Section 4.5.3 for these cases.

Equation 4.22 and the state transition matrix definition of Eq. 4.21 can be applied to

obtain the final previewed state vector. For this paper, the terms Ap and Bp are used to

identify the state and input matrices, respectively, of the previewed state vector. These

take the form

Ap = Φ(t+ T, t) = eAT (4.24)

Bp = ΨTB (4.25)
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such that Eq. 4.22 is written as

~x(t+ T ) = Ap~x(t) +Bp~u(t) (4.26)

4.4.2 Inclusion of Previewed yZMP in the Vehicle Model

The solution of the previewed state vector can now be applied in the context of vehicle

rollover. For this application, the desired output of the system is the previewed value of

yzmp. This information allows decisions regarding vehicle control to be made based on

the vehicle’s predicted roll stability in the future. The previewed value of yzmp, termed

yzmp(t + T ), can be obtained by selecting the appropriate C and D output matrices of

the state space model.

Equation 4.13 must now be formulated as a linear combination of the previewed

vehicle states. In a similar fashion to that of Section 4.3.2, the roll acceleration at the

preview time is given by

φ̈r(t+ T ) = [0 0 0 1 0 0][A~x(t+ T ) +B~u(t+ T )] (4.27)

Recognizing that all inputs are assumed to be constant over the preview horizon such

that ~u(t + T ) = ~u(t) and substituting Eq. 4.26 gives the future roll acceleration based

on the current states and inputs:

φ̈r(t+ T ) = [0 0 0 1 0 0][A[Ap~x(t) +Bp~u(t)] +B~u(t)] (4.28)

Similarly, the previewed roll angle and previewed lateral acceleration can be written in

this manner as

φr(t+ T ) = [0 0 0 0 1 0][Ap~x(t) +Bp~u(t)] (4.29)
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ay(t+ T ) = [0 1 0 0 0 0][A[Ap~x(t) +Bp~u(t)] +B~u(t)]

+ U [0 0 1 0 0 0][Ap~x(t) +Bp~u(t)]
(4.30)

Substituting Eq. 4.28 - 4.30 into Eq. 4.13 gives yzmp at the preview time as a function

of the current states and inputs:

yzmp(t+ T ) =
[
0 −hsr

g
0 −Ixx

mg
0 0

]
[A[Ap~x(t) +Bp~u(t)] +B~u(t)]

+
[
0 0 −hsrU

g
0 hsr 0

]
[Ap~x(t) +Bp~u(t)] + hsrφt

(4.31)

Once again, Eq. 4.31 can be used to add previewed yzmp as an output of the state space

model.

4.5 Minimum Preview Time Needed to Prevent Vehicle Rollover

An important application of previewed yzmp is to detect when a vehicle’s present steer-

ing behavior, along with its current state, could soon result in wheel lift. Identifying

impending rollover in the future allows the vehicle to display warnings to the driver or

execute a corrective intervention in order to mitigate the risk. For actions such as these

to be feasible, however, it is necessary to determine the minimum preview time necessary

to predict and prevent wheel lift. One of the key tuning parameters in predictive control

approaches is the preview horizon length. Insufficient preview does not provide enough

advanced warning, whereas too much preview degrades the accuracy of the predictive

state calculation. Additionally, the length of the preview horizon greatly affects the

computation time for MPC approaches; this means it is desirable to keep the preview

horizon as short as possible. However, in much of the literature discussed in Chapter

2, the preview horizon with respect to rollover is often determined using a guess/check

methodology. The literature [17, 18, 24–28, 45] suggests a range of preview horizons be-
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tween 0.2 sec and 2.0 sec, which is a wide window of uncertainty. Therefore, the goal

of this section is to explicitly determine the necessary preview time for representative

rollover prevention strategies.

To this end, a “worst-case” driving situation for rollover, as defined in [48], was

considered such that the vehicle has a high rollover propensity. The vehicles with the

highest risk of rollover are typically SUVs and trucks; thererfore, the parameters for a

1989 GMC 2500 pick-up truck were used due to the vehicle’s high center-of-gravity and

its availability for testing. The vehicle parameter values used in the simulations, as well

as throughout the rest of the paper, can be seen in Table 3.3. In addition to rollover-

prone parameters, the vehicle was assumed to be travelling at 26.8 m/s (60 mph) and

experiencing a terrain bank angle of 8 deg (14% superelevation), a value typical of the

road profile on a sharp highway curve [57].

Under these circumstances, simulations were performed in which the driver steers up

the slope of the road, meant to approximate a driver performing an evasive maneuver

with a severe course change. Specifically, the initial driver steering input, δf , follows a

sinusoidal trajectory to a desired steering magnitude and then remains constant in the

following form:

δf =


A

2 sin
(

2πft− π

2

)
+ A

2 for 0 < t ≤ 1
2f

A for t >
1

2f

(4.32)

where A is the steering angle magnitude (rad) of the tires, and f is the steering frequency

(Hz). A scenario such as this would occur if a driver is attemping to avoid an obstacle

on the road, or if he/she has drifted off the road and is trying to correct his/her course.
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4.5.1 Corrective Steering Maneuver #1

In order to mitigate the rollover threat in the scenario presented above, a corrective

steering action was chosen as the intervention strategy if the vehicle predicted imminent

wheel lift, i.e., |yzmp(t + T )| ≥ Tr
2 . The corrective action considered in this section is

open-loop in nature. An open-loop analysis is beneficial to examine and understand the

preview horizon because it limits the coupling between a feedback algorithm and the

behavior of yzmp. The simplicity of an open-loop framework also allows for a thorough

development of the preview horizon’s effect on roll stability, without narrowing the inter-

vention to a particular steering law. This way, the results that follow can be modified for

other control inputs, such as braking, or extended for use with closed-loop intervention

strategies, as will be discussed in Chapter 6. It should also be noted that the following

open-loop steering actions are not considered optimal intervention strategies and are not

suggested to be implemented in practice. Rather, these maneuvers are simply meant

to represent the gross behavior of a hypothetical driver in an emergency scenario and

subsequently examine their effect on the preview horizon necessary to prevent wheel lift.

The corrective steering intervention was implemented such that if the vehicle de-

tects imminent wheel lift, the steering input follows a sinusoidal trajectory (of the same

frequency as Eq. 4.32) back to a zero steering input in the form:

if yzmp(t+ T ) ≥ Tr
2 at t = t∗

δf =


A

2 sin
(

2πft+ π

2

)
+ A

2 for t∗ < t ≤ t∗ + 1
2f

0 for t > t∗ + 1
2f

(4.33)

A generalized plot of Eq. 4.32 with the corrective steering intervention of Eq. 4.33 is

shown in Fig. 4.4 for further understanding. The axes of Fig. 4.4 have purposefully

been generalized for any value of A and f .
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Figure 4.4. Generalied example plot of the steering input for corrective steering maneuver #1
simulations.

Simulations of the corrective steering intervention shown in Fig. 4.4 investigated

how the severity of the initial driver steering input, and subsequent corrective action,

affect the minimum preview time needed to prevent wheel lift. This consisted of testing

combinations of steering angle (over the range allowed by the limits of the steering rack)

and steering frequency (over the range of feasible maneuvers). It was also assumed that

the tires did not skid for the simulated maneuvers. Lapapong showed in [48] that wheel

lift will occur before the tires skid for steering frequencies below 0.9 Hz. Thus, results

for steering combinations above this frequency should be considered questionable, as

skidding is likely to precede rollover.

An iterative simulation structure was used to determine the minimum preview time

needed to prevent wheel lift. A successful rollover prevention was defined to have oc-

curred when the current (“real-time”) value of yzmp remained within the vehicle’s track

width for the entirety of the maneuver. Thus, the wheel lift thresholds for the vehicle

are defined as −Tr
2 ≤ yzmp ≤ Tr

2 , since yzmp is measured from the vehicle’s centerline.
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#1 simulations. This plot was created for a steering combination of -8.5 deg steering angle and
0.55 Hz steering frequency, resulting in a necessary preview time of 0.33 s.

For each steering combination, the preview time was iteratively increased from zero by

0.01 sec until the corrective steering maneuver succeeded in preventing wheel lift. An

example of this process is shown in Fig. 4.5, where yzmp has been normalized by di-

viding by half the track width such that values above 1 or below -1 signify wheel lift.

This figure shows how the peak yzmp value decreases as the preview time is increased,

up until the point where the vehicle remains beneath the wheel lift threshold. To asses

the fidelity of the linear model, the simulations were also performed using the nonlinear

simulation package CarSim. In CarSim, the preview time was iteratively increased in

the same fashion until the vertical force on every tire remained positive (no wheel lift)

for the entirety of the maneuver.

Figure 4.6 shows the results of one specific steering combination, simulated using the

minimum preview time for that combination. Specifically, Fig. 4.6(a) illustrates how the

intervention strategy of Eq. 4.33, implemented when yzmp(t+ T ) rises above the wheel

lift threshold, is able to keep the current value of yzmp below this threshold. When the
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Figure 4.6. yzmp (a) with and (b) without corrective steering maneuver #1. This plot was
created for a steering combination of -8.5 deg steering angle and 0.55 Hz steering frequency with
a preview time of 0.33 s.

same initial driver input is simulated without the intervention strategy, shown in Fig.

4.6(b), the vehicle clearly passes the threshold and experiences wheel lift. Therefore,

these results show that yzmp(t+ T ) can be used as an indicator to prevent future wheel

lift. Figure 4.6 also shows that the roll model and CarSim results agree quite well, with

the roll model behaving slightly more conservative as indicated by the higher peak values.

This suggests that the linear roll model can be used in further study.

The simulations of Fig. 4.5 and Fig. 4.6 were then repeated over the entire test suite

of steering combinations, using the same methods described above to determine the

necessary preview time. The results of this analysis are shown in Fig. 4.7 in the form of

a contour plot for the linear roll model (top) and CarSim (bottom). This plot indicates

that longer preview times are needed for low frequency maneuvers (lower frequency

means a less severe steering input). This relationship can be explained from the Bode

plots between steering input - yzmp and steering input - yzmp(t + T ), shown in Fig.

4.8. The frequency response of yzmp exhibits a notch filter effect at higher frequencies,

while the frequency response of yzmp(t+ T ) remains relatively constant. Thus, because

the yzmp(t+ T ) calculation assumes a constant steering input over the preview horizon,
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Figure 4.7. Contour plots of the minimum preview times (sec) needed to prevent wheel lift for
corrective steering maneuver #1 for (top) linear roll model and (bottom) CarSim.

steering inputs at higher frequencies cause yzmp(t+T ) to rise quickly when compared to

yzmp. This is a result of the high gain difference between yzmp(t+T ) and yzmp and leads

to earlier detection and correction of the rollover threat. Impending wheel lift from low

frequency steering inputs, however, requires more preview to detect a threat due to the

low gain difference, where yzmp(t+T ) and yzmp rise with approximately the same slope.

Overall, the longest preview time of the steering combinations tested for corrective

maneuver #1 was 0.66 sec for a 23 deg, 0.16 Hz steering input.

4.5.2 Corrective Steering Maneuver #2

A second, slightly more severe, corrective steering intervention was also simulated that

consists of two separate corrections: one steering away from the direction of travel,

and one correcting back toward the direction of travel. This maneuver was designed
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Figure 4.8. Bode plot of steering input - yzmp and steering input - yzmp(t+ T ).

to more closely resemble the NHTSA Fishhook prescribed for rollover testing described

in Chapter 2 [34]. A second consideration of this maneuver is that it keeps the vehicle

traveling in its original direction, but with an offset, as opposed to corrective steering

maneuver #1 which steers the vehicle away. To remain in the original direction of

travel, the vehicle must steer back in similar fashion to that of a lane change. This could

potentially result in an overcorrection that puts the vehicle at risk. Thus, the scenario

considered in this section consists of a course departure, followed by a course correction.

All conditions and parameters remain the same for this new maneuver, however, now

if the vehicle detects impending wheel lift during the initial steering input, it implements

a sinusoidal correction to the opposite steering angle (overcorrection). Additionally, be-

cause this overcorrection is potentially dangerous itself, if the vehicle detects impending
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Figure 4.9. Generalized example plot of the steering input for corrective steering maneuver #2
simulations.

wheel lift during the overcorrection, it then returns to a zero steering input. This inter-

vention strategy is illustrated graphically in Fig. 4.9 with generalized axes and described

mathematically by the following:

if yzmp(t+ T ) ≥ Tr
2 at t = t∗

δf =


A sin

(
2πft+ π

2

)
for t∗ < t ≤ t∗ + 1

2f
−A for t > t∗ + 1

2f

if yzmp(t+ T ) ≤ −Tr2 at t = t∗∗

δf =


−A2 sin

(
2πft+ π

2

)
− A

2 for t∗∗ < t ≤ t∗∗ + 1
2f

0 for t > t∗∗ + 1
2f

(4.34)

This open-loop steering trajectory, specified by Eq. 4.32 and Eq. 4.34, now mimics a

driver that is aggressively steering to both avoid an obstacle and remain in the original

direction of travel. Once again, this framework is not meant to produce an optimal
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control law, but instead to create repeatable driver behavior used to analyze the necessary

preview horizon.

The iterative procedure for determining the necessary preview time remains the same

for this new steering intervention and is illustrated in Fig. 4.10. It can be seen in Fig.

4.10 that sufficient preview is now needed to prevent wheel lift on both sides of the

vehicle due to the overcorrection. The simulation outputs for the roll model and CarSim

are shown in Fig. 4.11 for one specific steering combination. Figure 4.11(a) shows that

corrective steering maneuver #2 is able to prevent wheel lift for both the initial driver

steering input and the subsequent overcorrection, while 4.11(b) indicates wheel lift has

occurred for the same maneuver without secondary intervention.

Once again, the simulation procedures were repeated over the test suite of steering

combinations to determine the necessary preview time for corrective steering maneuver

#2. The results are shown in Fig. 4.12 in the form of a contour plot. Overall, the

necessary preview times exhibit the same trends as those seen in Section 4.5.1; however,
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slightly less preview (approximately 0.1 sec) is needed for roll model predictions using

corrective steering maneuver #2. This is due to the fact that the initial driver steering

input is still the main threat and the overcorrection addresses this threat more aggres-

sively. The similarity of the results between the two intervention strategies suggests that

further analysis of third, fourth, etc. corrections is probably not necessary.

4.5.3 Tire Lag Effects on Preview Horizon

As noted in Chapter 3, tire lag effects are important to consider when analyzing the

roll dynamics of a vehicle. The delay of the tire response could ultimately amplify the

vehicle’s rollover propensity under certain driving conditions. This is especially true

for steering maneuvers, as the vehicle cannot immediately generate lateral force. The

influence of tire lag dynamics is also dependent on the longitudinal velocity of the vehicle.

As the tires rotate faster, they are able to generate lateral force and respond to changes

in steering more quickly. Thus, tire lag effects become more prominent at lower speeds.

To address these concerns, simulations of corrective steering maneuver #1 were per-

formed inclusive of tire lag dynamics. Corrective steering #2 simulations were not re-
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Figure 4.12. Contour plots of the minimum preview times (sec) needed to prevent wheel lift
for corrective steering maneuver #2 for (top) linear roll model and (bottom) CarSim.

peated due to the similarity of results and shorter preview horizons. Tire relaxation

values of 0.7 m and 0.23 m were used for the front and rear tires, respectively. These

values were found by obtaining a range of standard values from [58] that were then tuned

for the test vehicle.

Initial simulations showed that the infinite series of Eq. 4.25 and Eq. 4.23 used to

calculate Bp converged too slowly to be applied to the roll model inclusive of tire lag.

This resulted from the fact that several terms of the tire lag model state space matrices

were orders of magnitude larger than terms of the state space matrices without tire lag.

Further testing indicated that this also occurred for long preview times (greater than 1.0

sec), even in the standard roll model. To address this problem, an alternate method [59]

was used to calculate Bp in discretized form using small time steps, τ , added up over
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the preview horizon in the following form:

Bp =
n−1∑
m=0

(An−1−m
p )Bτ (4.35)

Bp =
n−1∑
m=0

[eA(T−t)(n−1−m)]Bτ (4.36)

where n = T/τ . If the time step size is small enough, the Euler approximation of Ap

can be used instead such that Eq. 4.35 becomes

Bp =
n−1∑
m=0

[(I +Aτ)n−1−m]Bτ (4.37)

Equation 4.35 provides a more robust solution of the previewed input matrix, Bp. One

drawback of this approach, however, is that it is computationally expensive, hence why

it was not used in previous simulations.

Using the new formulation of Bp, the simulations were repeated over the test suite

of steering combinations with the tire lag model. To examine the effect of longitudinal

speed, the simulations were also performed over a range of speeds from 11.2 m/s (25

mph) to 26.8 m/s (60 mph). Once again, the vehicle parameters of Table 3.3 were used

with a bank angle of 8 deg (14 % superelevation). Figure 4.13 shows the results of the

simulations with and without tire lag for the steering combination that required the most

preview. Plots of the remaining steering combinations are not included; however, the

results exhibit the same trends as those seen in Fig. 4.13. Overall, the effect of tire lag

on the necessary preview time is relatively small. Speeds below 16 m/s saw an increase

of the preview time of approximately 0.04 s while speeds above 16 m/s saw an increase

of only 0.01 - 0.02 s. A second insight is that the relationship between preview time and

speed appears to be approximately linear; however, further testing should be done to

confirm this relationship.
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4.5.4 Preview Horizon for Modified Vehicle Configurations

So far, Section 4.5 has only considered a worst-case vehicle configuration for rollover.

Most vehicles, however, are not subject to these conditions and have a lower rollover

propensity; therefore, they should not need as much preview to mitigate the risk. To

test this hypothesis, corrective steering maneuver #1 simulations (without tire lag at

26.8 m/s and with an 8 deg bank angle) were once again repeated, but for vehicle

configurations with an artificially decreased CG height. Two variations of the truck used

in the simulations above were tested, with parameter modifications shown in Table 4.1.

In an effort to generalize the minimum preview curves, each vehicle variation was also

correlated with its corresponding Static Stability Factor (SSF) [35], where the SSF was

defined previously as

SSF = Tr
2h (4.38)
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Table 4.1. Variations to the CG height of the simulated 1989 GMC 2500 Pick-up Truck.

Vehicle Variation h hsr SSF

Original (#1) 1.234 m 0.781 m 0.654
#2 1.0 m 1.06 m 0.808
#3 0.7 m 0.75 m 1.155

The SSF is used here because it offers a generalized rating for rollover resistance based

purely on the vehicle’s physical design, allowing one to obtain information about the

necessary preview horizon in the absence of a dynamic analysis. Table 4.1 also includes

the SSF value for each vehicle variation.

The results of the simulations for the modified truck parameters are shown in Fig.

4.14. While the same trends of Fig. 4.7 and Fig. 4.12 are present, it can be seen that less
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Figure 4.14. Contour plots of the minimum preview times (sec) needed to prevent wheel lift for
corrective steering maneuver #1 for (top) vehicle variation #2 and (bottom) vehicle variation
#3.
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vehicle configurations (-23 deg, 0.2 Hz steering combination). SSF is the vehicle’s Static Stability
Factor, a measure of rollover propensity.

preview is needed for wheel lift prevention as the CG height is decreased. As expected,

Fig. 4.14 also shows an increase in the “safe zone” where no rollover occurs. Specifically,

lower steering magnitudes do not induce wheel lift as the CG height is decreased.

Figure 4.15 shows how preview horizon information can be generalized by correlating

each vehicle variation’s SSF value with the necessary preview time. The results are

shown once again for the steering combination that required the most preview. Plots of

the remaining steering combinations are not included; however, the results exhibit the

same trends as those seen in Fig. 4.15. Ultimately, generalized information such as this

could be used as a guide for quickly choosing an estimate of the required preview horizon

when designing intervention strategies.
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4.5.5 Bank Angle Effects on Preview Horizon

Finally, this section examines how the preview horizon changes for different road superel-

evation values. The bank angle used in the simulations of the previous sections (8 deg)

was meant to create a “worst-case” situation for rollover. While this value is represen-

tative of the terrain seen on a sharp highway curve [57], it is relatively steep compared

to the majority of driving conditions. Therefore, the corrective steering maneuver #1

simulations were repeated for two additional bank angle values: a flat road (0 deg) and

an intermediate slope (4 deg) using the vehicle parameters of Table 3.3.

Figure 4.16 shows minimum preview horizons necessary for the different bank angles

in the form of a contour plot. The results of Fig. 4.16 are intuitive and follow the trends

seen in the previous sections. The milder bank angles decrease the rollover propensity
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of the vehicle, resulting in slightly smaller minimum preview horizons. Additionally, an

increase in the “safe zone” where no rollover occurs is seen for the flat road simulations.

Overall, the ranges of preview times for the 0-deg slope (0.07 sec - 0.55 sec) and 4-deg

slope (0.1 sec - 0.55 sec) are similar to the range seen in Section 4.5.1 for the 8-deg slope.

On average, the minimum preview horizons decreased by 0.06 sec for both the 0-deg

slope and 4-deg slope when compared to the 8-deg slope.
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Chapter 5 |

Open-Loop Collision Avoidance

and Rollover Prevention

5.1 Introduction

This chapter focuses on rollover prevention in the context of collision avoidance; specifi-

cally, the aim is to determine the minimum intervention distance needed for a vehicle to

avoid a collision, while also considering factors such as wheel lift and yaw stability. An

open-loop steering analysis is used to investigate varying degrees of lane change avoid-

ance trajectories. The vehicle’s roll stability and handling stability are then analyzed for

each open-loop lane change maneuver.

The collision avoidance scenario considered in this work is presented in Fig. 5.1.

As shown in the diagram, the scenario considers a vehicle traveling at constant velocity

that is approaching a stationary object. A last-minute avoidance maneuver in the form

of a lane change must be executed in order to avoid this obstacle. This situation is

not uncommon; a scenario such as this could occur for an inattentive driver that is

approaching a traffic jam or a pedestrian in the street. The diagram also shows that as
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Figure 5.1. Collision avoidance scenario: a moving vehicle approaching a stationary object.

the vehicle approaches the object, the avoidance maneuver becomes progressively more

severe, with the last possible intervention distance illustrated byD2. While the maneuver

at distance D2 is capable of avoiding the obstacle, the severity may result in wheel lift

or loss of yaw stability, as indicated by tire skidding. Therefore, the vehicle may need to

intervene earlier, for example at distance D1 or D0. Thus, the purpose of this chapter

is to determine how the threat of wheel lift affects the minimum intervention distance

needed for a safe avoidance maneuver.

First, an idealized scenario is reviewed to determine the minimum intervention dis-

tance when wheel lift and tire skid are not considered as factors in the avoidance strat-

egy. Next, the methodology for determining the open-loop lane change maneuvers is

discussed. Third, the steering intervention strategy for collision avoidance with wheel

lift and tire skid prevention is explained. Finally, the results of the analysis are presented

showing the minimum intervention distance needed for both flat road and banked curve

simulations.
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5.2 Collision Avoidance Without Rollover Consideration

In order to determine how wheel lift and tire skid consideration affect the minimum

intervention distance, it is first necessary to provide a baseline for the idealized inter-

vention distance. The scenario of a moving vehicle approaching a stationary object was

considered as part of the work done by Jansson [20]. In this work, Jansson considers

both a pure braking intervention and a pure steering intervention. The minimum inter-

vention distances for each intervention strategy used in [20] are derived using constant

acceleration equations and given as

Dmin,brake = U2
0

2ax
(5.1)

Dmin,steer =

√√√√( U2

2ay

)
(Tr,host + Tr,obj) + (Tr,host)2 − (Tr,obj)2

4 (5.2)

where ax and ay are the longitudinal and lateral acceleration, respectively. The width

of the vehicle and object are assumed to be 2 m and the vehicle is assumed to achieve

instantaneous accelerations of 9.82 m/s2 for both steering and braking.

The minimum intervention distance for both intervention strategies as a function of

speed as derived in [20] are shown in Fig. 5.2. Here we can see that for low speeds,

braking provides a more effective intervention strategy, whereas at speeds greater than

roughly 12.5 m/s (28 mph), pure steering required less intervention distance. Thus,

because this work does not consider braking intervention, only high speeds (above 12.5

m/s) are considered hereafter.

The results found in [20] provide a good baseline for the idealized distance needed

to avoid a collision, however, they are also limited in several factors. As previously

stated, these results assume the vehicle is able to achieve instantaneous acceleration in
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Figure 5.2. Minimum intervention distance to avoid a collision with a stationary object for pure
braking and pure steering, as found in [20].

the longitudinal and lateral directions, an assumption which neglects the dynamics of

the vehicle. Additionally, these results do not consider factors such as wheel lift, tire

skid, or keeping the vehicle on the road during the avoidance maneuver. The purpose

of the remainder of the chapter is not to suggest an optimized avoidance trajectory, but

to consider these factors in determining the minimum intervention distance for collision

avoidance.

5.3 Determination of Open-Loop Lane Change Steering Inputs

The avoidance maneuver considered in this chapter is an open-loop lane change, as

illustrated in Fig. 5.1. The idea is that the vehicle “knows” that its avoidance trajectory

will take this form under the appropriate circumstances. However, the severity of this

maneuver depends on how fast the vehicle is traveling and at what distance to the
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obstacle the lane change is performed. This trajectory is given by

y = wL
2 cos

(
πU

D
t

)
− wL

2 (5.3)

where y is the lateral position of the vehicle, D is the distance to the obstacle, and wL

is the width of the lane, here assumed to be the standard width of 3.65 m (12 ft).

In order for an open-loop maneuver to be successful, the vehicle must be able to

execute a steering command that satisfies Eq. 5.3 given its current speed and distance

to the obstacle. This open-loop steering command takes the form

δf = A sin(ωt) (5.4)

where A is the steering amplitude and ω is the steering frequency. Essentially, this

consists of a lookup table of steering combinations that result in the lane change trajec-

tory of Eq. 5.3. This strategy only requires that the vehicle decide the proper steering

magnitude and frequency for the open-loop maneuver.

For this work, an iterative algorithm was used to determine the correlation between

Eq. 5.3 and Eq. 5.4. Lane change simulations were performed on the 2DOF vehicle

model over a fixed set of steering magnitudes, while the steering frequency was held

constant according to

ωsteer = 2ωlane = 2πU
D

(5.5)

The lateral deviation of the vehicle over each lane change simulation was recorded, and

the steering combination that resulted in the correct 3.65 m deviation was interpolated

from the data. This process was then repeated over all values of U and D. Vehicle

parameters for a 1989 GMC 2500 pick-up truck, provided in Table 3.3, were used once

again due to the vehicle’s high center of gravity. The results of this iterative analysis are
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Figure 5.3. Results of the iterative analysis to determine the steering magnitudes and frequen-
cies that result in an open-loop 3.65 m (12 ft) lane change.

shown in Fig. 5.3.

Equation 5.5 results from the fact that the lane change must be completed when

the vehicle reaches the obstacle. This requirement ensures the vehicle clears the obsta-

cle regardless of vehicle or obstacle size (assuming the obstacle does not penetrate the

opposite lane) and also provides a conservative estimate of the minimum intervention

distance.

5.4 Steering Intervention for Collision Avoidance on a Flat Road

Once again, an open-loop steering approach was chosen for the preliminary analysis

because it has several benefits when considering last-minute avoidance maneuvers. The

biggest advantages of open-loop control are its simplicity and speed. Open-loop control

does not require the vehicle to calculate an optimized trajectory at every time step, as

is the case for MPC approaches. An open-loop framework also does not need to wait for

the growth of an error term to react, making it faster than a closed-loop implementation
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in an emergency scenario. The vehicle only needs to detect the obstacle (and any in

its surroundings) and perform the intervention. This framework allows the operator to

directly apply any control action and analyze its effects. Therefore, the results of the

analysis performed here can be used in closed-loop design, as will be done in Chapter 6.

5.4.1 Simulation Overview

The open-loop intervention strategy will now be discussed. As previously stated, the

purpose of the analysis is to determine the minimum intervention distance needed for

a safe avoidance maneuver. Here, an avoidance maneuver is deemed safe if the vehicle

avoids the obstacle, remains on the road, prevents wheel lift, and prevents tire skid. The

criteria of avoiding the obstacle and staying on the road, however, have already been
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Figure 5.4. Steering intervention decision flowchart for open-loop collision avoidance with
rollover and tire skid consideration.
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satisfied in the open-loop mapping from Eq. 5.3 to Eq. 5.4. Thus, simulations of the

lane change maneuvers found in Section 5.3 were performed on a flat road with the roll

model to analyze the rollover and tire skid criteria.

The decision flowchart of Fig. 5.4 outlines this process. As the vehicle approaches

the obstacle, it continually plans its avoidance trajectory according to Eq. 5.3 and looks

up the appropriate steering according to Eq. 5.4. It then calculates the maximum value

of yzmp and αf,r over the maneuver to determine if the vehicle will rollover or skid. If

either of these values rise above a predetermined threshold, the avoidance maneuver is

performed. Otherwise, the vehicle continues driving and recalculates.

5.4.2 Simulation Results

The simulation results of the scenario described above are presented in this section for a

full range of speeds and intervention distances. For the wheel lift threshold, the value of

yzmp was normalized as in Chapter 4 such that values above 1 or below -1 indicate wheel

lift. For the tire skid threshold, tire slip angles above 10 deg or below -10 deg (front or

rear) indicate skidding. Tire skid is important to consider in this scenario for several

reasons. First, skidding is a dangerous situation that leads to loss of yaw stability in an

emergency situation. Second, tire skid indicates the presence of significant nonlinearities

that reduce the validity of a linear analysis. Falcone et al. also showed that striving to

minimize tire slip angle improved controller performance by keeping the tires away from

nonlinear regions [17]. The tire skid threshold of 10 deg was found in previous work [48]

and has also been normalized about this point.

The maximum values of yzmp and αf,r over the test suite of speeds and intervention

distances are shown in Fig. 5.5. The circles on the plots indicate whether the limiting

intervention distance was dictated by wheel lift or tire skid for a particular speed. For

example, the 13.4 m/s curve of Fig. 5.5 is circled on the yzmp plot. This means that
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Figure 5.5. Minimum intervention distances where wheel lift and tire skid occur for a flat road
over various speeds. The circles indicate whether the limiting intervention distance was dictated
by wheel lift (top) or tire skid (bottom) for a particular speed.

a greater intervention distance was needed to mitigate the threat of wheel lift at this

speed. The results show that wheel lift precedes skidding at low speeds, while skidding

precedes wheel lift at high speeds. This is an intuitive relationship; at lower speeds,

the suspension dynamics have time to evolve over the longer lane change, resulting in

more dominate rollover effects. The plots also show that, overall, higher speeds require

a greater intervention distance for a safe maneuver.

It should be noted that the intervention distances determined here correspond with

the last possible instant before the vehicle must intervene, i.e. maneuvers performed at

the distances circled on the plots result in yzmp and αf,r values that rise to the brink of

their thresholds. Ideally, the vehicle should not intervene before it is absolutely necessary.

In practice, however, these thresholds could be more conservative, for example, at a

predetermined percentage of the yzmp and αf,r normalized values. This would result in
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φt

Figure 5.6. Collision avoidance scenario: a moving vehicle approaching a stationary object on
a banked curve. This figure illustrates a positive bank angle, while a negative bank angle slopes
the opposite direction.

greater intervention distances and a less severe avoidance maneuver.

5.5 Steering Intervention for Collision Avoidance on a Banked

Curve

5.5.1 Simulation Overview

In order to investigate scenarios in which the vehicle would experience an even greater

rollover threat, simulations were performed for the avoidance maneuver on a banked

curve. Figure 5.6 illustrates this scenario, where the lane change maneuver is performed

up the slope of the terrain for a positive bank angle. Conversely, the lane change maneu-

ver is performed down the slope of the terrain for a negative bank angle. All simulation

procedures and parameters remain the same as those for the flat road, with the exception

of a constant road superelevation now present throughout the maneuver.

Four different bank angles were simulated: a moderate ±4.5 deg slope (8% superele-

vation) and a severe ±8 deg slope (14% superelevation). These values are representative
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Table 5.1. Road friction values used for different vehicle speeds based on highway design
guidelines [57].

U µroad
13.4 m/s (30 mph) 0.20
20.1 m/s (45 mph) 0.16
26.8 m/s (60 mph) 0.13
33.5 m/s (75 mph) 0.10

of the terrain angles typically seen on highway curves [57]. The radius of the highway

curve was determined for each speed using acceptable lateral acceleration values specified

in highway design guidelines [57] according the the following:

Rcurve = U2

g
(
φt
100 + µroad

) sec
(

arctan
(
φt

100

))
(5.6)

In Eq. 5.6, φt is specified in percent superelevation and values of µroad, the road friction,

were used corresponding to the appropriate speed in [57] (Table 5.1).

Using knowledge of the vehicle’s speed, the radius of the curve, and the bank angle

of the curve, initial steering biases needed to navigate the curve (without a lane change)

were determined. The open-loop iterative approach of Section 5.3 was repeated with the

addition of terrain angle, resulting in a new mapping from Eq. 5.3 to the following:

δf = A sin(ωt) + bs (5.7)

where bs is the initial steering bias.

5.5.2 Simulation Results

The simulation results for the ±4.5 deg slope (8% superelevation) and the ±8 deg slope

(14% superelevation) are shown in Fig. 5.7 and Fig. 5.8 respectively. Overall, the trends

appear as expected; the introduction of terrain increases the minimum intervention dis-

89



tance needed for a safe maneuver, with higher speeds requiring more distance. The

individual relationships between each scenario are examined in Section 5.6.

It should be noted that for all of the simulations involving road superelevation, wheel

lift is the dominate threat and dictates the intervention distance (indicated by the circled

curves) for most of the speeds. This is an intuitive relationship, as the addition of terrain

increases the vehicle’s rollover propensity. The only instance where the tire skid threshold

is breached first is at high speeds (75 mph) with a positive bank angle (both the 4.5 deg

and 8 deg cases). Skidding precedes rollover in this scenario because the vehicle is rapidly

steering up the slope of the terrain, where gravity impedes the vehicle’s motion.
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Figure 5.7. Minimum intervention distances where wheel lift and tire skid occur for a banked
curve (±4.5 deg) over various speeds. The circles indicate whether the limiting intervention
distance was dictated by wheel lift (top) or tire skid (bottom) for a particular speed.
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Figure 5.8. Minimum intervention distances where wheel lift and tire skid occur for a banked
curve (±8 deg) over various speeds. The circles indicate whether the limiting intervention distance
was dictated by wheel lift (top) or tire skid (bottom) for a particular speed.

5.6 Comparison of Intervention Distances

This section compares the minimum intervention distances found for all scenarios de-

scribed above. For each simulation, the minimum intervention distance, whether dic-

tated by wheel lift or tire skid, was recorded as a function of speed. In other words, the

absolute minimum distance needed is the distance for each speed where the wheel lift

threshold or tire skid threshold is breached, whichever occurs first.

Figure 5.9 shows the results of each of the tested scenarios. The curve labeled

“Rollover not considered” is the steering intervention result of [20] discussed in Section

5.2. The reader should keep in mind that the results of [20] are an idealized interven-

tion distance, where the vehicle is assumed to achieve instantaneous lateral acceleration
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Figure 5.9. Comparison of the minimum intervention distances needed for an open-loop lane
change avoidance maneuver.

and factors such as rollover are ignored. Thus, the findings from the simulations of the

previous sections clearly show the need for consideration of these factors in an emer-

gency situation with a rollover-prone vehicle. In particular, when wheel lift and tire skid

are considered, there is a considerable increase of approximately 150% in the necessary

intervention distance.

Further insight can be gained by comparing the minimum intervention distances

of the individual simulations. It can be seen that, in general, the avoidance maneuver

requires greater intervention distance when performed on negative bank angles, especially

at speeds above 20.1 m/s (45 mph). A high rollover threat occurs in this scenario when

the vehicle steers down the slope to avoid the obstacle, and subsequently steers up

the slope to remain within the opposite lane, effectively amplifying the roll dynamics.

Another intuitive relationship seen in Fig. 5.9 is that large bank angles (±8 deg) require

92



more distance than the moderate bank angles (±4.5 deg) of the same sign. Naturally,

this is a result of the vehicle’s increased rollover propensity on more severe terrain.

These results indicate that it is important to consider a vehicle’s roll and tire dy-

namics when developing collision avoidance algorithms. This is especially true when

a rollover-prone situation is present, such as with SUVs and heavy trucks, or when a

vehicle is driving on uneven terrain. Knowledge of these situations and the necessary

intervention distance can help the development of closed-loop architectures that account

for this behavior when necessary. As mentioned previously, the open-loop framework

presented in this chapter can also be modified to examine other intervention strategies,

such as braking, or different emergency scenarios.
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Chapter 6 |

Closed-Loop Collision Avoidance

and Rollover Prevention

6.1 Introduction

This chapter extends the work of Chapters 4 and 5 through implementation of a closed-

loop controller. The controller in this chapter is designed to safely navigate the vehicle

around an obstacle while also maintaining roll and yaw stability. This is the same

scenario considered in Chapter 5, but with added feedback control.

The open-loop analyses of Chapters 4 and 5 were beneficial in determining the min-

imum preview horizon and minimum intervention distance, respectively. However, an

open-loop implementation is also impractical for use on a real vehicle. Unknown distur-

bances, model uncertainties, etc. contribute to overall vehicle behavior that would not

be accounted for with an open-loop controller. Therefore, it is necessary to develop a

closed-loop controller using the knowledge gained from the open-loop analyses.

The remainder of this chapter is organized as follows: first, a Linear-Quadratic Reg-

ulator (LQR) with full state weighting is presented and analyzed. Next, a modified
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Figure 6.1. Controller setup for path following using model reference state trajectories and full
state feedback.

control law is presented utilizing LQR with output weighting for ZMP regulation. Fi-

nally, a study is performed on appropriate weighting values for ZMP regulation based

on several safety criteria.

6.2 Linear-Quadratic Regulator with Full State Weighting

The first method for closed-loop control used the standard infinite horizon LQR algo-

rithm with full state weighting, with controller gain determined by

min
u(t)

J =
∫ ∞

0

[
~x(t)TQ~x(t) + ~u(t)TR~u(t)

]
dt

s.t. ~̇x(t) = A~x(t) +B~u(t)
(6.1)

where Q is the state weighting matrix and R is the input weighting matrix.

In order to test the path following performance of this controller, the state feedback

scheme was implemented according to Fig. 6.1. Here, the open-loop steering maneuvers

of Chapter 5 were used to develop model reference trajectories for all the vehicle states.

The controller then operated off of the error between the model reference states and the

vehicle states.

Simulations of this controller were performed using the standard roll model with tire

lag using vehicle parameters provided in Table 3.3, and Q and R matrices chosen as
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such:

Q = diag[ 50 0.001 10 0.1 0.1 0 0 10 ] (6.2)

R = 1 (6.3)

corresponding to the state vector for the roll model with tire lag of:

~x = [ y V r φ̇r φr Ff Fr ψ ]T (6.4)

The values of the state weighting matrix, Q, were chosen to emphasize the tracking of

three states in particular: y, r, and ψ. A relatively high weight on y (50) demands

that the vehicle follow the lateral position trajectory specified by the reference model.

Tracking of r and ψ with moderately high weights (10), meanwhile, produces a smooth

steering action without sacrificing lateral position tracking.

Additionally, the simulations assumed a flat road and a vehicle speed of 20.1 m/s (45
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Figure 6.2. Lateral position trajectory of a lane change avoidance maneuver using LQR full
state weighting following model reference states. The maneuver was performed at 20.1 m/s (45
mph) over 29.7 m of longitudinal travel (the minimum intervention distance at this speed).

96



mph) due to the roll-before-skid behavior seen at this speed in Chapter 5. The steering

input was rate limited to 4 rad/s to mimic the vehicle’s steering actuator dynamics [60]

and saturated at 0.4 rad and -0.4 rad to simulate the limits of the steering rack. Figure

6.2 shows the path following performance of this controller at 45 mph for a maneuver

performed at the the minimum intervention distance (Fig. 5.9 of Chapter 5).

Figure 6.2 demonstrates that the controller is able to maintain excellent path fol-

lowing of the open-loop reference trajectory. Concerns arise, however, when examining

the values of yzmp and the tire slip angles over the course of the maneuver, as shown in

Fig. 6.3. As shown by the plot of yzmp for the maneuver, the controller slightly crosses

over the wheel lift threshold. This is a natural result of a closed-loop tracker. There
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will always be some lag (for non-preview solutions) between the reference trajectory and

model output, as the controller only reacts to the growth of an error term. One must

also keep in mind that the reference trajectory provided to the vehicle constitutes the

absolute minimum intervention distance needed before wheel lift, excessive tire skid, or

a collision occurs. Thus, because the vehicle is not able to follow the reference trajectory

exactly, the value of yzmp breaches the safety threshold.

6.3 Linear-Quadratic Regulator with Output Weighting

The results of Section 6.2 show the need for a solution that actively monitors the vehicle’s

roll threat. The computation of the intervention distance used in this research is still an

“offline” exercise, completely model-based. In this sense, if the real vehicle parameters

differ from the ones used in the model, the vehicle runs the risk of underestimating the

intervention distance. This would result in a controller that accurately tracks an unsafe

trajectory. The feedback scheme of Section 6.2 has no way of modifying the maneuver,

even if yzmp is approaching a critical level.

Thus, the fact that yzmp can be added as an output of the system served as motivation

to change the state regulator problem of Eq. 6.1 to the output regulator problem of the

following:

min
u(t)

J =
∫ ∞

0

[
~y(t)T Q̃~y(t) + ~u(t)TR~u(t)

]
dt

s.t. ~̇x(t) = A~x(t) +B~u(t)

~y(t) = C~x(t) +D~u(t)

(6.5)

where Q̃ is the updated weighting matrix for an output weighting framework. For this

study, the output of the system includes all of the state variables of Eq. 6.4, plus two
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additional values: yzmp and yzmp(t+ T ) such that

~y(t) = [ ~x(t) yzmp yzmp(t+ T ) ]T (6.6)

Subsequently, the updated state weighting matrix Q̃ is identical to the LQR Q matrix

through its weights on the states, but now two additional terms are added along the

diagonal: Qyzmp and Qyzmp(t+T ). These terms represent the importance of keeping yzmp

and yzmp(t + T ) close to zero, respectively. High values of Qyzmp and Qyzmp(t+T ) will

naturally indicate that minimizing yzmp and yzmp(t+ T ) is a higher priority than state

tracking, while small values prioritize good state tracking, even if this action produces

high ZMP values.

In order to apply full state feedback with LQR output weighting, the integrand of

the performance index of Eq. 6.5 must be rewritten as a function of the state vector.

This is because the LQR algorithm relies on the assumption of full state feedback for

the calculation of the optimal gain matrix, even when the weighting is placed on the

output vector. Substituting the equation for ~y into the integrand and rearranging terms

produces the following:

(C~x+D~u)T Q̃(C~x+D~u) + ~uTR~u (6.7)

(~xTCT + ~uTDT )Q̃(C~x+D~u) + ~uTR~u (6.8)

~xTCT Q̃C~x+ 2~uTDT Q̃C~x+ ~uTDT Q̃D~u+ ~uTR~u (6.9)

~xT [CT Q̃C]~x+ 2~xT [CT Q̃D]~u+ ~uT [DT Q̃D +R]~u (6.10)

99



Letting the terms CT Q̃D = Ñ and DT Q̃D +R = R̃ we arrive at the following:

~xT [CT Q̃C]~x+ 2~xT Ñ~u+ ~uT R̃~u (6.11)

Preliminary results showed best performance by setting Ñ to zero when solving for the

optimal gains in the LQR output weighting formulation. Thus, the final optimization

problem for full state feedback LQR with output weighting is written as such:

min
u(t)

J =
∫ ∞

0

[
~x(t)TCT Q̃C~x(t) + ~u(t)T R̃~u(t)

]
dt

s.t. ~̇x(t) = A~x(t) +B~u(t)

~y(t) = C~x(t) +D~u(t)

(6.12)

The updated input weight matrix, R̃, takes the weights from the standard LQR input

weighting, R, and adds a semi-definite positive “correction” term. This term accounts for

the fact that the throughput matrix D has nonzero terms in the calculation of yzmp and

yzmp(t+T ): the direct effect of steering input on ZMP. The reader should also note that

the “correction” term is proportional to the tuning parameters Qyzmp and Qyzmp(t+T ).

The expected effect is that larger values of these weights will produce a larger R̃, hence

smaller steering inputs to the system, as compared to the standard LQR of Section 6.2.

Additionally, if Qyzmp and Qyzmp(t+T ) are assigned weights of zero, the output reg-

ulator is reduced to the state regulator of Section 6.2. Thus, the controller is able to

perform trajectory following under normal driving scenarios without retuning the weights

on the states. However, if the vehicle detects that it is in an emergency situation and

may experience wheel lift, the weights on Qyzmp and Qyzmp(t+T ) can be adjusted for a

safe maneuver. The results of the following sections aim to determine how best to use

these weights for safe path following in the collision avoidance scenario of Chapter 5.
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6.3.1 Weight Tuning for Qyzmp

To illustrate the effect of ZMP weighting, the avoidance maneuver of Section 6.2 was

simulated with the LQR output regulator of Eq. 6.12. The weights on the states remain

the same as in Section 6.2, specified in Eq. 6.2. Figure 6.4 shows the path following

performance of the vehicle with Qyzmp = 100 and Qyzmp(t+T ) = 0, while Fig. 6.5 shows

the behavior of yzmp and tire slip angles. These plots exhibit the expected trends of

increasing the weight on yzmp regulation: in order to reduce the value of yzmp (Fig. 6.5),

the controller sacrifices state tracking, resulting in overshoot of the reference trajectory

(Fig. 6.4). In other words, reducing the value of yzmp requires the controller to command

smaller changes to the steering input.

Further insight into these trends can be gained by examining the contribution of

ZMP regulation to the overall steering input. Thus, the control structure was broken up
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Figure 6.4. Lateral position trajectory of a lane change avoidance maneuver using LQR output
weighting on yzmp. The maneuver was performed at 20.1 m/s (45 mph) over 29.7 m of longitudinal
travel (the minimum intervention distance at this speed).
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according to Fig. 6.6. In this structure, δzmp represents the steering input commanded to

keep yzmp at zero, while δstate represents the steering input commanded to maintain state

tracking. Figure 6.7 shows each of these steering inputs over the avoidance maneuver

of Fig. 6.4, as well as the combined steering input, δCL. This plot explicitly illustrates

that the steering input required for state tracking and the steering input required for

ZMP regulation have opposite objectives. The net effect on the combined steering, δCL,

is a less severe steering input when compared to Qyzmp = 0. The reader should note

that controller saturation and rate limiting are only applied to the overall input, δCL.

Thus, the high peaks of δstate and δzmp can be intuitively explained as such: in order

to perform state tracking, δstate grows. ZMP regulation through δzmp, however, desires
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smaller steering inputs and cancels some of the steering commanded through δstate,

resulting in a reduced overall steering input. This in turn requires δstate to grow even

more and so on. The net effect is an LQR output regulator that tracks the reference

trajectory less aggressively due to the opposing objective of keeping steering changes

small for ZMP regulation. This “effect of ZMP regulation” can be thought of simply as

the difference in δCL for Qyzmp = 0 and Qyzmp = 100, shown in Fig. 6.8.

In order to examine how the magnitude of Qyzmp affects the avoidance maneuver,
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simulations were performed over a range of Qyzmp values. The effectiveness of the re-

sulting maneuver was evaluated by four criteria: the maximum lateral position, ymax

(indicating whether the vehicle stays on the road), the lateral position when the obstacle

is reached, yobs (indicating whether the vehicle avoids the collision), the maximum mag-

nitude of yzmp, yzmp,max (indicating the vehicle’s wheel lift threat), and the maximum

magnitude of tire slip angle, αmax (indicating the vehicle’s proximity to skidding). The

ideal value of ymax should be 3.65 m, meaning there is no overshoot of the center of

the lane. However, the full width of the lane can be utilized as long as the tires remain

within the bounds of the lane, i.e. ymax ≤ 4.67 m. Additionally, the ideal value of yobs

should be 3.65 m, meaning the vehicle is centered in the opposite lane when the obstacle

is reached. Once again, however, if the full width of the lane is utilized, yobs ≥ 2.64 m

results in a successful maneuver out of the blocked lane. The thresholds for yzmp,max

and αmax remain the same as in Chapters 4 and 5 after being normalized.
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Figure 6.9. Effect of Qyzmp weight on four safety criteria for a lane change avoidance maneuver.
For each speed, the maneuver was performed at the minimum intervention distance of Fig. 5.9.
The value of Qyzmp(t+T ) was held at zero.

105



For the simulations, the avoidance maneuvers were performed at the minimum in-

tervention distance for a flat road as a function of the vehicle’s speed, given by Fig. 5.9

of Chapter 5. Figure 6.9 shows the effect of Qyzmp on the four safety criteria discussed

above while holding Qyzmp(t+T ) at zero. It is evident that there is a trade-off between

yzmp,max, αmax and ymax, yobs. Larger values of Qyzmp tend to reduce the values of

yzmp,max and αmax by demanding a less aggressive maneuver. The smaller changes in

steering input, however, result in greater overshoot of ymax and smaller values of yobs.

Figure 6.9 also shows that the performance of the LQR output regulator is speed

dependent, especially when considering the vehicle’s rollover threat. For all speeds,

values of Qyzmp roughly below 50 fail to effectively reduce the rollover and/or tire skid

threat. Values above 100, meanwhile, bring the vehicle into the safe operating zones for

all four criteria. Additionally, the curves for all four criteria exhibit asymptotic behavior

as the value of Qyzmp is increased; thus, a gain scheduling approach based on the vehicle

speed can be adopted. For the scenario shown here, Qyzmp values between 100 and 500

seem to be feasible solutions, depending on whether the controller is designed to favor

roll/skid robustness or path following robustness.

6.3.2 Bank Angle Effect on Qyzmp

This section examines the effect of bank angle (road superelevation) on the performance

of the LQR output regulator. The simulation parameters and procedure remain the

same, however, instead of a flat road, the vehicle is set to experience a -8 deg (14%

superelevation) road bank angle, as in Chapter 5. This value is representative of a

severe terrain angle typically seen on highway curves [57] and was shown in Chapter 5

to produce the greatest rollover threat. Figure 6.10 shows the controller performance

on the -8 deg bank angle while varying Qyzmp. It should be noted that the maneuvers

of Fig. 6.10 were performed at the minimum intervention distances of Fig. 5.9 for a -8
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Figure 6.10. Effect of Qyzmp weight on four safety criteria for a lane change avoidance maneuver
on a -8 deg (14% superelevation) bank angle. For each speed, the maneuver was performed at
the minimum intervention distance of Fig. 5.9 for a -8 deg bank angle. The value of Qyzmp(t+T )
was held at zero.
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deg bank angle, not a flat road. Because of the increased intervention distance resulting

from the terrain, Fig. 6.10 shows similar trends to those of Fig. 6.9 for all four safety

criteria, with slightly increased values of yzmp and greater overshoot in ymax. The results

show that even with the introduction of a -8 deg bank angle, values of Qyzmp between

approximately 100 and 500 seem to be the best solution for balancing the trade-offs

between the four safety criteria.

During an emergency scenario, situations may arise when the vehicle is not able to

perform an avoidance maneuver at the minimum intervention distance. For example,

an animal unexpectedly coming into the vehicle path may necessitate that an avoidance

maneuver be performed at shorter intervention distances. For this reason, the controller

performance was also evaluated for a -8 deg road bank angle at the minimum intervention

distances of Fig. 5.9 specified for a flat road. Figure 6.11 shows the results of this

analysis. It can be seen that the vehicle experiences higher values of yzmp over the more

severe maneuver; however, it is still able to follow a safe avoidance trajectory, particularly

around a Qyzmp value of 300. Thus, regulating ZMP as part of the closed-loop control

is able to prevent wheel lift even under severe maneuvers and terrain variations.

6.3.3 Weight Tuning for Qyzmp(t+T )

This section now examines the effect of regulating the previewed value of ZMP, yzmp(t+

T ), in the LQR output weighting controller. As in the previous section, the avoidance

maneuver of Section 6.2 was simulated with the LQR output regulator and state weights

specified in Eq. 6.2. However, the implementation of yzmp(t + T ) now presents an

additional simulation variable: the preview horizon length, T . The choice of the preview

horizon was the subject of study in Chapter 4 and the results are utilized here. In

particular, the collision avoidance maneuver very closely resembles the steering trajectory

of corrective steering maneuver #2. Thus, the preview time was chosen based on the
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Figure 6.11. Effect of Qyzmp weight on four safety criteria for a lane change avoidance maneuver
on a -8 deg (14% superelevation) bank angle. For each speed, the maneuver was performed at
the minimum intervention distance of Fig. 5.9 for a flat road. The value of Qyzmp(t+T ) was held
at zero.
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weighting on yzmp(t + T ). The maneuver was performed at 20.1 m/s (45 mph) over 29.7 m of
longitudinal travel (the minimum intervention distance at this speed).

avoidance maneuver steering frequency and magnitude according to Fig. 4.12.

Figure 6.12 shows the path following performance of the vehicle with Qyzmp = 0 and

Qyzmp(t+T ) = 100, while Fig. 6.13 shows the behavior of yzmp and tire slip angles. The

lateral position trajectory of Fig. 6.12 exhibits similar trends to those of Fig. 6.4, namely

overshoot of the reference trajectory. Figure 6.13, however, illustrates some unexpected

results. In the plot of ZMP, it can be seen that weighting Qyzmp(t+T ) produces the desired

result of decreasing the peak values of yzmp(t + T ). However, weighting on Qyzmp(t+T )

actually increases the peak values of yzmp over the maneuver. Thus, in striving to

regulate the previewed solution of ZMP, the vehicle follows a trajectory with an even

greater rollover threat. This shows that steering inputs designed to reduce the vehicle’s

rollover threat in the near future do not necessarily result in a safe maneuver at the

present time.

This trend is further illustrated by Fig. 6.14, where yzmp and yzmp(t+ T ) have been

plotted for several weighting combinations of Qyzmp and Qyzmp(t+T ): (a) Qyzmp = 0 and
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Figure 6.13. yzmp and tire slip angles for LQR output weighting over the maneuver shown in
Fig. 6.12.

Qyzmp(t+T ) = 0, (b) Qyzmp = 100 and Qyzmp(t+T ) = 0, (c) Qyzmp = 0 and Qyzmp(t+T ) =

100, (d) Qyzmp = 100 and Qyzmp(t+T ) = 100. Additionally, Fig. 6.14 compares the peak

values of yzmp and yzmp(t+T ) for each weighting combination. The simulation maneuver

and parameters were identical to those of Fig. 6.12, with the exception of Qyzmp and

Qyzmp(t+T ). The results agree with the observations seen in Fig. 6.13. When compared

to zero weighting of ZMP (Fig. 6.14(a)), sole weighting of Qyzmp offers the most effective

means of rollover prevention by reducing the peak values of both yzmp and yzmp(t+ T )

(Fig. 6.14(b)). Sole weighting of Qyzmp(t+T ), meanwhile, reduces the peak value of

yzmp(t + T ), but increases the peak value of yzmp (Fig. 6.14(c)), effectively sacrificing

current performance to mitigate the future rollover threat. Similarly, weighting of both

Qyzmp and Qyzmp(t+T ) also reduces the peak value of yzmp(t + T ), but increases the
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Figure 6.14. yzmp and yzmp(t+T ) over the maneuver shown in Fig. 6.12 for various weightings
of Qyzmp and Qyzmp(t+T ). The largest magnitude of yzmp and yzmp(t+ T ) over the maneuver is
shown to the right of the corresponding plot.

peak value of yzmp (Fig. 6.14(d)). This last result is the most interesting; while the

introduction of Qyzmp weighting in Fig. 6.14(b) provides an effective means of reducing

the vehicle’s rollover threat, the addition of Qyzmp(t+T ) weighting to this scenario in

Fig. 6.14(d) increases the peak values of both yzmp and yzmp(t+ T ). Thus, weighting of

Qyzmp(t+T ) increases the vehicle’s rollover threat even when Qyzmp is weighted as well.

Once again, simulations were performed over a range of speeds and values ofQyzmp(t+T )

to examine the effect of Qyzmp(t+T ) weight on the four safety criteria established for the

avoidance maneuver. Figure 6.15 provides the results of this analysis while holding
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Qyzmp at zero. As expected, weighting of Qyzmp(t+T ) is not as effective as weighting of

Qyzmp in preventing wheel lift during the avoidance maneuver, and actually increases

the rollover threat for certain values (Qyzmp(t+T ) < 100). Values of Qyzmp(t+T ) greater

than approximately 500 result in a safe maneuver for all four criteria; however, the fact

remains that even in this range, weighting of Qyzmp is more effective in reducing the

vehicle’s rollover threat.

These results lead to several conclusions. It can be seen that simply including

yzmp(t+T ) in the control optimization does not necessarily decrease the vehicle’s rollover

threat; in fact, under some circumstances and improper weighting of Qyzmp(t+T ), this

action results in an increased rollover threat. Figure 6.14(d) even shows that introduc-

ing Qyzmp(t+T ) weighting in addition to Qyzmp weighting results in an increased rollover

threat. Therefore, while an exhaustive search of optimal Qyzmp and Qyzmp(t+T ) com-

binations was not conducted, the results indicate that best performance is achieved

through LQR output regulation that only regulates yzmp. Subsequently, this result also

leads to the conclusion that, while yzmp(t + T ) provides useful information about the

vehicle’s rollover threat in the near future, it may be prudent not to include it in the con-

troller optimization policy. The resulting controller could then utilize information about

yzmp(t + T ) as an indicator for when a new control policy (one that strives to reduce

the rollover threat) should be used. Put another way, dangerous values of yzmp(t + T )

could be used to retune the vehicle’s controller by increasing the weight on Qyzmp. This

would result in a controller that only sacrifices state tracking performance when a severe

rollover threat is predicted.
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Chapter 7 |

Conclusions & Future Work

This chapter summarizes the important conclusions found in this thesis. Additionally,

possibilities for future work are discussed based on the most promising avenues of this

research.

7.1 Conclusions

The work in this thesis covered several aspects of vehicle rollover prevention. Chapter

4 aimed to implement a previewed solution of the zero-moment point metric as an in-

dicator of future rollover threats. In particular, the minimum preview horizon needed

to predict and prevent wheel lift was investigated through open-loop steering maneu-

vers representative of a driver in an emergency situation. Results showed that preview

horizons between 0.1 s and 0.7 s proved capable of preventing wheel lift through correc-

tive intervention. The reader should note, however, that these results were obtained for

one particular scenario involving a rollover-prone vehicle and rollover-inducing driving

conditions. Also, changes to the intervention strategy (i.e. braking instead of steering)

would likely change the range of necessary preview horizons. Nevertheless, the methods

presented in this thesis can be readily modified to study changes to the simulation param-
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eters or intervention strategy. The choice of an effective preview horizon for predictive

control-based solutions remains an open research problem. A preview horizon that is too

short may not provide enough information, while one that is too long is computationally

expensive and cannot perform in real-time. The results presented in Chapter 4 provide

a good baseline when choosing a preview horizon in the design of closed-loop model

predictive control (MPC) approaches for rollover prevention.

This thesis also addressed strategies to mitigate a vehicle’s rollover threat in a col-

lision avoidance scenario. Chapter 5 studied the question of the minimum intervention

distance needed to avoid a stationary object, while also preventing wheel lift and tire

skid. Results from this analysis showed that when roll and tire dynamics are considered,

there is approximately a 150% increase in the intervention distance needed for a safe

maneuver when compared to the idealized avoidance scenario of [20]. This indicates the

importance of considering a vehicle’s rollover threat when developing optimized avoid-

ance trajectories, especially for rollover-prone vehicle such as trucks and SUVs. The

results of this analysis also showed that more intervention distance is needed when the

avoidance maneuver is performed on banked roads, an effect which amplifies the vehicle’s

rollover propensity. This intuitive result reminds readers that terrain effects, information

which is attainable through mapped roadways, should also be factored into the design

of avoidance trajectories.

The results of Chapters 4 and 5 were then utilized in Chapter 6 in the design of a

closed-loop controller for collision avoidance and rollover prevention. Preliminary results

of the standard LQR framework for state tracking showed excellent path following, but

an unreliable means of preventing wheel lift. In essence, the standard LQR controller

did not actively strive to reduce the vehicle’s rollover threat. Thus, an LQR output

weighting framework was chosen to actively regulate yzmp and yzmp(t + T ) in addition

to state tracking. Using this method, explicit tuning parameters were introduced that
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represent the relative importance of rollover prevention with respect to state tracking.

An analysis was then performed to determine appropriate weights for these terms: Qyzmp

for yzmp and Qyzmp(t+T ) for yzmp(t+T ). Results showed that rollover prevention through

active weighting of yzmp and state tracking are competing objectives. ZMP regulation

was indeed able to reduce the vehicle’s overall rollover threat even in the presence of

terrain variations, but at the cost of path following performance. Ultimately, this is a

result of the need for smaller changes in steering input to reduce the rollover threat. The

analysis then showed that values of Qyzmp between 100 and 500 are the most effective at

balancing the trade-off between rollover prevention and state tracking. A second result

of this analysis indicated that actively regulating the previewed solution of ZMP through

Qyzmp(t+T ) is not an effective means of reducing the vehicle’s real-time rollover threat.

In fact, if Qyzmp(t+T ) is weighted incorrectly, it was shown that the vehicle follows a

trajectory that actually increases the real-time rollover threat. Thus, while information

about about the vehicle’s future rollover threat is useful for warning purposes, it should

not be actively regulated for control.

7.2 Future Work

The research presented in this thesis offers several pertinent avenues of future work.

Model predictive control remains one of the most promising approaches to vehicle control,

especially in emergency situations where significant nonlinearities are imposed on the

system. Therefore, employing the results of this thesis in an MPC framework has the

potential to offer a very effective means of optimal rollover prevention and path following.

As discussed in Chapter 2, MPC produces an optimal sequence of control inputs up to

a user-specified control horizon. This sequence of control inputs is iteratively calculated

at each time step and can be subject to performance constraints. While the LQR output

117



regulator of Chapter 6 proved to be an effective means of reducing the vehicle’s rollover

threat, the vehicle is not necessarily following an optimal avoidance trajectory. Thus, an

MPC approach could be used to develop an optimal avoidance trajectory and navigate

the vehicle along it. Additionally, the calculation of this avoidance trajectory could be

subject to constraints yzmp, i.e. the trajectory must not induce wheel lift.

Another potential avenue of future work would be to investigate the feasibility of

implementing a switching law on the LQR output regulator presented in Chapter 6.

When the control weights placed on yzmp and yzmp(t+T ) are zero, the output regulator

reduces to the standard LQR controller used for state tracking. This is useful for track-

ing trajectories in non-emergency situations, where rollover is not a critical concern. A

switching law would allow the controller to modify the gain of ZMP based on the ve-

hicle’s current and future rollover threat. However, due to the possibility of switching

instabilities, a control scheme such as this would need to be heavily studied. Similarly, a

feedforward term could be added from the open-loop, driver steering input. This would

result in a controller that offers control of the vehicle to the driver, but then makes minor

corrections when the driver commands a dangerous steering input.

Yet another area of future work would be to test different intervention strategies.

While this thesis focused strictly on high-speed steering intervention, these studies should

be repeated to determine the effect of alternative interventions such as braking or mixed

steering and braking. The most effective intervention strategy is highly dependent on

the scenario in question; low speeds, moving obstacles, different vehicle configurations,

threat level, etc. can all affect the decision of the optimal policy. Subsequently, results

such as the necessary preview horizon and minimum intervention distance would likely

change given a new intervention strategy.

Finally, the algorithms used in this thesis and their corresponding results would

greatly benefit from full-scale vehicle testing. The 1989 GMC 2500 pick-up truck used

118



in the simulations has previously been automated for vehicle testing at Penn State.

Experimental testing is essential in validating the techniques and results of this thesis,

especially when considering the safety-critical nature of the work. These tests would

undoubtedly reveal areas for algorithm refinement, as well as unforeseen problems that

cannot be addressed in simulation.
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